野茼蒿在铅、锌和镉胁迫下的耐性和富集特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿区及周边土壤重金属污染已成为影响环境和威胁人类健康的严重问题,继续寻找并研究生长快速的富集或超富集植物对污染土壤植物修复技术及生态环境的恢复都具有重要意义。本研究选取四川省雅安市汉源县富泉铅锌矿(FQ)及乌斯河铅锌矿(WS)的野茼蒿(Crassocephalum crepidioides (Benth.) S. Moore)为研究对象,在室内盆栽试验条件下研究了两地野茼蒿在不同重金属浓度梯度下的耐性及对镉、铅和锌的吸收富集特征,研究结果如下:
     (1)在Cd胁迫下,野茼蒿表现出一定的耐性;随胁迫浓度的增高,镉富集能力逐渐增强。最高浓度处理下,株高、根长、生物量及叶绿素与对照相比都有显著下降(P<0.01);叶片中过氧化物酶(POD)活性随处理浓度的增加而呈先增大后减小的趋势,超氧化物岐化酶(SOD)活性及过氧化氢酶(CAT)活性呈逐渐减小的趋势。Cd处理下,各个浓度镉含量均表现为细胞壁>细胞器>胞液;Cd在野茼蒿植物体内的含量呈随处理浓度的增加而升高的趋势,并在总体上表现为茎>叶>根;地上部最大含量达到1289.48 mg kg-1,植物体内的累积量最高达到1.24 mg株-1;各个处理下迁移系数和富集系数均大于1。
     (2)在Pb胁迫下,两地野茼蒿耐性存在差异而富集能力均随胁迫浓度的增高逐渐增强。富泉铅锌矿野茼蒿的根长及株高均随着处理浓度的升高而逐渐下降而乌斯河铅锌野茼蒿的根长及株高总体呈逐渐上升的趋势;两地野茼蒿地上部分生物量均大于根部;叶片中叶绿素均在最高浓度处理下含量最小;富泉铅锌矿野茼蒿POD及SOD活性随处理浓度的增加而呈先增大后减小的趋势,乌斯河铅锌矿则逐渐增加;在高浓度处理下两地野茼蒿叶片CAT活性与低浓度处理相比均显著下降(P<0.05)。Pb在野茼蒿叶片细胞壁、细胞器和胞液中的分布因地点而异,富泉铅锌矿以胞液为主(64.43%),而乌斯河铅锌矿以细胞壁为主(51.33%);Pb在两地铅锌矿野茼蒿地上部含量分别达到128.71 mg kg-1及67.42 mg kg-1,根部分别达到747.84 mg kg-1.和1136.41mgkg-’,植物体内最大累积量分别为0.23mg及1.6mg;两地迁移系数及富集系数均未达到1。
     (3)在Zn胁迫下,两地野茼蒿表现出相似的耐性特征;随胁迫浓度增加,富集能力均逐渐增强。各个处理下,两地野茼蒿根长及乌斯河铅锌矿株高均低于对照;地上部分生物量均大于根部且在最高浓度处理时均最小分别为0.06 g(FQ)及0.19g(WS);叶片中叶绿素含量均在最高浓度处理时最小;两地叶片POD活性最大为731.16Ug-1 FW(处理T7)及955.79Ug-1 FW(处理T3);最高浓度处理下,富泉铅锌矿叶片SOD活性最小为120.34 Ug-1 FW,乌斯河铅锌矿最大为160.97 Ug-1 FW;富泉铅锌矿野茼蒿叶片随处理浓度的增加其CAT活性呈先升高后降低的趋势,乌斯河铅锌矿野茼蒿叶片CAT活性则随处理浓度的增加而增强。最高浓度处理下,Zn在两地野茼蒿叶片胞液组分中含量均最大;Zn在两地铅锌矿野茼蒿地上部含量分别达到3155.63 mg kg-1.3331.40 mg kg-1根部的分别达到4877.10mg kg-1,7018.18mg kg-1,植物体内地上部分的最大累积量分别为3.28mg及2.74 mg;两地野茼蒿对Zn的富集系数均大与迁移系数。
     综上所述,野茼蒿对镉具有超富集能力;并对铅和锌具有一定的耐性和富集能力,从其累积量、根部含量、生物量及良好的生长状况来看,对污染土壤有一定的修复作用。
Heavy metal pollution of metal mining and the surrounding soil has been a serious problem, because of its toxicity to environment and humans. Continue to search for and study rapidly growing and accumulator or hyperaccumulator plants and it was significance to phytoremediation and restoration of the ecological environment. This study selected Crassocephalum crepidioides (Benth.) S. Moore of two lead-zinc mine areas in Han Yuan as the research object, The main results were as follows:
     (1) Under the Cd stress,Crassocephalum crepidioides (Benth.) S. Moore showed some tolerance characteristics; with the increase of stress concentration, Cd accumulation capacity was gradually increased. Under the highest concentrations,height, root length, biomass and chlorophyll were significantly decreased compared to control(P<0.01),With the increase of concentration,peroxidase(POD) in leaves increased at first then decreased,dismutase(SOD) and catalase(CAT) were gradually decreased.In Cd treatments,various concentrations of Cd contents showed cell wall>organelles>cytosol;Cd contents in plants were increased with increasing concentration;The maximum content of shoot reached 1289.48mg kg-1, The maximum accumulation in plants was 1.24 mg plant-1; TF and BCF were both greater than 1.
     (2) Under the Pb stress, The two Crassocephalum crepidioides (Benth.) S. Moore showed different tolerance characteristics; with the increase of stress concentration, Pb accumulation capacity was gradually increased. Root length and plant height of FQ were gradually decreased with the increase of concentration, while, WS showed a gradual upward trend; Biomass of shoots were higher than that in roots of FQ and WS; Chlorophyll content were the smallest under the highest Pb concentration;The activities of POD and SOD of FQ increased at first then decreased, while, WS were gradually increased; CAT in higher concentration were both significantly decreased compared to lower concentration (P<0.05). Pb content was the highest in cytosol (64.43%) of FQ, but the cell wall (51.33%) of WS. The maximum content reached 128.71 mg kg-1,67.42 mg kg-1 in shoots and 747.84 mg kg-1,1136.41mg kg-1 in roots respectively of FQ and WS.The maximum accumulation in plants were 0.23mg(FQ) and 1.6mg(WS);The TF and BCF were both lower than 1.
     (3) Under the Zn stress. The two Crassocephalum crepidioides (Benth.) S. Moore showed the similar tolerance characteristics; with the increase of stress concentration, accumulation capacity was gradually increased. Various treatments, root length (FQ) and WS) and plant height (WS) were higher than control. Biomass of shoots were both higher than that in roots, when in the maximum concentrations they were 0.06 g (FQ) and 0.19g(WS); Chlorophyll content was the smallest under the highest concentration; The maximum activities of POD were 731.16 Ug-1 FW(T7),955.79 Ug-1 FW(T3) respectively; Under the highest concentration, SOD activity of FQ was the lowest (120.34 Ug-1 FW), while, WS was the highest(160.97 U g-1 FW). With the increase of concentration, the activity of CAT (FQ) in leaves increased at first then decreased, while, WS were gradually increased.Under the highest concentrations, Zn contents were both the highest in the cytosol. The maximum content reached 3155.63 mg kg-1,3331.40 mg kg-1 in shoots and 4877.10 mg kg-1,7018.18mg kg-1 in roots respectively of FQ and WS.The maximum accumulation in shoots were 3.28mg(FQ) and 2.74(WS);The TF were both lower than The BCF.
     In summary,Crassocephalum crepidioides (Benth.) S. Moore had a strong accumulation ability of Cd, while, some tolerance and accumulation ability of Pb and Zn. It had a certain function to contaminated soil repair according the accumulation, content of roots, biomass and the good growth conditions.
引文
[1]陈怀满.土壤一植物系统中的重金属污染[M].北京:科学出版社,1996:115~125.
    [2]陈柳燕,张黎明,李福燕,等.剑麻对重金属铅的吸收特性与累积规律初探.农业环境科学报,2007,26(5):1879~1883.
    [3]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561~569.
    [4]陈同斌,阎秀兰,廖晓勇,等.蜈蚣草中砷的亚细胞分布与区隔化作用[J].科学通报,2005,50(24):2739-2744.
    [5]陈现臣,王彩霞.铅(Pb)对西葫芦幼苗生理生化特性的影响.2009,28(2):61-63.
    [6]代全林.植物修复与超富集植物.亚热带农业研究,2007,3(1):51-56.
    [7]杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响.中国蔬菜,2008(5):17-19.
    [8]樊有赋,陈晔,詹寿发,等.超积累植物与重金属污染的植物修复技术.河北农业科学,2007,11(5):73~75.
    [9]谷巍,施国新,杜开和,等.汞,镉复合污染对轮叶狐尾藻得毒害影响[J].南京师范大学学报,2001,24(3):75~79.
    [10]胡云虎,鲁先文.重金属锌对小麦叶绿素合成的影响.安徽农学通报,2008,14(9):97-98.
    [11]亢希然,范稚莲,莫良玉,等.超富集植物的研究进展.安徽农业科学,2007,35(16):4895~4897.
    [12]何新华,陈力耕,何冰,等.铅对杨梅幼苗生长的影响[J].果树学报,2004,21(1):29~32.
    [13]何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿索含量比较[J].农业环境科学学报,2003,22(3):274~278.
    [14]黄铮,徐力刚,徐南军,等.土壤作物系统中重金属污染的植物修复技术研究现状与前景.农业环境科学学报,2007,26(增刊):58~62.
    [15]黄长干,张莉,余丽萍,等.德兴铜矿铜污染状况调查及植物修复研究[J].江西农业大学报,2004,26(4):629~631.
    [16]江行玉,赵可夫.铅污染下芦苇内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169-174.
    [17]科文山,陈建军,黄邦全,等.十字花科芸蔓属5种植物对Pb的吸收与富集[J].湖北大学学报,2004,26(3):236~238,269.
    [18]罗广华,王爱国,邵从本,等.高浓度氧对种子萌发和幼苗生长的伤害.植物生理学报,1987,13(2):161~167.
    [19]罗青龙,任堵,陶玲,等.重金属超积累植物的研究进展.能源与环境,2008,6:17-18
    [20]李裕红,黄小瑜,林智勇.Pb2+对凤眼莲光合作用的影响.中国生态农业学报,2008,16(5):1338-1340
    [21]刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响.植物生理学报,1985,11(1):48-57.
    [22]刘益贵,彭克俭,沈振国.湖南湘西铅锌矿区植物对重金属的积累.生态环境,2008,17(3):1042~1048.
    [23]刘威,术文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046~2049.
    [24]刘俊,廖柏寒,周航,等.镉胁迫对大豆花荚期生理生态的影响.生态环境学 报,2009,18(1):176~182.
    [25]刘家女,周启星,孙挺Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2039-2044.
    [26]龙新宪,倪吾钟,叶正钱,等.超积累生态型东南景天吸收锌的特性.生态学报,2006,26(2):334~336.
    [27]廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007,27(6):881~893
    [28]柳丹,潘凡,杨肖娥.铅富集植物对铅的吸收及其耐性生理机制进展研究.池州学院学报,2007,21(5):88-91.
    [29]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006,15(2):303-306
    [30]马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55~59.
    [31]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19(5):195-199.
    [32]任安芝,高玉葆,刘爽.青菜幼苗体内几种保护酶的活性对Pb、Cd、Cr胁迫的反应研究[J].应用生态学报,2002,13(4):510~512.
    [33]宋瑜,曹宗英,王晓娟,等.植物对重金属镉的响应及其耐受机理.草业学报,2008,10:84~91.
    [34]孙约兵,周启星,任丽萍.镉超富集植物球果薄菜对镉、砷复合污染的反应及其吸收积累特征.环境科学,2007,28(6):1355~1360.
    [35]苏夏征,程峰,莫时雄.植物修复在治理矿区重金属污染土壤中的应用.山西建筑,2008,34(31):27-28.
    [36]沈振国,刘友良.重金属超量积累植物研究进展[J].植物生理学通讯,1998,34(2):133~139.
    [37]汤叶涛,吴好都,仇荣亮,等.滇苦菜(Picris divaricata Vant.)对锌的吸收和富集特性.生态学报,2009,29(4):1823~1827.
    [38]汤惠华,杨涛,胡宏友,等.镉对花椰菜光合作用的影响及其在亚细胞中的分布.园艺学报,2008,35(9):1291-1296.
    [39]铁柏清,袁敏,唐美珍,等.重金属单一污染对龙须草生长与生理生化特性的影响.中国生态农业学报,2007,15(2):99~103.
    [40]唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响[J].沈阳农业大学学报,2001,32(1):26-28.
    (41]田胜尼,彭少麟,张玉琼.铜胁迫对鸭跖草的生长及生理特性的影响.中国农学通报,2009,25(09):144-147.
    [42]王开峰,廖柏寒,刘红玉,等.模拟酸雨和Zn复合污染对蚕豆生长及其生理生化特性的影响[J].环境科学学报,2005,25(2):203~207.
    [43]王焕校.污染生态学.第二版.北京:高等教育出版社,2001:39~46.
    [44]王英辉,伍乃东.铅污染土壤的植物修复技术研究[J].中国土壤与肥料,2007,(05):6-10
    [45]万敏,周卫,林葆.镉积累不同类型的小麦细胞镉的亚细胞和分子分布[J].中国农业科学,2003,36(6):671-675.
    [46]杨志敏,郑绍建.磷对小麦细胞镉、锌的积累及其在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693~695.
    [47]杨良柱,武丽.植物修复在重金属污染土壤中的应用概述.山西农业科学,2008,36(12):132-134.
    [48]杨肖娥,龙新宪,倪吾钟,等.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究[J].植 物生态学报,2001,25(6):665-672
    [49]魏树和,周启星,王新,等.农田杂草的重金属超积累特性研究[J].中国环境科学,2004,2(1):]05-]09.
    [50]魏树和,周启星,王新.一种新发现的镉超积累植物龙葵(Solanum nigrum L)科学通报,2004(24):2568~2573.
    [51]魏树和,周启星,王新,等.某铅锌矿坑口周围具有重金属超积累特征植物的研究.环境污染治理技术与设备,2004,5(3):33~39.
    [52]魏树和,周启星,刘睿.重金属污染土壤修复中杂草资源的利用.自然资源学报,2005,20(3):432-438.
    [53]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196~1203.
    [54]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工出版社,2001.
    [55]徐勤松,施国新,周卫红,等.Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J].生态学杂志,2003,22(1):5-8.
    [56]徐海娟,师荣光,赵玉杰,等.土壤重金属Cd作物效应的区域分异研究.安徽农业科学,2008,36(19):8172-8274.
    [57]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)一种新的锌超积累植物,科技通报,2002,47(13):1003-1006.
    [58]叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境,2002,11(4):331~334.
    [59]于辉,杨中艺,杨知建,等.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布.应用生态学报,2008,19(10):2221~2226.
    [60]严重玲,洪业汤,付舜珍,等.Cd,Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488~491.
    [62]周小勇,仇荣亮,应蓉蓉,等.锌对长柔毛陵体内镉的亚细胞分布和化学形态的影响.农业环境科学学报,2008,27(3):1066~1071.
    [63]周启星,黄国宏.环境生物地球化学及全球环境变化[M].北京:科学出版社,2001.
    [64]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.
    [65]周琼.我国超富集·富集植物筛选研究进展[J].安徽农业科学,2005,33(5):910~912,916.
    [66]周涛发,李湘凌,袁峰,等.金属矿区土壤重金属污染的植物修复研究现状.地质论评,2008,54(4);515~521.
    [67]周建民,党志,陶雪琴,等.NTA对玉米体内Cu、Zn的积累及亚细胞分布的影响.环境科学,2005,26(6):126~130.
    [68]周守标,王春景,杨海军,等.菰和菖蒲在污水中的生长特性及其净化效果比较.应用与环境生物学报,2007,13(4):454-457.
    [69]张艳,施和平,曾宝强.重金属镉及其与锌组合对黄瓜毛状根生长及其抗氧化酶活性的影响.生物工程学报,2009,25(1):60~68.
    [70]张志良.翟伟菁.植物生理学实验指导.第三版.北京:高等教育出版社,2003:123~124.
    [71]张玉秀,于飞,张媛雅,等.植物对重金属镉的吸收转运和累积机制.中国生态农业学报,2008,16(5):1317~1321.
    [72]张政,王转花Cu,Pb和Cd对荞麦种子中抗氧化酶活性的影响[J].中国生物化学与分子生物学学报,1999,15(5):848~851.
    [73]朱建玲,徐志防,曹洪麟,等.镉对南美蟛蜞菊光合特性的影响.生态环境,2008,17(2):657-660.
    [74]Ana P.G.C.Marques, Helena Moreira,Antonio O.S.S. Rangel,et al. Arsenic, Lead and nickel accumulation in Rubus ulmifolius growing incontaminated soil in Portugal.Hazardous Materials, 2009:174-179.
    [75]Anamika T., Ragini S., Naveen K S.,et al.Amelioration of municipal sludge by Pistia stratiotes L.Role of antioxidant enzymes in detoxification of metals. Bioresource Technology,2008, 99:8715-8721.
    [76]Brooks R.R.,Chambers M.F.,Nicks L.J.,et al.Phytomining[J].Trends in Plant Science,1998,3(9):359-362.
    [77]Brooks R.R., Lee J., Reeves R D.. Detection of nickliferous rocks by analysis of herbarium species of indicator plants [J]. Journal of Geochemical Exploration,1977,7:49-77.
    [78]Baker A.J.M., Brooks R.R.. Terrestrial higher plants which hyperaccumulate elements-a review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989,1:86-126.
    [79]Chaney R L, Malik M, Li Y M, et al. Phytoremedition of soil metals [J]. Biotechnol,1997,8 (3): 279-284.
    [80]Cao X D, Ma L Q, Tu C.Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).Environ Pollut,2004,128:317-325.
    [81]Eun S.O, Youn H.S, Lee Y.Lead disturbs microtubule organization in the root meristem of Zea mays [J].Physiologia Plantarum,2000,110 (3):357-365.
    [82]Kumar P, Dusheakow V, Motto H. Photoextraction:The use of plants to remove heavy metals from soil [J]. Environ Sci Technol,1995,29.
    [83]Ktipper H,Zhao F J,McGrath S P.Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens[J].Plant Physiology,1999,119(1):305-311.
    [84]McGrath S.P, Zhao F.Phytoextraction of metals and metalloids from contaminated soils [J].Current Opinion in Biotechnology,2003,14(3):277-282.
    [85]Masahide Yamato, Satoshi Yoshida, Koji Iwase. Cadmium accumulation in Crassocephalum crepidioides(Benth.) S. Moore (Compositae) in heavy-metal polluted soils and Cd-added conditions in hydroponic and pot cultures. Soil Science and Plant Nutrition.2008,54:738-743.
    [86]Ni C Y,Chen Y X,Lin Q,et al. Subcellular localization of copper in tolerant and non-tolerant plant[J]. Journal of Environmental Sciences,2005,17(3):452-456.
    [87]Liu D H, Kottke I.Subcellular localization of copper in the root cells of AUium sativum by electron energy loss spectroscopy [J]. Bioscience Echnology,2004,4:153-158.
    [88]Pawlik Skowronska B.Relationship between acid-soluble thiol peptidesand accumulated Pb in the green alga Stichococcus bacillaris [J]. Aquatic Toxicol,2000,50:221-230.
    [89]Rotkittikhun P., Kruatrachue M., Chaiyarat R., et al. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environmental Pollution,2006,144:681-688
    [90]Rugh C L,Senecoff J F,Meagher R B,et al.Development of transgenic yellow poplar for mercury phytoremediation[J].Nature Biotechnology,1998,16:925-928
    [91]Reeves R.D., Baker A.J.M.. Phytoremediation of toxic metals:using plants to clean up the environment [J]. New York:John Wiley and Sons Incorporation,2000:193-229.
    [92]Scandalios J.G..Oxygen stress and superoxide dismutase.Plant Physio,1993,101(1):7-12.
    [93]Ute K,Ingrid J P,Roger C P,et al.Subcellular localization and speciation of nickel in hyperaccumlator and non-accumulator Thlaspi Species[J].Plant Physiology,2000,122:1343-1353
    [94]Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants [J]. Plant Science,2003,164:645-655.
    [95]Wei Y S,Hong B S,Hua L,et al.Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials,2009
    [96]Wu F B, Dong J, Cai Y, et al. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity [J]. Science of the Total Environment,385 (2007):228-234.
    [97]Wierzbicka M, Pielichowska M.Adaptation of Biscutella laevigata L, a metal hyperaccumulator to growth on a zinc-lead waste heap in southern Poland:I:Differences between waste-heap and mountain populations.Chemosphere,2004, (54)1663-1674.
    [98]Wierzbieka M, Obidzinska J. The effect of lead on seed imbibition and germination in different plant species [J].Plant Science,1998,137 (2):155-171.
    [99]Wu Y X, Tiedemann A V. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone.Environ Pollut,2002,1:37-47.
    [100]Zhang Z C,Qiu B S.Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). Environmental Sciences,2007, 1311-1317