梯形渠道跌水口量水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跌水为水利工程中一种较为常见的落差建筑物,特别在我国广大丘陵塬坡地区的渠道输水工程中采用的较为普遍。在修建了跌水的渠道工程中,如果能利用跌水口来精准量水,将可以减少因灌溉系统设置量水设施所产生的水头损失,既可节省大量附加量水设备的建设费用,又可以减少工程量,是一种较为经济、简便的量水方法。因此,研究如何利用跌水口精准量水、确定影响其过水能力的因素以及水流的水力特性,具有重要的应用价值,对保证农田灌溉、发展农业经济起到一定的作用。
     本文是在梯形渠道上选用矩形跌水缺口形式,采用两种连接渐变段形式——扭面和隔墙,每一种渐变段分别采用四种不同的缺口厚度(δ=0.02m、0.075m、0.13m、0.19m)和四种不同的缺口宽度(bc=0.14m、0.2m、0.25m、0.3m)进行了组合试验,并取得了初步的研究成果。
     结合理论分析和试验研究,通过建立无量纲数相对临界水深与相对上游水深之间的函数关系,得到了在自由溢流状态下利用跌水口量水的流量公式,由此建立的流量公式满足量纲和谐性,且流量公式简单、测流精度较高。在连接渐变段为扭面时,利用无量纲分析得到的流量公式计算所得流量与实测流量的相对绝对值误差最大为3.615%,最小为2.168%;当连接渐变段为隔墙时,利用无量纲分析得到的流量公式计算所得流量与实测流量的相对绝对值误差最大为4.941%,最小为3.398%。并且得出连接渐变段为扭面时的泄流能力大,测流精度高,为跌水进口段较好的连接形式。
     通过试验验证分析,发现跌水的流量系数值除了与上游渠道水深、缺口的形式和连接渐变段的形式等因素有关外,还与缺口的厚度有着密切的联系。本文通过建立两无因次数与之间的函数关系,得出在不同条件下流量系数的对数计算公式。并且得出流量系数M随着流量的增大而增大;在相同的流量与相同的缺口厚度情况下,缺口宽度越大,流量系数越小;反之,若缺口宽度越小,则流量系数越大。在同一缺口厚度的情况下,佛汝德数Fr随着缺口宽度的增大而增大;在相同缺口宽度的情况下,缺口的厚度越大,佛汝德数Fr越小;在缺口的厚度和缺口宽度都确定时,佛汝德数Fr随着流量的增加而减小。槽内的佛汝德数Fr除个别点据数值外其余均都小于0.5,基本上可满足利用跌水口来测流的条件。
Drop water is one kind of rather common fall structures in the hydraulic engineering, which is used commonly in transport water channel projects for the vast hilly area of the plateau in China, particularly. if we could use the drop water to gauge water accurately, it might not only reduce the loss of head caused by gauging facility of irrigation system, but also might save a lot of additional construction costs for gauging water and also reduce the project quantity, so it is one kind of economical and convenient gauging water method. Therefore, these works, which were how to gauge water by drop water accurately, ascertain the affected factors of discharge capacity and the hydraulic characteristics, has a significant applicative value and plays an important role in field irrigation and agriculture economy development.
     This article chooses the rectangle gap form of drop water on the trapezoidal channel and uses two kinds of link gradual transition——the distortion and the partition wall, each gradual transition takes four kinds of different gap thickness (δ=0.02m, 0.075m, 0.13m, 0.19m) and widths (bc=0.14m, 0.2m, 0.25m, 0.3m). Preliminary research results are obtained through combination test.
     Combining theoretical analysis and experimental study, through established two dimensionless number——relative critical water depth hk/bc and the relative upstream water depth H0/bc functional relationships, discharge formula under the free over discharge condition is educed , which has the characteristics of dimensional harmony, simplicity and highly precision. When link gradual transition is the distortion, the maximum absolute error value between calculated discharge by the discharge formula and measured discharge is 3.615%, the minimum is 2.168%; When link gradual transition is partition wall, the maximum is 4.941%, the minimum is 3.398%. In conclusion, gradual transition of the distortion have a big drainage ability, highly measured precision, which is a preferable link form of drop water. Through the experimental confirmation and analysis, we discovered that the discharge coefficient value of drop water has a close relation with the gap thickness, besides the upstream channel water depth, the gap form , link gradual transition form and so on .This article through establish dimensionless numbers between M/ξandδ·bc/H02 functional relationships, obtains discharge coefficient logarithmic computation formula in the dissimilar condition, the results shows that the discharge coefficient increases with the discharge. With the same discharge and gap thickness, the bigger gap width is, the smaller discharge coefficient is, vice versa. With the same gap thickness, the Froud Number Fr becomes larger with the gap width becoming larger. With the same gap width, gap thickness gets bigger when Froud Number Fr gets smaller. Froud Number Fr become larger with the discharge decrease in certain gap thickness and the gap width. Froude number Fr in water slot is less than 0.5 except some individual spots, which basically meet the request of the flow measurement using drop water.
引文
[1] 陈雷.妥善处理水事纠纷、促进社会和谐稳定[J].中国水利,2007(19).1~3.
    [2] 陈雷.真抓实干、开拓节水灌溉工作新局面[J].中国水利,1993(3).14~20.
    [3] 中共十五届五中全会公报,2000.10.
    [4] 王志民.以信息化带动水利现代化[J].中国水利,2000(12).
    [5] 汪恕诚,翟浩辉,冯广志.农业节水探索[M].北京:水利水电出版社,2001.
    [6] 孙天华,李贵宝,傅桦.水环境标准与水资源的可持续发展[J].水资源保护,2006,(1).53~57.
    [7] 高琪.发展农业节水灌溉势在必然[J].东北水利水电,2006(11),65~66.
    [8] 许迪,龚时宏.中国节水农业技术与产品需求分析[J].灌溉排水学报,2005,24(1).1~7.
    [9] 山仑.节水农业的研究与实施[J].中国科学院院刊,1996(6).430~435.
    [10] 康绍忠,许迪.我国现代农业节水高新技术发展战略的思考[J].中国农村水利水电,2001(10).25~29.
    [11] 国家发改委,科技部,水利部等.中国节水技术政策大纲[S].2005.6.
    [12] 蔡勇,周明耀.灌区量水实用技术指南[M].中国水利水电出版社,2001.
    [13] 陈梦华,韩克敏,宋向荣.灌区量水技术的研究进展[J].中国农村水利水电,2001,(9)44~45.
    [14] 陈毓陵,王靖波.灌区量水方法及应用对策[J].水利水电科技进展,2000,20(6).39~42.
    [15] 蔡勇,李同春.灌区量水设施分析研究[J]. 中国农村水利水电,2005(2).13~15.
    [16] 翟浩辉.加大灌区改造力度、保障国家粮食安全[J].求是,2004,(6):1-6.
    [17] 中华人民共和国水法.1988.1
    [18] 郝树荣,任瑞英,郝树刚.灌区量水技术的发展与展望[J].人民黄河,2003,25(11):4143.
    [19] 陈炯新.灌区量水工作水册[S].北京:水利水电出版社.1984
    [20] 陶善生.灌区企业化管理[M].北京:水利水电出版社.1987
    [21] 中国水利学会水利量测研究会灌区量测技术学组.灌区用水管理与量水技术论文集[D].北京:中国水利水电出版社,1997.
    [22] 水利量测技术委员会.水利量测技术进展综述[J].中国水利,2004,(11):34-36.
    [23] 俞双恩,左晓霞,赵伟.我国灌区量水现状及发展趋势[J].节水灌溉,2004,(4):35-37.
    [24] 赵宁,李可可.量水而行——从新《水法》看节约用水[J]. 节水灌溉,2004 年第 2 期,39~41.
    [25] 陈毓陵,王靖波.灌区量水方法及应用对策[J].水利水电科技进展,2000(6).39-42.
    [26] 费良军.陕西省大型灌区渠道防渗技术.www.Watertech.net.cn
    [27] 徐洪云.对大型灌区续建配套节水改造规划的几点思考.淮阴市水利局,2004.8
    [28] 周宁宁,梁国伟.速度面积法中不同特征点位置选择法之比较[J],中国计量学院学报,2003,第 2期.105~108.
    [29] BS3680.Method of measurement of liquid flow in open channels.Part 4c Flumes,1974,200~215.
    [30] ISO Standards Hdndbook 16.Measurement of liquid flow in open channels.1983.
    [31] Harrison AJM. Boundary layer displacement thiekness on flat.Plates.Proc Am soc Civ Engrs 93(HY4),79~91(July 1967)
    [32] Schlichting H.Boundary layer theory.4th ed Mc Graw-Hill Book ComPany.New York Chap,1960(2).
    [33] 张志昌.U 形渠道量水设施综述.西安理工大学学报,1995,11(3).214~219.
    [34] AekersP,White WR,Perkins J A and Harrison AJM.Weirs and flumes for flow measurement. John Wiley&Sone Lte,1978, 5(1):120~126.
    [35] ISO Standerds Handbook 16. Measurement of Liquid flow in open channels[M].北京:中国标准出版社,1985.1~26.
    [36] 阮新建,王长德,柳树票.明渠测流长喉槽结构优化及设计理论研究[J].2001,17(5):22~26.
    [37] 陈建康,沈波.长喉道量水槽的应用研究[J].灌溉排水,2001,20(4):26~29.
    [38] M.G.Bos.Long-throated Flumes and Broad-crested Wers[M]. Martinus Nijhoff/Dr W.JunkPublishers,1985.
    [39] 张志昌,刘松舰,刘亚菲.抛物线形渠道水力最优断面的计算[J].西安理工大学学报, 2002,18(3):235~237.
    [40] 张志昌.U 形渠道测流[M].西安:西北工业大学出版社,1997,3~20.
    [41] 张志昌,张宗孝,刘亚菲.U 形渠道直臂式量水堰的研究与应用[J].陕西水利,1992(1):28~34.
    [42] 尚民勇.U 形长喉道量水槽的试验研究及其应用[J].陕西水利,1991(3):41~44.
    [43] 张志昌,张漫丽,王开民.U 形(圆底形)长喉道测流槽水力特性的研究[J].陕西水力发电,2000,16(2):5~8.
    [44] ISO 标准手册 16:明渠水流测量[S].水利电力部水文局,等译.北京:中国标准出版社,1985.
    [45] US department of the interior bureau of reclamation. Water measurement manual[M].3d edition. Washington:US Government Printing office,2001.
    [46] 张志昌,刘亚非.有坎缺口式量水槽流量系数和水力计算[J].陕西水力发电,1995(3):43~49.
    [47] 卢俊,张志昌,兀伟.边界层理论在三角形长喉道量水槽流量计算中的应[J].2007,23(2):15~18.
    [48] Parshall, R.L, Parshall Flumes of Large Size[J]. Bulletin 426A Colorado Agricultural Experimental Station.Colorado State University,1953(4).
    [49] Parshalla, R.L,Measuring Water in Irrigation Channels with Parshall Flumes and Small Weirs[J].Soil Conservation Circular No.843, U.S. Department of Agriculture,1950(5).
    [50] Sbogerboe. G.V. and Hyatt. M.L. Rectangular cut-throat flowneasunng flume[J]. Proc. A.S.C.E Journ. Irm. And Dge. Divn. 1967(12).
    [51] U 形渠道量水设备试验研究课题组.U 形渠道平底抛物线形量水槽的研究[J],陕西水利,1990(4):16~19.
    [52] 张志昌,刘亚非.U 形渠道便携式测流槽的研究[J].陕西水利,1995(1):31~33.
    [53] 刘钮,朱嘉英,安惠君.灌区量水技术应用研究[A].见:朱嘉英.灌区信息技术与水管理论文集[C].北京:中国水利水电出版社,2003.45~58.
    [54] 吴持恭.水力学[M].北京:高等教育出版社,1982.364~368.
    [55] 吕宏兴.水力学[M].北京:中国农业出版社,2000.
    [56] 朱宗法.一种性能优良的测流堰——流线型三角形剖面堰[J].水利水电标准化计量,1995,3:21~23.
    [57] 杨晓峰,杨雨行.一种较理想的量水建筑物——平坦 V 形堰[J].中国水土保持科学,2003(9):76~79.
    [58] 卞祖铭,车波.灌区量水技术简介[J].浙江水利科技,1993(l):17-21.
    [59] 吉庆丰,沈波,李国安.灌区量水设施研究开发进展[J].灌溉排水,2001(20):69~72.
    [60] 陕西省水利电力勘测设计院等.陕西宝鸡峡引渭灌溉工程技术总结.1974.
    [61] 李树青,李敬.灌区排水渠道塌坡原因及防治措施[J]. 内蒙古水利. 2006 (04),41~42.
    [62] 梁勇,靳玉琴.跌水工程在冲刷沟治理中的应用[J]. 水利天地,2007(11).33.
    [63] 葛文军,戴凤霞,杨志波.涵式竖井在水土流失治理中的应用[J]. 水利科技与经济. 2007(05),302~303.
    [64] 高玉军,薛峰,戴风霞.竖井式跌水在水土流失治理中的应用[J]. 水利天地.2006(02),45.
    [65] 陈涛郁.小龙潭南洞沟跌水消能池水力计算[J]. 露天采煤技术. 2001 (04),22~26.
    [66] 牟向东,王洪.植物措施多级护砌式跌水在治沟中的应用[J]. 东北水利水电.2006(08), 69~70.
    [67] 王艳军,金丽娜,尹万琴.植物措施多级跌水、谷坊混合式治沟[J].水利天地.2007(05) ,35.
    [68] 乐美承.跌水水景的设计[J].中国给水排水. 1999 ,15(6).34~35.
    [69] 江西省水利水电勘测设计院,灌溉渠道上压力管式跌水.1978.
    [70] 郭建梅,汤党球,王玮晶. 黑龙江垦区几种跌水工程[J].东北水利水电,2001(7),47~48.
    [71] 高玉军,薛峰,戴风霞.竖井式跌水在水土流失治理中的应用[J].水利天地,2006(2).
    [72] 谭志伟.竖井式跌水水力计算的探讨[J].中国农村水利水电,2008(2),92~97.
    [73] 张竞竞.竖井式跌水在尚希庄水库进水口设计中的应用[J].吉林水利,2006(6),10~12.
    [74] 孙兆义.箱型跌水在柳河灌区中的应用[J].东北水利水电,1990(9),10~12.
    [75] 金永堂.管式陡坡过水能力与下游消能试验研究[J].水利水电技,1981(9).
    [76] 肖凤杰.北安垦区坡耕地水土流失治理途径[J].水利科技与经济,2004,10(3).
    [77] 赵文龙,靳秀梅,孙立升.渠道跌水设计[J].黑龙江水利科技,2007(5),45~46.
    [78] 刘韩生,花立峰等,跌水与陡坡[M].北京:中国水利水电出版社,2004.
    [79] 张良然.量纲分析及其在水力学中的应用[J].江西水利科技,1999,25(1),44~46.
    [80] Keller,R.J.Cut-throat Flume Characteristics[J].Journal of the Hydraulics Engineering,1984,(9):1248~1263.
    [81] Vito Ferro,V.Discussion of “Simple Flume for Flow Measurement in Open Channel” by Zohrab Samani and Henry Magallanez [J].Journal of the Irrigation and Drainage Engineering,2002,128(2):129~131.
    [82] Barenblatt,G.I.Similarity,Self-similarity,and Intermediate Asymptotic.New York:Consultans Bureau,1979.
    [83] Barenblatt,G.I.Dimensional Analysis.Amsterdam:Gordon and Breach Science,1987.
    [84] 吕宏兴,余国安,陈俊英,等. 矩形渠道半圆柱形简易量水槽试验研究[J].农业工程学报, 2004,20,(6):81~84.
    [85] 吕宏兴,刘焕芳,朱晓群,等.机翼形量水槽的试验研究[J].农业工程学报,2006,(9):119~123.
    [86] 刘清朝.自由跌流的水力特性[J].水利学报,1990,11(11):8~17.
    [87] 杨永森,杨永全.自由跌流的水力特性[J].水科学进展,2000,11(2):148~152.
    [88] 蔡新民.自由跌水紊流数值模拟[D]浙江杭州,浙江工业大学,2006.
    [89] 华东水利学院译,水工手册[M],北京:水利出版社,1957.
    [90] 华东水利学院主编,水工设计手册[M].北京:水利水电出版社,1984.
    [91] E·A·扎马林, B·B·方捷耶夫.水工建筑物[M].高等教育出版社.1955 年.
    [92] 陕西省水利科学研究所著.跌水陡坡的水利计算和设计[M].陕西人民出版社.1959 年.
    [93] 乔海泉.跌水陡坡流量系数研究[J].科学研究报告选集第三集.127~136.
    [94] Hagger W H. Modifield venture channel[J].J Irrig Drain Eng,1985,111(1),19~35.
    [95] Hagger W H.Modifield trapezoidal venture channel[J]. J Irrig Drain Eng,1986,112(2):225~241.
    [96] 戚玉彬.矩形渠道机翼形量水槽试验研究[D].陕西杨凌:西北农林科技大学,2007.
     [97] 杨红.利用渠道跌水进行量水[J].吉林水利,1994 (8):12-13.
    [98] 米哈依洛夫等.水力学水文学水文测验学[M].北京:高等教育出版社.1954.