超积累植物—美洲商陆对锰毒的响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先对广西大新县锰矿区植物进行了调查,接着对南方四种抗逆性较强的草本植物进行了超积累植物的筛选工作,并重点对锰超积累植物——美洲商陆进行了生理特性的研究,包括对根际土壤锰元素的活化、吸收及转运,抗氧化酶系统比较,叶绿素荧光分析、红外光谱分析等内容,从不同的水平和层次上研究了美洲商陆对锰毒的响应机制及耐性机理,现将主要研究成果总结如下:
     1、广西大新县锰矿污染的9种优势耐性植物中,蜈蚣草(Pteris vittata Linn.)对Mn、Zn、Ni都有较强的吸收能力;五节芒(Miscanthusfloridulus(Labill.)Warb.)、野茼蒿(Erigeron bonariensis L.)、酸模叶蓼(Polygonum lapathifolim L.)、加拿大蓬(Erigeroncanadensis L.)对Mn的吸收较强;蔓生莠竹(Nicrostegium gratum(Hack.)A.Camus.)、马唐(Digitaria sanguinalis(L.)Scop.)、海芋(Alocasia macrorrhiza(L.)Schott & Endl.)对Zn吸收较强;五节芒、加拿大蓬对Ni吸收能力显著。虽然这些植物对三种重金属的吸收均未达到超富集植物的要求,但作为污染土壤上的优势耐受性植物,相关研究仍具有一定意义。
     2、锰对水蓼、小飞蓬、杠板归和美洲商陆4种植物的生理特性都有明显的影响。在高浓度锰处理下(16000μmol.L~(-1)),四种植物的质膜透性极显著升高(p<0.01)、根系活力明显降低(p<0.05)、地上部锰含量极显著增加(p<0.01),除美洲商陆外的其他三种植物的丙二醛含量明显上升(p<0.05),其中小飞蓬的变化幅度最大,美洲商陆的变化幅度最小。同时,该处理下水蓼、杠板归、美洲商陆的可溶性糖及叶绿素总量维持在一定水平,与对照相比无极显著差异(p>0.01)。植物通过维持较低的质膜透性和丙二醛含量、较高的根系活力、稳定的可溶性糖及叶绿素含量来增强耐锰性,通过比较发现,美洲商陆的耐锰性最强,水蓼和杠板归的耐锰性较强,小飞蓬的耐锰性最差,并且本实验首次发现水蓼和杠板归均已达到锰超富集植物的标准。
     3、美洲商陆根茎叶中的全Mn含量随着处理浓度的升高而逐渐递增,尤其前期(第7天)叶片的Mn含量在锰处理为0.25g/kg时,便已达到超积累植物的标准,与之相对应,组织中的水溶态Mn所占比例也不断上升,最高Mn浓度下,叶片水溶态Mn含量达到19283.21mg/kg,占全锰含量的45.78%,这些变化又与根际土壤中Mn的活化有着密切关系,作为能被植物吸收的易溶态Mn和弱吸附态Mn均表现明显增加的趋势。
     4、锰毒胁迫下,SOD、POD、ASA—POD、PPO活性变化不一,其中,SOD活性变化不大;POD活性总体上会随着锰浓度的升高而逐渐上升,并在最高浓度下达到最大值,其活性是对照的507%;ASA-POD活性均有升高趋势,后期的变化幅度最大,最高浓度下的ASA—POD活性是对照的635%;PPO活性在前期对锰毒有着较强的敏感性,最高浓度下,其活性是对照的310%。综合以上分析发现,四种保护酶对锰毒的敏感性:ASA—POD>POD>PPO>SOD。
     5、锰毒胁迫对叶绿素荧光各项指标影响不大,但高浓度的锰处理影响了部分光合特性,其中,F_0、Fm、qN均受到了抑制,综合两个时期看,第7d的光合特性要优于第14d。
     6、不同组织器官的傅里叶变换红外光谱(FTIR)图谱发生了变化。其中,茎组织在3336 cm~(-1)和2916 cm~(-1)处峰高先上升后下降,反映了有机物运输受阻情况的变化,即美洲商陆在低锰刺激下会产生大量有机物作为渗透调节物质来增强其耐锰性,高锰则抑制了有机物的分泌和运输;根和叶组织分别在2922 cm~(-1)和1606 cm~(-1)处表现不同变化趋势,但都反映了一个变化规律即低锰处理下美洲商陆分泌的有机酸不断螯合锰,随着锰毒害的加重,其羧酸螯合力变弱;根组织1732 cm~(-1)和1026 cm~(-1)、茎组织1028 cm~(-1)、叶组织1052 cm~(-1)和967 cm~(-1)处呈现差异性变化,但都与其膜脂过氧化有关;根组织1375cm~(-1)处峰高先上升后下降,可能与植物在细胞壁结构上增强抗逆性有一定关系,即低锰处理下细胞壁可能通过阳离子交换能力(CEC)的提高增强了耐锰性。以上说明,利用FTIR研究重金属超积累植物化学组分具有应用价值。
Phytoremediation is defined as the use of plants to decontaminate and removepollutants from the environment. It has emerged as an alternative technique forremoving toxic metals from soil.
     In this study, a survey of nine plants growing on the soil polluted by manganese mine inDaxin County was firstly conducted.In addition, Four herbaceous plants, ConyzaCanadensis, Polygonum hydropiper, Polygonum perfoliatum and Phytolacca americanawere tested for their tolerance to manganese toxicity. At last, soil culture experimentswere carried out to characterize the mechanism of Mn tolerance in Phytolaccaamericana by means of a series of chemical, biochemical methods. The major resultswere summarized as follows:
     1. A survey of nine plants growing on the soil polluted by manganese mine in DaxinCounty was conducted. The result indicated that the exceptional-high concentrations ofMn were found to be the most important limiting factor for plant growth among threemetals (Mn, Zn and Ni). Pteris vittata Linn, which roots showed good metal-enrichmentof Mn and Ni, turned out to have good tolerant ability of Mn, Zn and Ni according to theanalysis in the paper. In addition, Miscanthus floridulus (Labiil.) Warb, Erigeronbonariensis L, Polygonum lapathifolium L and Erigeron canadensis L were proved tohave good Mn-tolerant ability; Microstegium gratum (Hack.) A. Camus, Digitariasanguinalis (L.)Scop and Alocasia macrorrhiza (L.) Schott & Endl were Zn-tolerantplants while Miscanthus floridulus (Labill.) Warb and Erigeron canadensis L wereNi-tolerant plants. Further researches which are of some significance to these plants willbe still in process though no hyperaccummulators of these three heavy metals werefound in the survey.
     2. Four herbaceous plants, Conyza Canadensis, Polygonum hydropiper, Polygonumperfoliatum and Phytolacca americana response differently to a wide range of Mn~(2+)treatments. According to the hydroponic culture experiments, 16000μmol.L~(-1)Mn~(2+)significantly (P<0.05) promoted the contents of MDA (Phytolacca americana L wasexceptive), MP and the overground Mn content when compared to the controlrespectively and these indexes in Polygonum hydropiper increased most whilePhytolacca americana rose less. Meanwhile, the soluble sugar (SS), as well as thecontents of chlorophyll nearly maintained the same level as each control inConyza Canadensis, Polygonum perfoliatum and Phytolacca americana in comparisonwith Polygonum hydropiper, whereas, the content of soluble protein didn't show theobvious tendency.
     The results also implied that Conyza Canadensis, Polygonum perfoliatum andPhytolacca americana could enhance the tolerance to Mn stress under hightreatments by maintaining lower contents of MDA and MP, higher root activity (RA),steady contents of SS and chlorophyll and the three herbaceous plants, which weresatisfied with the standard of Mn phytoaccumulators can be expected during thephytoremediation application.
     3. The total Mn in plants' tissues was positively correlated with Mn~(2+) treatment. Thetotal Mn in leaves(7d) was satisfied with the standard of Mn phytoaccumulators whenthe Mn treatments reached 0.25g/kg. Accordingly, the ratio of soluble Mn in tissuesincreased and accounted for 45.78%of total Mn while soluble Mn reached19283.21mg/kg with highest Mn treatments.. Meanwhile, there were positive correlationbetween Mn concentrations in plants' tissues and Mn activation due to increasing Mn~(2+)supply. As a result, The soluble sugar (SS), as well as the contents of weakly-absorbedMn in soil significantly rose.
     4. The activity of POD, ASA—POD and PPO increased as the concentration ofManganese were enhanced while SOD activity changed slightly. Among four enzymes,ASA—POD had a widest variety range. The order of variety range wasASA—POD>POD>PPO>SOD. There was a positive correlation between POD,ASA-POD, PPO and manganese resistance under Mn stress, but there was no significant correlation between SOD activity and manganese resistance.
     5. There wasn't obvious toxic effect of Manganese on the chlorophyll fluorescencekinetic parameters of Phytolacca americana leaves, but F_0、Fm and qN were significantlyinhibited,Meanwhile, we can see that plants photosynthesis of the first stage was betterthan the seceond one.
     6. Using the roots, stems and leaves of Phytolacca Americana, absorption bandscorresponding to carbohydrates, ester and proteins varied differently. The absorptionband heights at 3000 cm~(-1) and 2916 cm~(-1) of stem tissues rose firstly then decreased,indicating the exudation and transporting situation of organic substances which servedas organic osmotic contents to enhance manganese tolerance under low treatments;Meanwhile, the band heights at 2922 cm~(-1)(roots) and 1606 cm~(-1)(leaves) which havedifferent tendency in accordance with Mn treatments showing that the capability tochelate Mn decreased under higher manganese concentration.In addition, the changes ofthe bands at 1732 cm~(-1) and 1026 cm~(-1)(roots), 1028 cm~(-1)(stems), 1052 cm~(-1) and 967cm~(-1)(leaves) differed from each other, suggesting that under the conditions of severe Mnstress the ex-oxidation of membrane lipid increased; Otherwise, the band heights at 1375cm~(-1) increased firstly and then decreased, representing that the cell wall in, proved Mnresistance by increasing cation-exchange capacity(CEC). The result also implied that itis practical to apply FIIR to the research comparing the chemical differences ofphytoaccumulators under metal treatments.
引文
[1] Clairmont K B, Hagar W G, Davis E A. Manganese toxicity to chloryphyll synthesis in tobacco callus.Plant Physiol, 1986, 80(1): 291~293.
    [2] Gonzalez A, Steffen K L, Lynch J P. Light and excess manganese. Plant Physiol, 1998, 118: 493~504.
    [3] Burnell J N. The biochemistry of manganese in plants, in: Graham R D, Hannam R J, Uren N C.eds. Manganese in Soils and Plants.Dordrecht: Kluwer Academic, 1988. 125~137.
    [4] Mukhopadhyay M J, Sharma A. Manganese in cell metabolism of higher plants. Bot. Rev, 1991, 57(2): 117~149
    [5] 曹恭,梁鸣早.锰—平衡栽培体系中植物必需的微量元素.土壤肥料,2004(1):2~3.
    [6] El-Jaoual T, Cox D A. Manganese toxicity in plants. Journal of Plant Nutrition, 1998, 21(2): 353~386.
    [7] 臧小平.土壤锰毒与植物锰的毒害.土壤通报,1999,30(3):139~141.
    [8] 周泽义.中国蔬菜重金属污染及控制.资源生态环境网络研究动态,1999,10(3):21~27.
    [9] 熊毅,李庆逵.中国土壤.北京:科学出版社,1987,39.
    [10] Foy C D. Physiological effects of hydrogen, aluminium and manganese toxicities in acid soils ,in Soil Acidity and Liming. Agronomy Monograph, 1984,12:57~97.
    [11] 李永涛,吴启堂.土壤污染治理方法研究.农业环境保护,1997,16(3):118~122.
    [12] Chaney R L. Plant uptake of inorganic waste constituentes.In:Parr J Eeds Land Treatment of Hazardous Wastes. Noyes Data Corporation, Park Ridge,New Jersey, USA. 1983.50~76.
    [13] 沈振国,陈怀满.植物修复和重金属超量积累植物.见:冯锋,张福锁,杨新泉编著.植物营养研究进展与展望.北京:中国农业大学出版社,2000,216~229.
    [14] 刘武定主编.微量元素营养与微肥施用.北京:中国农业出版社,1995.65~78
    [15] 刘铮.土壤与植物中锰的研究进展.土壤学进展,1991,19(6):1~6.
    [16] 廖金凤.珠江三角洲蔬菜中的锰.广东微量元素科学,2000,7(5):56~58.
    [17] Oloma M O.Effect of flooding on Eh,PH and concentration of iron and manganese in several Manitoba soils. Soil Sci. Soc. Am. Proc. 1973, 37: 220~224.
    [18] Kitao M, Lei T T, Nakamura T, et al.Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environmental Pollution, 2001, 111: 89~94.
    [19] Horst W J, Maier P, Fecht M, et al. The physiology of manganese toxicity and tolerance in Vigna unguiculata. Plant Nutr.Soil Sci. 1999, 162 (3): 263~274.
    [20] Hue N V, Vega S, Silva J A. Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments. Soil Sci. Soc.Am. J, 2001, 65: 153~160.
    [21] 朱端卫,成瑞喜,刘景福,等.土壤酸化与油菜锰毒关系研究.热带亚热带土壤科学,1998,7(4):280~283.
    [22] 曾琦,耿明建,张志江,等.锰毒害对油菜苗期Mn、Ca、Fe含量及POD、CAT活性的影响.华中农业大学学报,2004,23(3):300~303.
    [23] Santandrea G, Tani C, Bennici A. Cytological and ultrastructural response of Nicotiana tabacum L. roots to manganese stress, Plant Biosyst. 1998, 132: 197~206.
    [24] 胡蕾,施益华,刘鹏,等.锰对大豆膜脂过氧化及POD和CAT活性的影响研究.金华职业技术学院学报,2003,(1):29~32.
    [25] Santandrea G, Schiff S, Bennici A. Effects of manganese on Nicotiana species cultivated in vitro and characterization of regenerated Mn-tolerant tobacco plants. Plant Science 1998, 132: 71~82.
    [26] Doncheva S, Georgieva K, Vassileva V, et al. Ignatov G.Effects of Succinate on Manganese Toxicity in Pea Plants. Journal of Plant Nutrition, 2005, 28(1): 47~62.
    [27] Hauck M, Paul A, Gross S, et al. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus.Environmental and Experimental Botany, 2003, 49: 181~191.
    [28] Macfie S M, Taylor G J. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Physiologia Plantarum, 1992, 85(3): 467~475.
    [29] 肖凤娟,张欣杰.铝镁锌锰等金属离子与钙调素相互作用研究进展.河北省科学 院学报,2003,20(3):163~167.
    [30] Bueno P, Piqueras A. Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regulation, 2002, 36: 161~167.
    [31] Tsang E W T, Bowler C, Herouart D, et al. Differential regulation of superoxide dismutase in plants exposed to environmental stress. Plant Cell, 1991, 3(8): 783~792.
    [32] Ganesan V, Thomas G. Salicylic acid response in rice:influence of salicylic acid on H202 accumulation and oxidative stress. Plant Sci, 2001, 160 (6): 1095~1106.
    [33] Ros Barcelo A. The generation of H2O2 in the xylem of Zinnia elegans is mediated by an NADPH-oxidase-like enzyme. Planta, 1998, 207: 207~216.
    [34] Baker A J M. Metal Tolerance. New Phytologist, 1987, 106: 93~111.
    [35] Jones D L, Darrah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 1996, 180: 57~66.
    [36] Merckx R, Vanginkel J H, Sinnaeve J, et al. Plant-induced changes in the rhizosphere of maize and wheat. Ⅱ Complexation of cobalt,Zinc,and manganese in the rhizosphere of maize and wheat. Plant and soil, 1986, 96:95~108.
    [37] Bidwell S D, Woodrow I E, Batianoff G N, et al. Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae)from Queensland, Australia. Functional Plant Biology, 2002, 29(7): 899~905
    [38] 王晓萍.茶根分泌物有机酸的分析研究初报.茶叶科学,1994,14(1):17~22.
    [39] Mench M, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L, Nicotiana tabacum L and Nicotiana rustica L. Plant and Soil, 1991, 132(2): 187~196.
    [40] Jones D L, Darrah P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Pland and Soil, 1994, 166: 247~257.
    [41] Fecht-Christoffers M M, Horst W J. Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris?. J Plant Nutr Soil Sci. 2005, 168: 590~599.
    [42] Li X F, Ma J F, Matsumoto H. Aluminum-induced secretion of both citrate and malate in rye. Plant and Soil, 2002, 242: 235~243.
    [43] Engler R M, Patrick W H. Stability of sulfides of manganese,iron, zinc, copper and mercury in flooded and nonflooded soils. Soil Sci. 1975, 119(3): 217~221.
    [44] Conlin T S S, Crowder A A. Location of radial oxygen loss and zones of potential in iron uptake in a grass and two non-grass emergent species. Can. J. Bot, 1989, 67: 717~722.
    [45] Lovley D R. Microbial reduction of iron,manganese,and other metals. Adv Agron, 1995, 54:175~231.
    [46] Nogueira M A, Magalhaes G C, Cardoso E J B N. Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. Journal of Plant Nutrition. 2004, 27(1): 141~156.
    [47] 薛生国,陈英旭,骆永明,等.商陆(Phytolacca acinosa Roxb)的锰耐性和超积累.土壤学报,2004,41(6):889~895.
    [48] 徐圣友,姚青,王贺,等.对锰害敏感性不同的两个苹果品种枝条中锰的积累与分布.园艺学报,2003,30(1):19~22.
    [49] Salt D E, Smith R D, Raskin I. Phytoremediation.Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 643~668.
    [50] Tomsett A B, Thurman D A. Molecular biology of metal tolerances of plants. Plant Cell Environ, 1998, 11: 383~394.
    [51] Santandrea G, Pandolfini T, Bennici A. A physiological characterization of Mn-tolerant tobacco plants selected by in vitro culture. Plant Science, 2000 (150): 163~170.
    [52] Fecht-Christoffers M M, Braun H P, Lemaitre-Guillier C, et al.Effect of Manganese Toxicity on the Proteome of the Leaf Apoplast in Cowpea.Plant Physiology, 2003, 133(4): 1935~1946.
    [53] Panl A, Hauck M, Fritz E. Effects of manganese on element distribution and structure in thalli of the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Environmental and Experimental Botany, 2003, 50: 113~124.
    [54] Lytle C M, Lytle F W, Smith B N. Use of XAS to determine the chemical speciation of bioaccumulated manganese in Potamogeton pectinatus. J.Environ. Quality, 1996, 25(2): 311~316.
    [55] Imberty A, Goldberg R, Catesson A M. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta, 1985, 164: 221~226.
    [56] 张华云,王善广.套袋对莱阳仕梨果皮结构PPO、POD活性的影响.园艺学报,1996,23(1):23~26.
    [57] Andrea P, Tilman O, Friederike S. A poplastic peroxidases and liginfication in needles of Norway spruce. Plant Physiol, 1994, 106: 53~60.
    [58] Christensen J H, Bauw G, Welinder K G, et al. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol, 1998, 118(11): 125~135.
    [59] 王狄,李锋民,熊治廷,等.铜的植物毒性与植物蓄积的关系.土壤与环境,2000,9(2):146~148.
    [60] Maathuis F J M, Sanders D. Plasma membrane transport in context making sense out of complexity. Curr Opin Plant Biol, 1999, 2: 236~243.
    [61] Guerinot M L, Eide D. Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol, 1999, 2: 244~249.
    [62] Eng B H, Guerinot M L, Eide D, et al. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol, 1998, 166: 1~7.
    [63] Korshunova Y O, Eide D, Clark W G, et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol.Biol, 1999, 40: 37~44.
    [64] Lopez-Millan A F, Ellis D R, Grusak M A. Identification and characterization of several new members of the Zip family of metal ion transporters in Medicago truncatula. Plant Mol Biol. 2004, 54: 583~596.
    [65] Cellier M, Prive G, Belouchi A, et al. Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA, 1995, 91: 10089~10093.
    [66] Delhaize E, Kataoka T, Hebb D M, et al. Genes Encoding Proteins of the Cation Diffusion Facilitator Family That Confer Manganese Tolerance. The Plant Cell, 2003, 15: 1131~1142.
    [67] Hirschi K D, Korenkov v d, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in Tobacco. Altered Metal Accumulation and Increased Manganese Tolerance. Plant Physiol. 2000, 124: 125~133.
    [68] Pence N S, Larsen P B, Ebbs S D, et al. The Molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA, 2000, 97(9): 4956~4960.
    [69] Henriques R, Jasik J, Klein M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects, plant Molecular Biology, 2002, 50(4): 587~597.
    [70] Luk E,Carroll M, Baker M, et al. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTMI,a member of the mitochondrial carder family. Proc Natl Acad Sci USA. 2003, 100(18): 10353~10357.
    [71] Wu Z Y, Liang F, Hong B M, et al. An Endoplasmic Reticulum-Bound Ca2+/Mn2+Pump,ECA1, Supports Plant Growth and Confers Tolerance to Mn2+ Stress. Plant Physiology, 2002, 130: 128~137.
    [72] 张淑香,王小彬,金柯,等.干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响.植物营养与肥料学报 2001,7(4):391~396.
    [73] Sarkar D, Pandey S K, Sud K C,el al. In vitro characterization of manganese toxicity in relation to phosphorus nutrition in potato (Solanum tuberosum L.). Plant Science, 2004, 167:977~986.
    [74] Davis J G. Soil pH and magnesium effects on manganese toxicity in peanuts. Journal of Plant Nutrition, 1996, 19:535~550.
    [75] 司友斌,章力干.保护地栽培土壤锰毒的矫正.安徽农业科学,1999,27(5):487~489.
    [76] 朱端卫,万小琼,耿明建,等.酸化及施碳酸钙对土壤各形态锰的影响.植物营养与肥料学报,2001,7(3):325~330.
    [77] 童依平,李继云.北京地区石灰性土壤对锰的吸附.环境科学进展,1996,4(5):74~80.
    [78] 朱端卫,程东升,成瑞喜,等.碳酸钙和硼对棕红壤油菜锰毒缓解作用.土壤与环境,1999,8(1):36~39.
    [79] 刘成明,秦煊南.铁锰元素对温州蜜柑光合生理的影响及营养诊断研究.西南农业大学学报,1996,18(1):29~33.
    [80] Roomzadeh S, Karimian N. Manganese-iron relationship in soybean grown in calcareous soils. J Plant Nutr, 1996, 19(2): 397~406.
    [81] 黎晓峰,顾明华,白厚义,等.水稻锰毒与铁素营养关系的研究.广西农业大学学报,1996,15(3):190~194.
    [82] Alcantara E, Romera F J, Canete M, et al. Effects of heavy metals on both induction and function of root Fe(Ⅲ) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of Experimental Botany, 1994, 45: 1893~1898.
    [83] 袁可能.植物营养元素的土壤化学.北京:科学出版社,1983.518~527.
    [84] 黎晓峰,陆申年,陈惠和,等.铁锰营养平衡与水稻生长发育.广西农业大学学报,1995,14(3):217~222.
    [85] 曾祥忠,吕世华,刘文菊,等.根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响.西南农业学报,2001,14(4):34~38.
    [86] 刘春杰.论广西锰业现状与发展.中国锰业,2001,19(4):28~30.
    [87] 薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物——商陆.生态学报,2003,23(5):935~937
    [88] 梁立峰,王泽槐,周碧燕,黄珲白.低温及多效只会对香蕉叶片过氧化物酶及其同工酶的影响.华南农业大学学报,1994,15(3):65~70
    [89] Polak TB, Milacic R, Pihhlars B, et al. The uptake and speciation of various Al species in the Brassica rapa pekinensis. Phytochemistry, 2001, 57: 189~198
    [90] Toshihiro W, Mitsuru O. Influence of aluminum and phosophorus on growth and xylem sap composition in Melasteoma malabathricum L. Plant Soil, 2001, 237:63~70
    [91] Foy C D, Duke J A, Devine T E. Tolerance of soybean germplasm in acid subsoil. J plant Nutr, 1992, 15: 527~547.
    [92] Bennet R J, Breen C M, Fey M V. The aluminum signal: new dimensions of aluminum tolerance. Plant and Soil, 1991, 134: 153~166.
    [93] Delhaize E, Ryan P R. Update on environmental stress: aluminum toxicity and tolerance in plants. Plant Physiology,1995, 107: 315~321.
    [94] McGrath S P, Dunham S J. Potential phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In: Proceedings international seminar on use plants for environmental remediation. Kosaikaikan, Tokyo, Japan, 1997: 100~117.
    [95] Knight B, Zhao F J, McGrath S P, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil, 1994, 197: 71~78.
    [96] Dusan L. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta, 1999, 1421: 1~28.
    [97] 铁柏清,袁敏,唐美珍.美洲商陆(Phytolacca americana L.)——一种新的Mn积累植物.农业环境科学学报,2005,24(2):340~343.
    [98] 刘祖祺,张石诚.植物抗性生理学.北京:中国农业出版社,1990.370~372
    [99] 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.184~185.
    [100] 刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响.植物学报,2000,42(5):461~466.
    [101] 汤章城.现代植物生理学实验指南.北京:高等教育出版社,1999.
    [102] Giannopolitis CN, Ries SK. Superoxide dismutase: Purifica-tion and quantitative relationship with water solution pro-tein seedling. Plant Physiol, 1977, 59: 315~318
    [103] 张志良主编.植物生理学实验指导.北京:高等教育出版社,1990.154~155
    [104] Elisha. Arch of Biochem & Biophy, 1986, 246(1): 396~402.
    [105] 全国土壤普查办公室编.中国土壤.北京:中国农业出版社,1998.950.
    [106] Salt D E, Blaylock M, Kumar N P B A, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 1995,13: 468~474.
    [107] Baker A J M, Brooks R R, Pease A J, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silence L.(Caryophyllaceae)From Zaire. Plant and Soil, 1983,73: 377~385.
    [108] LU Yong-quan, DENG Zhen-hua. Practical Analysis of Infrared Spectrum. Beijing: Publishing House of Electronics Industry,1987.
    [109] XIE Jing-xi. Application of infrared spectroscopy in Organic and Drug Chemistry. Beijing: Science Press, 1987.
    [110] SUN Su-qin, ZHOU Qun, LIANG Xi-yun, YANG Xian-rong. Spectroscopy and Spectral Analysis, 2002, 22(4); 600.
    [111] GUO Zhen-chu, HAN Yong-sheng, FENG Hui-xia. Spectroscopy and Spectral Analysis,1999,19(1): 25.
    [112] Zhao H R, Wang X Y, Chen G H, et al. Spectroscopy and Spectral Analysis, 2004, 24(11): 1338.
    [113] Chen T B, Wei C Y, Huang Z C, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin, 2002,47 (11): 902~905.
    [114] Yokoi S J, Bressan R A, Hasegawa P M. Salt stress tolerance of plants. JIRCAS Working Report, 2002:25~33.
    [115] 王霞,侯平,尹林克.水分胁迫对圣柳植物可溶性糖的影响.干旱区研究,1999,16(2):1~10.
    [116] 李德全.植物在逆境下的渗透调节.山东农业大学学报,1989,(2):75~80.
    [117] Bot J L, Kirkby E A, Beusicchem M L V. Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr,1990, 13: 513~525.
    [118] 郭水良,李扬汉.杂草的基本特点及其在丰富栽培地生物多样性中的作用.资源科学,1996,3:48~53.
    [119] Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi Caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ. Sci. Technol, 1995, 29:1581~1585.
    [120] Marschner H. Mineral nutrition of higher plants. 2ed. Academic Press. San Diego. CA. USA. 1995.
    [121] 陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379~382.
    [122] 王建林,刘芷宇.重金属在根际中的化学行为:土壤中铜吸附的根际效应.环境科学学报,1991,11(2):178~185.
    [123] 熊愈辉,杨肖娥,叶正钱,等.两种生态型东南景天锌吸收与分布特性的研究.浙江大学学报,2003,29(6):614~620.
    [124] Warden B T. Manganese extracted form different chemical fractions of bulk and rhizosphere soil as affected by methods of sample preparation. Commun. Soil. Sci. Plant Anal. 1991, 22(4): 169~176.
    [125] Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. Klye D J, Osmond C B, Arntzen C J(eds). Photoinhibition. Amsterdam: Elsevier, 1987: 227~287.
    [126] 张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448.
    [127] 杨俊兴,张彤,王磊.Ca-GA合剂和磷浸种对水分胁迫条件下冬小麦萌发及幼苗 叶绿素荧光参数的影响.安徽农业科学,2005,33(2):210~212.
    [128] Schnettger B, Critchley C, Santore U J, et al. Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effect of protein synthesis. Plant Cell Environ, 1994, 17(1): 55~64.
    [129] 徐呈祥,徐锡增.硅对盐胁迫写金丝小枣叶绿素荧光参数和气体交换的影响.南京林业大学学报(自然科学版),2005,29(1):25~28.
    [130] Demmig-Adams B, Adams W W, Barker D H, et al. Physiol. Plant, 1996, 98: 253~264.
    [131] 郭天财,姚战军,王晨阳等.水肥运筹对小麦旗叶光合特性及产量的影响.西北植物学报,2004,24(10):1786~1791.
    [132] Tewan A K, Tripathy B C. Temperature-stress-induced impaired of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology, 1998, 117:851~858.
    [133] Christopher A G, Darrell G S. Correlating manganese x-ray absorption near-edge structure spectra with extractable soil manganese soil. Journal Proquest Biology Journals, 2002, 66(4): 1172.
    [134] Shenker M, Plessner O E, Tel-Or E. Manganese nutrition effects on tomato growth, chlorophyll concentration and superoxide dismutase activity. Journal of Plant Physiology, 2004, 161:197~202.
    [135] Singh D V, Chunhan R P, Karar A K. Distribution of froms of manganese in Midnapur soils. Food Ferting and Agriculture, 1997, 8(11): 19~21.
    [136] Leeper G W. Mn deficiency of cereals plot experiments and a nero hypothesis. Proc Roy Soc(Voctroia), 1995, 47(1): 225~561.
    [137] Batty L C, Baker A J M, Wheeler B D, et al. The effect of pH and plaque on the uptake of Cu an d Mn in Phragmites australis(Cav.) Trin ex. Steudel. Annals of Botany, 2000, 86: 647~653.
    [138] Gherardi M J, Rengel Z. The effect of manganese supply on exudation of carboxylates by roots of lucerne(Medicago sativa). Plant and soil, 2004, 260: 271~282.
    [139] Sadana U S, Claassen N. Manganese dynamics in the rhizosphere and Mn uptake by different crops evaluated by a mechanistic model. Plant and Soil, 2000, 218: 233~238.
    [140] Husted S, Thomsen M U, Mattsson M, et al. Influence of nitrogen and sulphur form on manganese acquisition by barley(Hordeum vulgare). Plant and Soil, 2005, 268: 309- 317.
    
    [141] Yu Q, Osborne L D, Rengel Z. Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Annals of Botany, 1999, 84: 543— 547.
    [142] Lasier P J, Winger P V, Bogenrieder K J. Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca. Arch. Environ. Contam. Toxicol, 2000, 38: 298— 304.
    [143] Camp W V, Herouart D, Willekens H, et al. Tissue-specific activity of two manganese superoxide dismutase promoters in transgenic tobacco. Plant Physiol, 1996,112: 525- 535.
    [144] Keller J, Owens C T, Lai J CK, et al. The effects of 17 β-estradiol and ethanol on zinc or manganese-induced toxicity in SK-N-SH cells. Neurochemistry International, 2005,46:293- 303.
    [145] Shi Q H, Bao Z Y, Zhu Z J. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry, 2005, 66: 1551— 1559.
    [146] Reichman S M, Menzies N w, Asher C J, et al. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant and soil, 2004,258:341- 350.
    [147] Lidon F C, Teixeira M G. Rice tolerance to excess Mn: implications in the chloroplast lamellae and synthesis of a novel Mn protein. Plant Physiol.Biochem, 2000,38:969- 978.
    [148] Paschke M W, Valdecantos A, Redente E F. Manganese toxicity thresholds for restoration grass species. Environmental Pollution, 2005, 135: 313— 322.
    [149] Oweson C A M, Baden S P, Hernroth B E. Manganese induced apoptosis in haematopoietic cells of Nephrops norvegicus(L.). Aquatic Toxicology, 2006, 77: 322- 328.
    [150] Kassem M A, Meksem K, Kang C H, et al. Loci underlying resistance to manganese toxicty mapped in a soybean recombinan inbred line population of 'Essex' x 'forrest'. Plant and Soil, 2004, 260: 197- 204.
    [151] Gonzalez A, Steffen K L, Lynch J P. light and excess manganese. Plant Physiol, 1998, 118: 493~504.
    [152] Subrahmanyam D, Rathore V S. Influence of Manganese Toxicity on Photosynthesis in Ricebean (Vigna Umbellata) Seedlings. Photosynthesis, 2001, 38(3): 449~453.
    [153] Laurie S H, Tancock N P, McGrath S P, et al. Influence of EDTA complexation on plant uptake of manganese(Ⅱ). Plant Science, 1995, 109:231~235.