基质含水量和光照强度对不结球白菜生长发育及生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica campestris ssp. chinensis Makino)是人们广泛食用的蔬菜,在夏季栽培时需要采用遮阳网、防虫网、防雨棚等保护设施,工厂化立体栽培也已成为不结球白菜生产的发展趋势,但这些栽培方式会导致不结球白菜栽培的高湿和弱光环境。而弱光逆境给不结球白菜生长发育带来不利影响,特别是在湿度过高时影响更为严重。因此,不同的光照强度下应有不同的灌溉标准。
     本试验分别以2个不结球白菜品种‘矮脚黄’和‘绿星’为试材,研究了温室内不同基质含水量和光照强度及其交互作用对不结球白菜生长发育、生理特性和光合特性的影响,旨在为温室不结球白菜栽培管理过程中的水分和光照管理提供理论依据。主要研究结果如下:
     1.以不结球白菜品种‘矮脚黄’和‘绿星’为试材,设4个基质含水量(基质最大持水量的100%、80%、60%和40%)和3个光照水平(温室内全光照、温室内全光照的60%和30%),共12个处理组合,研究了基质含水量和光照强度及其交互作用对不结球白菜生长及品质的影响。结果表明:基质含水量和光照强度对两品种株高、叶片数、下胚轴、节间长度、干重、鲜重及本试验中四个品质指标均影响显著,二因素交互作用对两品种叶片数、干重、可溶性糖及‘矮脚黄’Vc含量影响显著,对其他指标影响均不显著。基质含水量过高引起植株徒长,光照弱时尤为严重;过低明显抑制植株生长。植株可溶性糖、可溶性蛋白、Vc含量均随基质含水量降低而增加,随着光照强度减弱而减少;随基质含水量降低和光照强度减弱,硝酸盐含量均显著增加。在全光照和60%光照下,以基质含水量为最大持水量的80%时,最有利于不结球白菜的生长,30%光照下,应适当降低基质含水量。
     2.以不结球白菜品种‘绿星’为试材,设3个基质含水量(基质最大持水量的100%、80%和40%)和3个光照水平(温室内全光照、温室内全光照的60%和30%),共9个处理组合,研究了基质含水量和光照强度及其交互作用对不结球白菜生理生化特性的影响。结果表明:基质含水量对不结球白菜叶片相对含水量、比叶面积、根系活力、丙二醛含量、质膜相对透性及SOD、POD、APX活性的影响均达显著水平,但对CAT活性影响不显著,光照强度对上述所有指标均影响显著,而二因素仅对根系活力存在显著的交互作用。叶片相对含水量和比叶面积随基质含水量降低而下降,随光照强度的降低而升高;基质含水量的变化对根系活力的影响因光照强度不同而不同,光照强度降低使根系活力下降。60%光照(L2)和30%光照(L3)下,基质含水量过高和过低均使丙二醛含量和质膜相对透性显著升高;在试验所设各光照强度下,基质含水量过高和过低均使SOD活性显著升高;在全光照(L1)和60%光照(L2)下,POD和APX活性均以80%基质含水量最低,30%光照(L3)下,POD和APX活性均以40%基质含水量显著高于其它水分处理。丙二醛含量、质膜相对透性、POD和APX活性随光照强度减弱而升高,SOD和CAT活性均随光照强度减弱而降低。
     3.以不结球白菜品种‘绿星’为试材,设3个基质含水量(100%、80%和40%基质最大持水量)和3个光照水平(温室内全光照、温室内全光照的60%和30%),共9个处理组合,研究了基质含水量和光照强度及其交互作用对不结球白菜光合特性的影响。结果表明:基质含水量对叶绿素a/b以外的本试验中所有光合色素指标、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)、气孔限制值(Ls)及实际光化学效率(ΦPSⅡ)、表观光电子传递速率(ETR)和光化学猝灭系数(qP)的影响均达显著水平,对叶绿素a/b、初始荧光(Fo)、最大光化学效率(Fv/Fm)和非光化学猝灭系数(NPQ)影响不显著;光照强度对上述所有指标均影响显著,基质含水量和光照强度交互作用对Gs和Tr影响显著,对其他指标影响均不显著。其中,叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量随基质含水量降低和光照强度的减弱而升高,叶绿素a/b随基质含水量改变无显著变化,但随光照强度减弱而下降。基质含水量过高和过低均显著降低不结球白菜叶片Pn、Gs和Tr;随光照强度降低,Pn、Gs、Tr和Ls降低,Ci升高。降低光照强度使Fo升高,Fv/Fm下降。ΦPSⅡ、ETR和qP均以全光照时80%基质含水量(W2)最高,NPQ不受基质含水量变化的影响。随光照强度减弱,ΦPSⅡ、ETR、qP显著降低,NPQ显著升高。与基质含水量相比,光照条件是影响不结球白菜光合作用的主要因素。
The non-heading Chinese cabbage(Brassica campestris ssp. chinensis Makino) is in low light stress when shading net, insert proof net and canopy are adopted in protection facilities in summer and inductrial stereo cultivation in non-heading Chinese cabbage becoming more and more popular. These culture methods lead to an unstable irradiation environment to the growth and development of the non-heading Chinese cabbage, especially when the soil moisture was too high. So the amount of irrigation water should be various under different light intensity.
     The non-heading Chinese cabbage variety'Aijiaohuang'and'Lvxing'were used as materials in order to study the interactive effects of substrate moisture and light intensity on the growth, devepment, physiological and photosynthetic characters.
     1.Plant growth and quality were studied using the non-heading Chinese cabbage variety'Aijiaohuang'and'Lvxing'as materials in order to study the interactive effects of substrate moisture and light intensity.12 treatment combinations were supposed in this experiment, with 4 levels of water-holding capacity(100%,80%,60% and 40%) and 3 levels of light intensity(100%,70% and 40%). The results showed that substrate moisture and light intensity had significant effect on monrphology an growth indices, fresh and dry weight, as well as quality indices. The interaction of the two factors had significant effect on the leaf number, dry weight, content of soluble sugar, Vc content of'Aijiaohuang'.But the ineractiong had no significant influence on other indices. The excessive substrate moisture caused overgrowth, this phenomenon was more obvious under low light density. When the substrate moisture was too low, the plant growth was significantly inhibited. The content of soluble sugar, soluble protein, Vc and nitrate increased with reduction of substrate moisture, while the content of the previous three decreased and nitrate increased with the decreasing light intensity. The non-heading Chinese cabbage plants grown better under the stronger illumination(100% and 60%) with 80% water-holding capacity of substrate, the same as 60% under the lower light intensity (30%).
     2. The non-heading Chinese cabbage variety 'Lvxing' were used as materials in order to study the effects of substrate moisture and light intensity on physiological characters.9 treatment combinations were compared in this experiment, with 3 levels of water-holding capacity(100%,80% and 40%) and 3 levels of light intensity (100%,60% and 30%).The results showed that the substrate moisture had significant effect on RWC, SLA, root activity, MDA content,relative membrane permeability, SOD, POD, APX activity, but didn't affect CAT activity significantly. The light intensity had significant effect on all the indices above. The interaction of the two factors had significant effect on root activity. With the reduction of substrate moisture the RWC and SLA decreased, while root activity exhibited different trend under different light intensity. With the decreasing of light intensity, RWC and SLA were increased, root activity was decreased. Under every light intensity in this experiment, the plant exhibited a remarkable higher SOD activity at both extreme low or high substrate moisture, but substrate moisture did't affect the CAT activity. Under 60% and 30% light intensity both extreme low or high substrate moisture caused MDA content and relative membrane permeability dramatically increased. Under full light environment and 30% light intensity, POD and APX activity were the lowest when the substrate moisture is 80% water-holding capacity. With the decreasing of light intensity, MDA content, relative membrane permeability, POD and APX activity were increased, however SOD and CAT activity were decreased.
     3.The non-heading Chinese cabbage variety'Lvxing' were used as test materials in order to study the effects of substrate moisture and light intensity on photosynthetic 1 characters.9 treatment combinations were setted in this experiment, with 3 levels of water-holding capacity(100%,80% and 40%) and 3 levels of light intensity (100%,60% and 30%).The results showed that substrate moisture had significant effect on all photosynthetic pigment indices except chla/b, Pn, Gs, Tr, Ci, Ls,ΦPSⅡ,ETR and qP. However, it didn't effect chla/b, Fo and Fv/Fm dramatically. The light intensity had significant effect on all the indices above. The interaction of the two factors had significant effect on. Gs and Tr, but didn't affect other indices significantly. With the decreasing of substrate moisture and light intensity, chla, chlb, chl(a+b)and car were increased, however chla/b decreased with the decreasing of light intensity. An extremely low or high substrate moisture could lead to the decrease of Pn, Gs and Tr.ΦOPSⅡ,ETR and qP were the highest when 80% water-holding capacity combined with 100% light density. The substrate moisture didn't effect Fo, Fv/Fm and NPQ. With the decreasing of light intensity, Pn, Gs, Tr, Ls, Fv/Fm,ΦPSⅡ,ETR and qP were decreased,however Ci, Fo, NPQ were increased. Compared with substrate moisture, light intensity was a more influential factor in the photosynthesis of the non-heading Chinese.
引文
1.艾希珍,郭延奎.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004,37(2):268-273.
    2.白宝璋.植物生理学[M].北京:中国农业出版社,1996,21-23,149,291-293.
    3.别之龙,刘佩瑛,李家标,等.温度和光强对辣椒生殖器官脱落的影响[J].西南农业大学学报,1995,617(3):228-230.
    4.曹锡清.膜脂过氧化对细胞有机体的作用[J].生物化学与生物物理学进展,1988,86(2):17-23
    5.常彩涛,刘文明,葛长鹏,等.弱光下青椒外部形态及生理指标变化研究[J].天津农业科学,1996,1(2):8-10.
    6.陈贵,胡文玉.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    7.陈锦强,李明启.高等植物绿叶中的氮代谢与光合作用的关系[J].植物生理学通讯,1984,(1):1-8.
    8.陈善福,舒庆挠.植物耐干旱的生物学机理及其基因工程研究进展[J].植物学通讯,1999,16:555-560.
    9.程智慧,孟焕文,Stephen A Rolfe,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,12(6):93-95.
    10.崔秀敏,王秀峰.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响[J].园艺学报,2004,31(4):477-481.
    11.董合忠,李维江,唐薇,等.干旱和淹水对棉苗某些生理特性的影响[J].西北植物学报,2003,23(10):1695-1699.
    12.杜社妮,梁银丽,徐福利,等.日光温室不同水分条件下盆栽黄瓜产量和土壤微生物数量[J].干早地区农业研究,2005,23(3):49-53.
    13.方绍正.遮荫和水分对‘皖翠’猕猴桃光合生理特性影响的研究[D].安徽农业大学硕士论文,2005.
    14.方志刚,马富裕,杨建荣,等.土壤水分对酱用番茄花果期生长和生理特性的影响[J].西北农业学报,2007,16(3):162-168.
    15.高方胜.土壤水分对番茄生长发育及某些生理特性的影响[D].山东农业大学硕士论文,2006.
    16.高丽红,李式军,凌丽娟.遮阳网覆盖缓解夏季普通白菜高温伤害机理的研究[J].园艺学报,1997,24(248):399-400.
    17.高丽红,凌丽娟,刘京琳.遮阳网覆盖对夏白菜产量和品质的影响[J].中国蔬菜,1996,6:11-15.
    18.高绍森,朱延姝,冯辉.连续遮光对番茄苗期生长发育和叶绿素荧光指标影响的研究[J].辽宁农业科学,2005,3:31-32.
    19.高占旺,庞万福,宋伯符.水分胁迫对马铃薯的生理反应[J].马铃薯杂志,1995,9(1):1-5.
    20.关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):806-812.
    21郭泳,李天来.环境因素对番茄净光合速率的影响[J].沈阳农业大学学报,1998,29(2):127-131.
    22.郭凤鸣.弱光条件下黄瓜的生长解析[J].吉林农业大学学报,1990,12(1):32-35.
    23.何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应(1)——水涝胁迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报,2000,19(4):272-275.
    24.何维明,钟章成.攀缘植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报,2000,24(3):375-378.
    25.侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展[J].中国蔬菜,1999,4:24-28.
    26.黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2):352-358.
    27.黄伟,张俊花,任中华.番茄耐低温弱光性研究进展[J].河北北方学院学报(自然科学版),
    2005,21(2):46-48.
    28.黄卫东,吴兰坤,战吉宬.中国矮樱桃叶片生长和光合作用对弱光环境的适应性调节[J].中国农业科学,2004,37(12):1981-1985.
    29.贾虎森,蔡世英,李德全,等.土壤干旱胁迫下钙处理对芒果幼苗光合作用的影响[J].果树科学,2000,17(1):52-56.
    30.简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983,1:17-27.
    31.江炳良,徐敏,钱琼秋,等.遮荫处理对早熟花椰菜花球的生长和抗氧化系统的影响[J].浙江大学学报(农业与生命科学版),2005,31(5):535-540.
    32.姜华武,张祖新.玉米的厌氧代谢与耐涝性[J].湖北农学院学报,1999,19(1):79-84.
    33.蒋明义,杨文英,徐江.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(6):733-738.
    34.金成忠.光照强度对棉花蕾铃脱落的影响[J].植物学报,1956,2:117-133.
    35.李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报,1997,24(1):97-99.
    36.李德全,邹琦,程炳嵩.土壤水分胁迫对小麦叶片的渗透调节与延伸生长的影响[J].植物学报,1992,34(2):75-90.
    37.李德全,邹琦,程炳嵩.植物渗透调节研究进展[J].山东农业大学学报,1991,22(1):86-90.
    38.李新有,梁宗锁,康绍忠.节水灌溉对夏玉米蒸腾效率的影响[J].华北农学报,1995,18(4):14-18.
    39.李永强,王亚男,何杨艳,等.干旱胁迫对外来杂草野茼蒿抗氧化系统的影响[J].四川师范大学学报(自然科学版),2008,31(5):607-609.
    40.刘国顺,乔新荣,王芳,等.光照强度对烤烟光合特性及其生长和品质的影响[J1.西北植物学报,2007,27(9):1833-1837.
    41.刘鸿先,王以柔.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中SOD的影响[JJ.植物生理学报,1985,11:48-57.
    42.刘建新,王鑫,王凤琴.水分胁迫对首稽幼苗渗透调节物质积累和保护酶活性的影响[J].草业科学,2005,22(3):18-21.
    43.刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2002,(6):4-6.
    44.刘贤赵,康绍忠,邵明安,等.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11(3):377-381.
    45.刘志媛,党选民,曹振木.土壤水分对黄秋葵苗期生长及光合作用的影响[J].热带作物学报,2003,24(1):70-72.
    46.路丙社,白志英,孙浩元,等.土壤含水量对阿月浑子叶片净光合速率及叶绿素荧光参数的影 响[J].园艺学报,2004,31(6):727-731.
    47.吕桂英.水分对作物生长发育和品质的影响[J].中国种业,2007,3:61-62.
    48.罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    49.马德华,庞金安,崔振荣,等:弱光对黄瓜幼苗光合及膜脂过氧化作用的影响[J].河南农业大学学报,1998,32(1):68-71.
    50.毛炜光,吴震,黄俊,等.水分和光照对厚皮甜瓜苗期植株生理生态特性的影响[J].应用生态学报,2007,18(11):2475-2479.
    51.聂磊,刘洪先,吕少麟.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响[J].植物资源与环境学报,2001,10(3):19-24.
    52.彭致功,杨培岭,段爱旺,等.不同水分处理对番茄产量性状及其生理机制的效应[J].中国农学通报,2005,21(8):191-195.
    53.曲泽洲.植物栽培学总论(第二版)[M].北京:农业出版社,1985,120-142.
    54.山仑.节水农业及其生理生态基础[J].应用生态学报,1991(1):70-76.
    55.沈文云,马德华,侯锋,等.弱光处理对黄瓜叶绿体超微结构的影响[J].园艺学报,1995,22(4):397-398.
    56.沈秀瑛,徐世昌,戴俊英.干旱对玉米叶SOD, CAT及酸性磷酸酷酶活性的影响[J].植物生理学通讯,1995,31(3):183-186.
    57.眭晓蕾,蒋健箴,王志源,等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-318.
    58.眭晓蕾,张宝玺,何洪巨,等.弱光条件下不同基因型辣椒幼苗光合与生长的差异[J].农业工程学报,2005,21(2):41-44.
    59.孙存普.自由基生物学导论[M].合肥:中国科技大学出版社,1999,275-290.
    60.汤玉玮,郑泽荣,刘世峰,等.棉花蕾铃脱落生理[M].上海科学技术出版社,1964.
    61.陶建平,钟章成.光照对苦瓜形态可塑性及生物量配置的影响[J].应用生态学报,2003,14(3):336-340.
    62.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,29(6):55-57.
    63.王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58.
    64.王家保,王令霞,陈业渊,等.不同光照度对番荔枝幼苗叶片生长发育和光合性能的影响[J].热带作物学报,2003,24(1):48-51.
    65.王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报,1998,29(1):130-134.
    66.王绍辉,张振贤,于贤昌.遮荫对生姜生理生化特性的影响[J].西北农业学报,1999,8(2):77-79.
    67.王淑琴.网纹甜瓜工厂化灌溉指标的研究[D].西北农林科技大学硕士论文,2003.
    68.王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63-70.
    69.王兴银,张福墁.弱光对日光温室黄瓜光合产物分配的影响[J].中国农业大学学报,2005,5(5):36-41.
    70.王秀峰,史金玉.土壤相对含水量对番茄幼苗水分状况及光合的影响[J].山东农业大学学报,1992,23(3):308-310.
    71.吴震,黄俊,翁忙玲,等.无公害叶菜工厂化生产技术研究进展[J].中国农学通报,2005,21(7):392-396.
    72.夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,1993,28(1):26-31.
    73.夏秀波,于贤昌,高俊杰.水分对有机基质栽培番茄生理特性、品质及产量的影响[J].应用生态学报,2007,18(12):2710-2714.
    74.徐坤,郑国生.水分胁迫对生姜光合作用及保护酶活性的影响[J].园艺学报,2000,27(1):47-51.
    75.徐克章,曹正菊.人参叶片光合作用和气孔开闭日变化的研究[J].植物生理学通讯,1987,3:35-36.
    76.徐迎春,李绍华,柴成林,等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报,2001,18(1):1-6.
    77.阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850-854.
    78.杨燕,刘庆,林波,等.不同施水量对云杉幼苗生长和生理特征的影响[J].生态学报,2005,25(9):2152-2158.
    79.杨广东.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118.
    80.杨兴洪,陈翠容,施培.遮荫对棉花茎叶解剖结构的影响[J].山东农业大学学报(自然科学版),2000,31(4):373-377.
    81.姚磊,杨阿明.不同水分胁迫对番茄生长的影响[J].华北农学报,1997,12(2):102-106.
    82.叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,12(10):654-661.
    83.易金鑫,陈静华.弱光胁迫对茄子植株形态及两项生理指标的影响[J].江苏农业科学,1999,6: 62-65.
    84.曾骧.果树生理学[M].北京:北京农业大学出版社,1992.
    85.曾淑华,赵正雄,覃鹏,等.淹水对转超氧化物歧化酶或过氧化物酶基因烟草某些生理生化指标的影响[J].植物生理学通讯,2005,41(5):603-606.
    86.战吉宬,黄卫东,王志龙.葡萄幼苗对弱光环境的形态和生长反应[J].中国农学通报,2002,18(2):1-3.
    87.战吉窥,黄卫东,王利军.植物弱光逆境生理研究综述[J].植物学通报,2003,20(1):43-50.
    88.张熠.水分胁迫对不同进化型小麦抗氧化与叶绿素荧光的影响[D].中国科学院研究生院硕士论文,2005.
    89.张殿忠,汪沛洪.水分胁迫与植物氮代谢的关系Ⅰ.水分胁迫对小麦叶片氮代谢的影响[J].西北农业大学学报,1988,16(3):9-15.
    90.张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993,127-141.
    91.张振贤,郭延奎,邹琦.遮荫对生姜显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-100.
    92.张振贤,李洪元.温度和水分对大白菜幼苗生长影响的研究[J].中国蔬菜,1985,4:1-4.
    93.张振贤,于贤昌,陈利平.水分状况与大白菜光合作用关系的研究[J].园艺学报,1993,20(4):358-362.
    94.张振贤.蔬菜生理[M].北京:中国农业科技出版社,1993.
    95.甄伟,张福墁.弱光对黄瓜功能叶片光合特性及其超微结构的影响[J].园艺学报,2000,27(4):290-292.
    96.甄占萍,杨会芹.水分胁迫对番茄对番茄生物学形状的影响[J].中国农学通报,2001,17(4):98-99.
    97.郑群,吕国华,李天来,等.弱光对瓜尔豆新品系SU-B5生长发育和产量的影响[J].沈阳农业大学学报,2006,37(3):442-445.
    98.周兴元,曹福亮.遮荫对假俭草抗氧化酶系统及光合作用的影响[J].南京林业大学学报(自然科学版),2006,30(3):32-36.
    99.周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光碎灭和吸收光能分配的影响[J].植物生理与分子生物学学报,2004,30(2):153-150.
    100.周忆堂,马红群,梁丽娇,等.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J].2008,41(11):3589-3595.
    101.朱小龙,李振基,赖志华,等.不同光照下土壤水分胁迫对长苞铁杉幼苗的作用[J].北京林业大学学报,2007,29(2):76-81.
    102.邹冬生.不同土壤水分条件下番茄叶片光合蒸腾日变化研究[J].中国蔬菜,1998,6:8-15.
    103.Alscher R G, Donahue J L, Camer C L. Reactive oxygen species and antioxidants relationship in and carotene contents of large-fruit tomato[J].Japan. Soc Hort Sci.,1998,67:927-933.
    104. Angelopoulos K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees during water stress and rewatering[J]. Exp Bot.,1996,47(301):1093-1100.
    105.Baselga Yrisarry J J. Response of processing tomato to three different levels of water and nitrogen applications[J], Acta Hort.,1993,335:149-153.
    106. Beel E. Keep ability problems in the culture of phalaenopsis[J].Verbondsnieuws,1997,41(19): 41-43.
    107. Chandler P M, Robertson M. Gene expression regulated by abscisic acid and its relation to tolerance[J].Ann Rev. Plant Physiol. Plant Mol.Biol.,1994,45:113-141.
    108. Cockshull K E, Graves C J. The influence of shading on yield of glasshouse tomato[J]. Hort. Sci., 1992,67(1):11-24.
    109. Davies W J and Jianhua Zhang. Root Signals and the regulation of growth and development of plants in drying soil[J].Ann Rev. Physiol.Plant Mol. Biol.,1991,42:55-76.
    110.EL-Gizawy A M,Gomaa H M. Effect of different shading levels on tomato plant. Growth, Flowering and chemical composition[J].Acta Hor.,1993,323:341-347.
    111.Embrty J L, Nothnagel E A.Leaf senescence of postproduction pomsettias in low light strees[J]. Amer Hort Sci.,1994,119:1006-1013.
    112. Fernandez R T, Perry R L, Flore J A, et al. Drought response of young apple trees on three rootstocks Ⅱ. Gas change chlorophyll fluorescence, water relations, and leaf abscisic acid[J].J Amer Soc Hort Sci.,1997,122(6):841-848.
    113.Frank H A, Cogdell R T. The photochemistry and function of carotenoids in photosynthesis[J].In: Yong A, Britton G eds, Carotenoids in photosynthesis, Chapman Hall, London,1993,252-326.
    114. Grappadelli L G, Lakso A N. Early season patterns of carbohydrate portioning in exposed and shaded apple branches[J].Amer Soc Hort Sci.,1994,119(3):596-603.
    115.Guo Wei-hua, Li bo, Huang Yong-mei. Effects of different water stresses on ecophysiological characteristics of hippophae rhamnoides seedling[J]. Acta Botanica Sinica.,2003,45(10): 1238-1244.
    116. Holmgren M. Combined effects of shade and drought on tulip poplar seedlings:trade-off in tolerance or facilitation[J]. Oikos,2000,90:67-78.
    117. Hsiao T C. Plant response to water stress[J].Plant Physiol.,1973,75(2):338-341.
    118.J. Lorene Embry. Leaf senescence of posproduction pomsetti as in low-light stress[J].Amer Soc Hort Sci.,1994,119:1006-1013.
    119. Jackson M B.Are plant hormones involved in the root to shoot communication[J].Adv Bot Res., 1993,19:103-187.
    120. Jia H J, K Hirano and G Okamoto. Effects of fertilizer levels on tree growth and fruit quality of peaches[J].Japan. Soc Hort Sci.,1999,68:487-493.
    121.Jone M M, Osmnd C B, Turner N C. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficit[J].Plant Physiol.,1980,7:193-205.
    122. Kaiser W M. Effect of water deficit on photosynthetic capacity[J].Plant Physiol.,1987,71(1): 142-149.
    123.Kappel F. Artificial shade reduces'Bartlett'pear fruit size and influences fruit quality. Hort Sci., 1989,24(4):595-596.
    124. Karakas B, Ozias-Akins P, Shutoff C, et al. TI:Salinity and drought tolerance of mannitol-accumulating transgenic tobacco[J].Plant cell environ.,1997,20(5):609-615.
    125. Kause G H, Weis E. Chlorophyll fluorescence and photosynthesis:The basis[J]. Ann Rev Plant Physiol Plant Mol Biol.,1991,42:313-349.
    126. Koblet W. Stress and stress recovery by grapevines[J].Botanica Helvetica,1996,106:73-84.
    127. Loomis E L, Crandakk P C. Water consumption of cucumbers during vegetative and reproductive stages of growth [J].Amer Soc Hort Sci.,1977,102(2):124-127.
    128.Manrer A R, Ormrod D P, Scott N J. Effect of five soil water regimes on growth and composition of snap beans[J].Plant Sci.,1969,49:271-278.
    129. Marler T E, Michelbart M V. Drought leaf gas exchange and chlorophyll fluorescence of field-grown papaya[J].Amer Soc Hort Sci.,1998,123(4):714-718.
    130. Menzel C M, Simpson D R. Effect of continuous shading on growth, flowering and nutrient uptake of passion fruit [J].Hort Sci.,1988,35:77-78.
    131.Miller D G, Manning C E, Tearel D. Effects of soil water levels on compents of growth and yield in pears[J].Amer. Soc. Hort Sci.,1977,102(3):319-351.
    132. Mitchell J P, Shennan S R, Grattan. Tomato yields and quality under water deficit and salinity[J]. Amer Soc Hort Sci.,1991,116:215-221.
    133.Morgan, Stanley, The effect of simulated daylight and shade-light on vegetative and reproductive grown in kiwifruit and grapevine[J].Hort Sci.,1985,60(4):473-484.
    134. Muraoka H, Tang Y, Koizumi H, Washitani T. Effects of light and soil water availability on leaf photosynthesis and growth of Arisaema heterophyllum, a riparian forest understory plant[J].Plant Res.,2002,115:419-427.
    135.Nii N, Kvrozwa T. Automatic changes including chloroplast structure in peach leaves under
    different light conditions[J].Hort Sci.,1988,63(1):37-45.
    136. Ody Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of Strawberry plants-feasibility studies on CO2 enrichment in Japanese conditions[J].Acta. Hort.,1997, 439:563-573.
    137. Patten K D, Proebsting E L. Effect of different artificial shading times and natural light intensities on the fruit quality of'Bing'sweet cherry[J].Amer Soc Hort Sci.,1986,111(3):360-363.
    138. Perree D C, Mcarrney S J. Influence of light on fruit set of prench hybrid grapes[J].Hort Sci.,1998, 33:510-516.
    139. Phene C J, Hutmacher K R, Davis R L.et al.Water-fertilizer management of processing tomatoes[J]. Acta Horticulture,1990,277:137-193.
    140. Powles S B, Osmond C B.Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illumimatedina CO2 free atmosphere at low oxygen:a possible role for photorespiration[J]. Plant Physiol.,1978,5:619-629.
    141.Rilski I. Effect of shading on plant development yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation[J].Hort Sci.,1986,29:31-35.
    142. Sack L, Grubb P J. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings[J].Oecologia,2002,131:175-185.
    143.Sams C E, Flore J A. The influence of age position and environment varibles on net photosynthetic rate of sour cherry leaves[J].Amer. Soc. Hort. Sci.,1982,107:339-344.
    144. Shaflqur R K, Robin R, Diane L, et al.Effects of shade on morphology chlorophyll concentration and chlorophyll fluorescence of four Pacific Northwest conifer species[J]. New Forests,2000,19: 171-186.
    145. Shen B, Jense R G, Bohnert H J. Mannitol protects against oxidation by hydroxyl radicals[J].Plant Physiol.,1997,115:527-532.
    146. Shinozaki K, Yamaguchi-Shinazaki K. Molecular responses to drought and cold stress[J].Current Opinion in Biotechnology,1996,7:161-167.
    147. Smimoff N, Colombe S V. Drought influence the activity of enzymes of the chloroplast peroxides cavenging system[J].Exp Bot.,1988,38:1097-1108.
    148. Syversen J P, Smith M L. Light acclimation in citrus leaves. I. Changes in physical characteristics, chlorophyll and nitrogen content[J].Amer Soc Hort Sci.,1984,35:807-812.
    149. Tolbert N E. Microbodies-peroxisomes and gly-oxysomes[J].Plant Physiol.,1971,22:45-74.
    150. Thomas F R, Ronald L P, James A F. Drought response of young apple tree on three rootstock Ⅱ Gas exchange, chlorophyll fluorescence, water relations and leaf abscisic acid[J].Amer Soc Hort Sci.,1997,122(6):841-848.
    151.Turner W C, Jones. N C. Adaption of plants to water and high temperature stress[J].Jone Willey & Sons. Newyork Chichester Brisban Toron,1980,41:87-98.
    152. Turner A D, Wien H C. Dry matter assimilation and partitioning in pepper cultivars differing in susceptibility to stress-induced bud and flower Abscission[J].Ann Bot.,1994,73(6):617-622.
    153.Van Buren J P, Peck N H. Effect of K fertilization and addition of salts on the texture of canned snap bean pods[J].Food Sci.,1982,47:311-313.
    154.Wilson J.W. Light interception and photosynthesis efficiency in some glasshouse crops[J].Exp. Bot.,1992,43(4):363-373.
    155.XiuQin W, WeiDong H. Effects of weak light on the ultra structural variations of phloem tissues in Source leaves of three-year-old nectarine trees[J].Acta Botanica Sinica.,2003,45(6):688-697.
    156.Yahya B, Awang. Growth and fruiting responses of strawberry plant grown on rock wool to shading and salinity[J].Hort Sci.,1995,62:25-31.
    157. Zimmermann U, Steudle E. Physical aspects of water relations of plant cell[J].Adv Bot Res.,1978, 76:45-57.
    1.崔秀敏,王秀峰,许衡.甜椒穴盘苗对不同程度水分胁迫-复水的生理生化响应[J].应用与环境生物学报,2006,12(1):5-8.
    2.刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2002,6:4-6.
    3.刘贤赵,康绍忠,邵明安,等.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11(3):377-381.
    4.吕家龙.园艺学各论(南方本)[M].北京:中国农业出版社,2001,60-61.
    5.马茂亭,安志装,赵同科.蔬菜硝酸盐累积调控措施的研究进展[J].中国农学通报,2008,24(7):208-212.
    6.毛炜光,吴震,黄俊,等.水分和光照对厚皮甜瓜苗期植株生理生态特性的影响[J].应用生态学报,2007,18(11):2475-2479.
    7.沈明珠,翟宝杰,东惠茹.蔬菜硝酸盐累积的研究Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价[J].园艺学报,1982,9(4):41-48.
    8.孙秀丽,张玉霞,张凤丽.遮阳网在蔬菜栽培上的应用效果分析[J].北方园艺,2003,3:22-23.
    9.陶建平,钟章成.光照对苦瓜形态可塑性及生物量配置的影响[J].应用生态学报,2003,14(3):336-340.
    10.田园,梁亮,宋波,等.小白菜硝酸盐积累的基因型差异[J].江苏农业学报,2007,23(5):459-463.
    11.王秀峰,史金玉.土壤相对含水量对番茄幼苗水分状况及光合的影响[J].山东农业大学学报,1992,23(3):308-310.
    12.王学奎主编.植物生理生化实验原理和技术(第2版)[M].北京:高等教育出版社,2006,202-206.
    13.吴震,黄俊,翁忙玲.无公害叶菜工厂化生产[J].中国农学通报,2005,21(7):392-396.
    14.夏秀波,于贤昌,高俊杰.水分对有机基质栽培番茄生理特性、品质及产量的影响[J].应用生态学报,2007,18(12):2710-2714.
    15.徐坤,郑国生.水分胁迫对生姜光合作用及保护酶活性的影响[J].园艺学报,2000,27(1):47-51.
    16.杨延杰,李天来,林多,等.光照强度对番茄生长及产量的影响[J].青岛农业大学学报,2007,24(3):199-202.
    17.张宪法,于贤昌,张振贤.土壤水分对温室嫁接和非嫁接黄瓜生长与生理特性的影响[J].应用生态学报,2002,13(11):1399-1402.
    18.张燕燕,柏广利,王强.夏秋叶类蔬莱防虫网无公害栽培技术[J].上海蔬菜,2006,6:35-36.
    19.中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978,107-122.
    20. Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4,7-Diphenyl-1,10-Phenanthroline[J].Agric Biol Chem.,1981,45(5): 1289-1290.
    21.Cataldo D A, Hanson M, Schrader L E, et al. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid[J].Commun Sci Plant Anal.,1975,6(1):71-80.
    22. Cent M P N. Carbohydrate level and growth of tomato plants[J].Plant Physiol.,1986,81(4): 1075-1079.
    23.Gizawy A M, Gomaa H M. Effect of different shading levels on tomato plant. Growth, Flowering and chemical composition[J].Acta Hort.,1993,323:341-347.
    24. Marion M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,71(1-2): 248-254.
    25.Smirnoff N. Ascorbate biosynthesis and function in photoprotection[J].Philosophical Transactions of the Royal Society:Biological Science,2000,355:1455-1464.
    26. Steigrover E, Siesling J, Ratering P. Effect of one night with'low light'on uptake, reduction and storage of nitrate in spinach[J]. Physiol Plant.,1986,66(3):557-562.
    1.郭春芳,孙云,张云,等.茶树叶片抗氧化系统对土壤水分胁迫的响应[J].福建农林大学学报,2008,37(6):580-586.
    2.蒋明义,杨文英,徐江.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(6):733-738.
    3.柯世省,杨敏文.水分胁迫对云锦杜鹃抗氧化系统和脂类过氧化的影响[J].园艺学报,2007,34(5):1217-1222.
    4.李晓征,彭峰,徐迎春,等.不同光强下6种常绿阔叶树幼苗的生理特性[J].广西农业科学,2005,36(4):312-315.
    5.刘鹏,康华靖,张志祥,等.香果树幼苗生长特性和叶绿素荧光对不同光强的响应[J].生态学报,2008,28(11):5656-5663.
    6.刘华山,孟凡庭,杨青华,等.土壤渍涝对芝麻根系生长及抗氧化酶活性的影响[J].植物生理学通讯,2005,41(1):45-47.
    7.刘文革,阎志红,王川,等.西瓜抗氧化系统对淹水胁迫的响应[J].果树学报,2006,23(6):860-864.
    8.刘文海,高东升,赵海亮.不同光强对设施桃树活性氧代谢的影响[J].果树学报,2006,23(2):186-190.
    9.刘遵春,包东娥.水分胁迫对金光杏梅幼苗生长及其生理指标的影响[J].河南农业大学学报,2007,30(5):28-31.
    10.马德华,庞金安,崔振荣,等.弱光对黄瓜幼苗光合及膜脂过氧化作用的影响[J].河南农业大学学报,1998,32(1):68-71.
    11.任海.广东中部两种常见灌木的生态学比较[J].植物生态学报,1997,21(4):386-392.
    12.山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998,1-18
    13.石岩,于振文,位东斌,等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196-201.
    14.时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版), 2002,21(2):140-145.
    15.孙存华,李扬,贺鸿雁,等.黎对干旱胁迫的生理生化反应[J].生态学报,2005,25(10):2556-2561.
    16.孙秀丽,张玉霞,张凤丽.遮阳网在蔬菜栽培上的应用效果分析[J].北方园艺,2003,3:22-23.
    17.万关亮,炎华,陈建勋.缺磷斜胁迫对蔗叶膜脂过氧化物及保护酶系统活性的影响[J].华南农业大学学报,1999,2(2):58-61.
    18.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1998,29(6):55-57.
    19.王兴银,张福墁.弱光对日光温室黄瓜光合产物分配的影响[J].中国农业大学学报,2000,5(5):36-41.
    20.吴震,黄俊,翁忙玲.无公害叶菜工厂化生产[J].中国农学通报,2005,21(7):392-396.
    21.曾庆平,郭勇.植物的逆境应答与系统抗性诱导[J].生命的化学,1997,17(3):31-33.
    22.张燕燕,柏广利,王强.夏秋叶类蔬莱防虫网无公害栽培技术[J].上海蔬菜,2006,6:35-36.
    23.张永清,苗果园.高粱生育后期根系对渍水胁迫的生物学响应[J].山西农业大学学报(自然科学版),2005,25(3):193-195.
    24.赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    25.张雄.测定小麦根和花粉的活力及其应用[J].植物生理学通讯,1982,3:48-50.
    26.赵增熠.常用农业科学实验法[M].北京:农业出版社,1986,17-21.
    27.中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978,107-122.
    28.Asada K. The water-water cycle in chloroplasts scavenging of active oxygens and dissipation of excess photons [J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50: 601-639.
    29. Barrs H D, Watherley P E. A re-examination of the relativeturgidity technique for estimating water deficit in leaves [J].Australian Journal of Biology Science,1962,15:413-428.
    30.Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of super oxide dismutase ascorbate peroxidase,and glutathione reductase in bean leaves [J].Plant Physiol., 1992,98:1222-1227.
    31.Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased leavels dismutase and catalase[J]. Jexpbot,1982,32:91-101.
    32. Frank H A, Cogdell R T. The photochemistry and function of carotenoids in photosynthesis[J].In: Yong A, Britton G eds, Carotenoids in photosynthesis, Chapman Hall, London,1993,252-326.
    33.Gamier E, Shipley B, Roumet C.Standardized protocol for the determination of specific leaf area and leaf dry matter content[J].Function Ecology,2001,15:688-695.
    34. Giannopolitis C N, Ries S K. Superoxide dismutase II. Purification and quantitative relationship with water-soluble protein in seedlings [J].Plant Physiol.,1977,59:315-316.
    35.Guo Z, Ou W, Lu S, et al. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity [J].Plant Physiology and Biochemistry,2006,44: 828-836.
    36. Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I.Kinetics and stoichiometry of fatty acid peroxidation [J].Arch Biochem Biophys.,1986,125:189-198.
    37. HUANG Wei Dons, WU Lan Kun, ZHAN Ji Cheng.Effect of Weak Light on the Peroxidation of Membrane Lipid of Cherry Leaves[J].Acta Botanica Sinica.,2002,44 (8):920-924.
    38.Nakano Y, Asada K. Hydrogen peroxides scavenged by ascorbate specific peroxidase in spinach chloroplasts[J].Plant Cell Physiol.,1981,22:867-880.
    39. Pauk K P, Thompson J E. Invitro simulation of senescence-related membrane damage by ozone-induced lipid peroxidation[J].Nature,1980,28(3):504-506.
    40. Reich P B, Wright I J, Cavender-bares J, et al.The evolution of plant functional variation Traits, spectra and strategies[J].International Journal of Plant Sciences,2003,164:143-164.
    41.Tuner N. Concurrent comparison of stomatal behavior, water status, and evaporation of maize in soil at high or low water potential[J].Plant Physiol.,1975,55:932-936.
    42.Vieira Santos C L, Campos A, Azevedo H, Caldeira G. In situ and in vitro senescence induced by KC1 stress:nutritiona limbalance, lipid peroxidation and antioxidant metabolism[J]. Journal of Experimental Botany,2001,52:351-360.
    43.Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature,2004, 428:821-827.
    44. Wright I J, Wearoby M. Cross-species relationship between seedling relative growth rate nitrogen productivity and root vs leaf function in 28 Australian woody species[J].Functional Ecology,2000, 14:97-107.
    1.曹柯,王永熙,王力荣.遮荫对桃幼树光合特性的影响[J].西北林学院学报,2004,19(4):28-31.
    2.程智慧,孟焕文,Stephen A Rolf,等.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,30(6):93-96.
    3.褚建民,孟平,张劲松,等.土壤水分胁迫对欧李幼苗光合及叶绿素荧光特性的影响[J].林业科学研究,2008,21(3):295-300.
    4.高丽红,李式军,凌丽娟.遮阳网覆盖缓解夏季普通白菜高温伤害机理的研究[J].园艺学报,1997,24(4):399-400.
    5.郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J].应用生态学报,2004,15(3):377-381.
    6.黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2):352-358.
    7.李合生.现代植物生理学[M].北京:高等教育出版社,2006.
    8.李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响 [J].西北植物学报,2006,26(2):266-275.
    9.李志军,罗青红,伍维模,等.干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响[J].干旱区研究,2009,26(1):45-52.
    10.刘国顺,乔新荣,王芳,等.光照强度对烤烟光合特性及其生长和品质的影响[J].西北植物学报,2007,27(9):1833-1837.
    11.卢从明,张其德,匡延百,等.水分胁迫对小麦叶绿索a荧光诱导动力学的影响[J].生物物理学报,1993,9(3):453-457.
    12.卢雪琴,夏汉平,彭长连.淹水对5种禾本科植物光合特性的影响[J].福建林学院学报,2004,24(4):374-378.
    13.路丙社,白志英,孙浩元,等.土壤含水量对阿月浑子叶片净光合速率及叶绿素荧光参数的影响[J].园艺学报,2004,31(6):727-731.
    14.吕家龙.园艺学各论(南方本)[M].北京:中国农业出版社,2001,60-61.
    15.史盛青,袁玉欣,张金香,等.水分胁迫对核桃叶绿素荧光特性的影响[J].河北农业大学学报,2003,26(2):20-24.
    16.睦晓蕾,毛胜利,王立浩,等.失水协迫下辣椒幼苗离体叶片光合作用对弱光的响应[J].园艺学报,2008,35(7):987-994.
    17.睦晓蕾,张宝玺,张振贤,等.弱光条件下不同基因型辣椒幼苗光合与生长的差异[J].农业工程学报,2005,21(增刊):41-44.
    18.眭晓蕾,毛胜利,王立浩,等.弱光条件下辣椒幼苗叶片的气体交换和叶绿素荧光特性[J].园艺学报,2007,34(3):615-622.
    19.吴震,黄俊,翁忙玲.无公害叶菜工厂化生产[J].中国农学通报,2005,21(7):392-396.
    20.徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):367-375.
    21.徐建伟,席万鹏,方憬军,等.水分胁迫对葡萄叶绿素荧光参数的影响[J].西北农业学报,2007,16(5):175-179.
    22.许大全,张玉全.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    23.许大全.光合作用效率[M].上海:上海科学技术出版社,2002,13-14.
    24.张燕燕,柏广利,王强.夏秋叶类蔬莱防虫网无公害栽培技术[J].上海蔬菜,2006,6:35-36.
    25.张秋英,李东发,刘孟雨,等.水分胁迫对冬小麦旗叶光合作用的影响[J].西北植物学报,2005,25(26):1184-1190.
    26.张振贤,于贤昌,陈利平.水分状况与大白菜光合作用关系的研究[J].园艺学报,1993,20(4):358-362.
    27.中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978,107-122.
    28. Arnon D L. Copper enzymes in isolated chloroplasts, polyphenol oxidase in Brta vulgaris. Plant Phsiol.,1949,24:1-15.
    29. Briggenann W. Longer-term chilling of young tomato plants under low light[J].Plant Cell Physiol., 1995,36(4):733-736.
    30. Cai S Q, Xu D Q. Irradiation-dependent reversible down-regulation and irreversible damage of PS II in soybean leaves[J].Plant Sci.,2002,163:847-853.
    31.Chapman D I. Polar lipid composition of chloroplast thylakoids isolated from leaves grown under different lighting conditions[J].Photosyn Res.,1986,7:257-265.
    32. Demmig B, Bjorkman O. Comparison of the effect of excessive light on chlorophyll fluorescence and photon yield of O2 evolution of leaves of higher plants[J]. Planta.,1987,171:171-184.
    33. Demmig-Adams B, Adams WW Ⅲ. The role of the xanthophylls cycle:carotenoids in the protection of photosynthesis[J].Trends Plant Sci.,1996,1:21-26.
    34. Denis V, Eric G, Bill S, et al. Specific leaf area and dry mater content estimate thickness in laminar leaves[J].Annals of Botany,2005,96:1129-1136.
    35.Frapuhar D G, Sharkey T D. Stomatal conductance and photosynthesis[J].Plant Physiol.,1982,33: 317-355.
    36. Galle A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak tree during drought stress and recovery[J].New Plantarum,2007,174:799-810.
    37. Gilmore A M, Yamamoto H Y. Zeaxanhtin formation and energy dependent fluorescence quenching in pea chloroplasts[J].Plant Physiol.,1996,96:636-643.
    38.Govidjee. A role for a light-harvesting antenna complex of photosystem II in photo protection[J]. The Plant Cell,2002,14:1663-1667.
    39. Gretchen F. Photo flux density versus leaf, senescence in determining photosynthetic efficiency and capacity of gussrpium hirsutuml leaves[J]. Environmental and Experimental Botany,1996,36(4): 439-446.
    40. Malkin. Estimation of the light distribution between photosystem Ⅰ and Ⅱ in intact wheat leaves by fluorescence an photoacoustic measurements[J].Photosyn Res.,1986,7:265-267.
    41.Nakaji T, Fukani M, Dokiya Y. et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptameria japonica and Pinus densiflora seedlings[J].Tree-Structure and Function,2001,15:453-461.
    42. Olesinski A A, Wolf S, Rndicli J. Effect of leaf age and shading on photosynthesis in potatoes[J]. Annuals of Botano.,1989,64:643-650.
    43.Petrson R B, Aivak M N, Walker D A. Relationship between steady-state fluorescence yield and photosynthetic efficiency in spinach leaf issue[J].Plant Physiol.,1998,88:158-163.
    44. Van K O, Snel F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res.,1990,25:147-150.