河西绿洲灌区不同耕作方式下春小麦土壤水分动态变化与产量效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用SIRMOD模型对垄作固定道(PRB)、平作固定道(ZT)、垄作(FRB)、传统耕作(CONV)四种栽培方式下春小麦的灌水进行指导,灌水后检测灌水均匀度,并用Enviroscan数据分析土壤水分动态变化,确定不同生育时期的灌水下限以指导灌水,并在水分利用效率和产量结果的基础上评价了不同耕作方式的优缺点,主要研究结果如下:
     Enviroscan检测的土壤水分达到下限则灌水,出苗~拔节0~40cm土壤水分下限为109.34mm、拔节至灌浆初0~60cm土壤水分以143.81mm为下限、灌浆初至成熟0~80cm土壤水分下限是190.52mm。计划层深度0~40cm、0~60cm、0~80cm的灌水量分别是56mm、84mm、112mm。灌水时间和灌水量确定后,用SIRMOD模型模拟灌水速度,用Oddysee量水灌水。
     苗期土壤计划层深度浅,模拟灌水速度要求最高,需快速浅灌,渠系一般不能满足要求,因此以最大灌水速度进行浇灌。SIRMOD模型每次灌水模拟速度要求高低为:CONV>ZT>FRB>PRB。模拟灌水速度对PRB要求最低,要求低、易实现。实际灌水总量与理论灌水量之差大小依次是:CONV>ZT>FRB>PRB。第一、二次灌水后各处理水分入渗均超过了计划层深度,地头入渗较深,含水量最高,地中次之,地尾最浅。PRB入渗超过计划层深度最浅,含水量最小。沟灌比传统灌水均匀程度高,且PRB灌水均匀度高于FRB。第二次灌水均匀度明显提高,由于灌水速度的要求下降,PRB首先满足了模拟速度。随着生育时期的推进,以后灌水的速度均满足模拟要求,水分入渗均未再超过计划层深度,灌水均匀度逐渐变好,入渗深度较均一。
     20cm、40cm处土壤水分比较活跃,70cm、100cm则相对较稳定,灌水前土壤水分下限不论是20cm还是40cm均以PRB较高。灌水后土壤含水量随着生育时期的推进逐渐下降,三个处理相比PRB日耗水量最小,CONV最大。在整个生育期PRB处理20cm、70cm、100cm土层含水量均比CONV、ZT、FRB高,40cm土层平均含水量比CONV略低,比ZT高5.82%,0~100cm土层平均含水量仍以PRB最高,可见PRB在整个生育期水分较充足。
     前茬作物收获后,各处理0~100cm土壤含水量随着土层深度的增加而变大,但处理间差异不大。冬灌时含水量变化趋势与前茬收获时相同,但PRB增幅最大,充分体现了保墑的能力。依据灌水指标,需要补灌的水量大小依次是:FRB>ZT>CONV>PRB。播种时表层PRB含水量最高。小麦拔节期,由于灌水的不同,土壤水分出现较大差别。灌浆期0~60cm平均含水量分别是22.96%、25.63%、26.29%、20.23%,处理间差异较大。
     叶面积和叶面积指数变化曲线呈抛物线状,单株叶面积除三叶期外CONV均小于其它三个处理,但由于其出苗率和分蘖率较高,提高了作物光能截获能力。叶—日积和产量成正相关,相关系数r达到0.935**,叶—日积对产量贡献大。PRB各生育时期干物质重最大,千粒重最高,植株矮小茎粗,抗倒伏能力强,且穗大粒饱;CONV出苗率、基本苗、茎蘖数、实际产量均在1%水平下达到显著,株高在5%水平下显著,产量6081.57kg/hm2分别高出其它三个处理14.58%、12.31%、14.26%,主要是其成穗数较高,弥补了自身的不足,且CONV的高产建立在大量灌水的基础上。PRB水分利用效率、全生育期灌水量和耗水总量与其它三个处理相比均在1%水平下显著,水分利用效率最高,比CONV高20.29%,PRB耗水量395.33mm,最少。PRB、FRB和ZT的籽粒产量处在同一水平,FRB和ZT耗水量和水分利用效率差异不大;总之PRB产量略低于CONV,水分利用效率远高于其它处理。
In this paper, SIRMOD model was used to guide the irrigation of conventional tillage(CONV), fresh raised-bed(FRB), permanent raised-bed(PRB) and zero tillage(ZT) in Hexi Oasis Irrigation Area. Study dynamic water content by Enviroscan. Compare the change of water content in the same layers of four treatments. Soil moisture in the head, middle and end of field after irrigation was measured to analyze irrigation homogeneity, water use efficiency and the influences of yield in different treatment. The result show as following:
     According to Enviroscan data, during the period from emergence to jointing if soil water content in 0~40cm was 109.34mm plant need irrigated. From jointing to filling when soil water content in 0~60cm was 143.81mm plant need irrigated. If soil water content in 0~80 was 190.52mm plant need irrigated from filling to ripe. The irrigation water volume respectively was 56mm、84mm、112mm. Used SIRMOD to simulate irrigation speed, and used Oddysee to measure irrigation water speed.
     The plan depth is shallow when the first irrigation, so required fast irrigation. The simulate irrigation speed of PRB is 3.83 m3/s, the simulate irrigation speed of CONV, FRB, ZT more than 42.0%,31.6%,35.0% compared with PRB, but such speeds can’t come true, so replaced with the max speed of channel. Therefore, water volume irrigation is much more than water volume of deficit. When the second irrigation just only PRB could touch simulate speed, after second irrigation all can touch.
     Soi1 moisture was measured after irrigates the latter 48 hours. Compare irrigation uniformity of different treatments according to soil moisture of different layers, the uniformity of furrow irrigation was better than that of flat irrigation. Irrigation uniformity of PRB was better than that of FRB. The infiltration depth was deeper than depth of the plan. From head to end of the field the infiltration depth became shallower and shallower in board irrigation.
     When the last wheat was harvested soil moisture became more and more with deep from 0~100cm, but there was not much difference among different treatments.
     When winter water irrigation comed the change of soil moisture was nearly close in different layers, but water content of PRB was increased quickly. So it didn’t need much more water when irrigation winter. When sowing the surface soil was wetter, which better for emergence. According to water deficit index, the irrigation time was different, so the soil moisture of PRB is higher than other treatment whatever soil moisture of twenty or forty depth when jointing and filling. Dedicate that PRB was more power to gather and keep water. After irrigation the soil moisture was decreasing with time passing, but water consume of PRB is the least, CONV is the most. That’s to say PRB had enough water for plant during the period of growing. PRB could keep water high long time, so need irrigation water not much. But CONV need much more.
     There was better soil water content in ridge, so wheat grew healthy in PRB tillage, stalks and ears were in longer green stages, LAI、LAD and dry matter of PRB are higher than others, but LAD dedicate greatly for wheat yield and r was 0.935**. Plant of PRB was short but strong, so it wasn′t easy to lodge. Weight of one thousand seeds was heavier comparing PRB with others.
     PRB were superior to others in wue. Compared to CONV, FRB, ZT, wue of PRB was increased 25.5%, 42%, 40.5%. The water consumption was least, which was 395.33mm. CONV had the most yields, which was 6081.57kg/hm2, but the water consumption also was the most. It was 565.58mm, which was significant compared with others. WUE of CONV was 10.75kg/mm.hm2. WUE and the water consumption of FRB、ZT were very similar. WUE was PRB>CONV>ZT>FRB. Yield was CONV> PRB > FRB > ZT.
引文
[1]罗其友.节水农业可持续推进战略.思想库[J].1999,6:105~107
    [2]柴强,黄高宝.张掖市人地粮系统的现状评价与优化策略[M].区域农业发展与农作制建设,2003,465~468
    [3]张文焕,高昌珍.吕梁地区雨水集蓄利用技术的现状与发展[A].2002.农业与生物系统工程科技、教育发展战略论坛一第五次全国高等学校农业工程类学科专业教学改革暨国际学术研讨会论文集[C].杨凌.2002,6:153~157
    [4]薛志士,罗其友编.节水农业宏观决策基础研究[M].气象出版社.1982,2
    [5]王发宏,王旭清,冯波.小麦垄垄作高效节水技术[J].农业新技术,2004,1:14~15
    [6]上官周平.21 世纪农业高效用水技术展望[J].农业工程学报,1999,15(1):17~21
    [7]21 世纪初期中国水资源供需矛盾与对策[M].
    [8]康绍忠,李永杰.21 世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,4:1~7
    [9]康绍忠,蔡焕杰主编.农业水管理学[M].北京:中国农业出版社,1996,496
    [10]山仑.节水农业的研究与实施[M].中国科学院院刊,l996,6:430~435
    [11]唐登银.农业节水的科学基础[J].灌溉排水,2000,19(2):1~9
    [12]戴同霞,李锡露.发展节水农业推动农业发展[J].山东水利科技,1998,4:1~4
    [13] 康 绍 忠 , 李 永 杰 .21 世 纪 我 国 节 水 农 业 发 展 趋 势 与 对 策 [J]. 农 业 工 程 学报,1997,13(4):1~7
    [14]范仲学,王璞,Mboening-zilkens,等.优化灌溉和施肥对冬小麦产量的影响[J].麦类作物学报,2003,23(4):99~103
    [15] 张 灵 英 , 李 建 军 , 陈 意 平 . 农 业 节 水 对 策 的 层 次 分 析 法 [J]. 山 西 水 利 科技,1995,1(105):30~36
    [16]贾大林.21 世纪初期农业节水的目标和任务[J].节水灌溉,2000(1):9~10
    [17]薛亮.中国节水农业理论与实践[M].中国农业出版社,2002
    [18]石玉林,卢良恕.中国农业需水与节水高效农业建设[M].北京:中国水利水电出版社,2001.
    [19]吴普特,冯浩,牛文全,等.我国北方地区节水农业技术水平及评价[J].灌溉排水学报,2003,22(1):26~30.
    [20]许迪,蔡林根,王少丽,等.农业持续发展的农田水土管理研究[M].北京:中国水利水电出版社,2000,222~225.
    [21]康定明.不同灌量对小麦生长的影响[J].石河子农学院学报,1996,14(2):19~22
    [22]王 平,魏亦勤,裘敏,等.不同灌水条件对春小麦生长发育及产量的影响[J].宁夏农林科技 2004,2:7~9
    [23]马忠明.河西灌区节水灌溉的适宜土壤水分指标研究[J]. 甘肃农业科技,1998,12:30~32
    [24]赵良菊,肖洪浪,李新荣,等.灌水量对土壤水肥分布与春小麦水分利用效率的影响[J]. 中 国 沙 漠 2005,25(2):256~261
    [25] 孙 彦 坤 , 梁 荣 欣 , 张 洪 泽 . 春 小 麦 耗 水 规 律 研 究 [J]. 东 北 农 业 大 学 学 报1997,28(4):340~34
    [26]李纪彬.我国节水灌溉技术的现状与发展趋势[J].河南农业科学,1997,1(3):41~45
    [27]吴景社.国外节水灌溉技术发展现状与趋势(上)[J].节水灌溉,1995,20~22
    [28]李益农,许迪,李福祥.影响水平畦田灌溉质量的灌水技术要素分析[J].灌溉排水学报,2001,20(4):10~14.
    [29]黄乾,彭世彰.北方地区节水灌溉现状简述[J].水资源保护.2005,21(2):12~15
    [30]Alazba A A, Strelkoff T. Correct form of Hall technique for border irrigation advance[J]. Journal of Irrigation and Drainage Engineering, ASCE, 1994, 120:292~307.
    [31]刘群昌,许迪,李益农.应用水量平衡法确定波涌灌溉下土壤入渗参数[J].灌溉排水,2001,20(1):10~15.
    [32]Valiantzas J D. Volume balance irrigation advance equation: Variation of surface shape factor[J].Journal of Irrigation and Drainage Engineering,ASCE,1997, 123(4): 307~312.
    [33]Strelkoff T S, Katopodes N D. Border irrigation hydraulics with zero-inertia[J]. Journal of Irrigation and Drainage Division, ASCE, 1977,103(3):325~342.
    [34]王文焰.波涌灌溉试验研究与应用[M].西安:西北工业大学出版社,1994.
    [35]Chen C L. Surface irrigation using kinematic-wave method[J]. Journal of Irrigation and Drainage Division,ASCE,1970,96(1):39~46.
    [36]Kincaid D C, Heermann D F, Kruse E G. Hydrodynamics of border irrigation advance[J].Transactions of the ASAE,1972,15(4):674~680.
    [37]Wallender W W, Rayej M. Shooting method for Saint-Venant equations for furrow irrigation[J].Journal of Irrigation and Drainage Engineering, ASCE,1990,116(1): 114~122.
    [38]Strelkoff T. SRFR, a computer program for simulating flow in surface irrigation[R]. WCLRep No.17,U.S. Water Conservation Lab, Phoenix, Ariz,1990.
    [39]王晓燕,李洪文.固定道保护性耕作[J].农业科技推广,2004,3
    [40] 马 忠 明 . 有 限 灌 溉 条 件 下 的 作 物 - 水 分 关 系 的 研 究 [J]. 干 旱 地 区 农 业 研究,1998,16(2):75~79
    [41]Cooper A W,Trouse Jr A C,Dumas W T.Controlled traffic in row crop production[J].In:Proceedings of 7th International Congress on Agricultural Engineering.Baden-Baden:Ⅲ:1~6
    [42]Chamen W C T,Vermeulen G D,Campbell D J,et al.Reduction of traffic systems:Tillage and traffic in crop production[J].In:Proceedings of the 11th International Conference of the International Soil and Tillage Research Organization.Edinburgh,1988.227~232
    [43]Raper R L,Reeves D W,Burt E C,et al.Conservation tillage and traffic effects on soil condition[J]. Trans of the ASAE ,1994,37(3):763~768
    [44]Lamers j g,P erdok U D,Lumkes L M,et al.Controlled traffic farming systems in the Netherlands[J]. Soil and Tillage Research,1986,8:65~76
    [45]Tullberg J N .Controlled traffic in Australia[J].In:Proceedings of National Controlled Traffic Conference. Gatton: Queensland University Gatton College,1995.7~11
    [46]Chapman W,spackman G B,Yule D F,et al.Controlled traffic development on dryland broadacre farms in central Queensland[J].Proceedings of National Controlled Traffic Conference.Gatton:Queensland University Gatton College,1995.115~122
    [47]杜兵,寥植樨,邓健,等.用人工降雨研究玉米地保护性耕作措施和压实对水分保护的影响[J].中国农业大学学报,1996,1(增刊):63~67
    [48]杜兵,寥植樨,邓健,等.用人工降雨研究小麦地保护性耕作措施和压实对水分保护的影响[J].中国农业大学学报,1997,2(6):43~48
    [49]张进.固定道保护性耕作的试验研究[J].山西农机,2002,3(16):22~25
    [50] 李 洪 文 , 高 焕 文 , 陈 君 达 . 固 定 道 保 护 性 耕 作 的 实 验 研 究 [J]. 农 业 工 程 学报,2000,4(16):73~77
    [51]Tullberg J N.Why Contol field traffic[J].In:Proceedings of Queensland Department of Primary Industrial Soil Compaction Workshop. Toowooomba: Queensland University,1990.4~6
    [52]Hilfiker R E,Lowery B.Effect of conservation tillage systems on corn root growth[J].Soil and Tillage Research,1998,12(3):269~283
    [53]TullbergJ N.Controlled traffic in Australia[J].In: Proceedings of National Controlled Traffic Conference. Gatton: Queensland University Gatton College,1995,7~11
    [54]周顺利,赵明,崔玉亭.保护性耕作与作物栽培技术[M]. 耕作与栽培,1999,4:57~60
    [55]张进.一条道走到底的保护性耕作[J].旱作农业,2002,4
    [56]骆文光.用免耕垄作覆盖技术提高耕抗旱能力[J].农田水利与小水电,19945,9:21~24
    [57]袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996;4(3):61~65
    [58]沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45~50
    [59]刘跃平,刘太平,刘文平,等.玉米整秸秆覆盖的集水增产作用[J].中国水土保持,2003,4:32~33
    [60] 李 洪 文 , 高 焕 文 , 李 问 盈 . 固 定 道 保 护 性 耕 作 的 试 验 研 究 [J]. 农 业 工 程 学报,2000,16(4):73~77
    [61]刘振堂.小麦垄作栽培技术[J].中国农业信息,2003,11
    [62]张兴昌,卢宗凡.陕北黄土丘陵沟壑区川旱地不同耕作法的土壤水分效应[J].水土保持通报,1994,14(1):38~42
    [63]Ziebarth P D,Tullerg J N.Wheeltrack compaction effects on runoff,infiltration and crop yield[J].In: Proceedings of National Controlled Traffic Conference. Gatton:Queensland University Gatton College,1995,103~108
    [64]沈昌蒲,尹嘉峰.国内外研究垄作区田的情况[J].水土保持科技情报,1995,2:62~65
    [65]蔡典雄.关于持续性保持耕作体系的探讨[J].土壤学进展,1993,21(1):1~8
    [66]Sayre K D.Application of Raised Bed-planting System to Wheat [R].CIMMYT,Wheat Special Report,1997
    [67]沈昌蒲.国内外研究垄作区田的情况[J].水土保持科技情报,1995,2:62~65
    [68] Aquino P. The adoption of wheat in the Yaqui Vally, Sonora, Mexico[M]. CIMMYT, Wheat Program Special Report,1998,17A:45
    [69]韩秉进.不同规格垄作覆膜对甜菜质量的影响[J].中国糖料,1998,2:30~31
    [70]兰树臣.玉米大双覆立体栽培的增产作用及技术要点[J].黑龙江农业科学,1996,1:35~36
    [71] 董 合 林 . 垄 作 与 地 膜 覆 盖 对 麦 套 春 棉 产 量 和 霜 前 花 率 的 影 响 [J]. 中 国 棉花,1997,24(3):19~20
    [72]张荣华.大豆宽台栽培与垄作耕层温度调查[J].现代化农业,1996,7:13~14
    [73]黄义德.大别山区冷浸田水稻旱秧垄作栽培早熟增产的生理学基础[J]安徽农业科学,1998,26(1):5~7
    [74]高宏.垄作栽培技术[J].现代化农业,1997,2:16~18
    [75]余世发.花生垄作栽培能增产[J].四川农业科技,1989,3:15~16
    [76]徐志刚.油菜垄作栽培示范效果[J].现代化农业,1994,5:27~28
    [77]刘刚才.川中丘陵区垄作土壤抗旱机理的研究[J].土壤通报,1997,28(6):248~250,253
    [78]叶勇,高如先.连作大豆松沟倒垄耕作及机械化种管收技术[J].农业科技通讯,1995,3:12~13
    [79]杨爱民,孙彦坤.坡耕地垄作区田保水增产效益的研究[J].山东农业科学,2001,3:41~45
    [80]张俊田.油菜垄作栽培试验[J].现代化农业,1993,12:13
    [81]汪忠华.横坡分带压茬垄作玉米的增产效应和对土壤肥力的影响研究[J].耕作与栽培,1993,1:57~62
    [82]柯有恒,李再刚.垄作水稻增产效应试验初报[J].中国农业气象,1989,10(3):55~56
    [83]王法宏,刘世军,冯波.小麦垄作栽培技术的生态生理效应[J].山东农业科学,1999,4:4~7
    [84]黄庆裕.水稻垄作栽培的关键技术及其效应分析[J].广西农业科学,1995,4:151~152
    [85]戴 德.高寒山区冷浸水稻半旱式免耕垄作增产机理[J].安徽农业,1998,3:7
    [86]王法宏,刘世军,任昌蒲.小麦垄作栽培技术的生态生理效应[J].山东农业科学,1999,4:4~7
    [87]贾玉柱,王长生.小麦垄作栽培试验[J].现代化农业,1993,12:13
    [88]张治良,任军荣,李书明.坡塬地垄沟小麦高产栽培技术[J].陕西农业科学,2000,1:44~45
    [89]方先文,曹阳,熊恩惠.影响小麦生物学产量和收获指数的性状分析[J].江苏农业科学,1994,4:14~16
    [90]王旭清,王法宏.小麦垄作栽培技术的肥水效应及光能利用率[J].山东农业科学.2002,4:3~5
    [91]高明.垄作免耕稻田水稻根系生长状况的研究[J].土壤通报,1998,29(5):236~238
    [92]孙雅君.浅谈水稻垄作的增产潜力[J].盐碱地利用,1992,2:24
    [93]汤永禄,袁礼勋,黄纲.小麦免耕露播覆草与窄行垄作栽培新技术[J].四川农业科技,1998,5:12~13
    [94]徐龙.麦田播后沟灌的抗旱效果简报[J].作物杂志,1990,2:13~15
    [95]杨方人.旱作大豆高产综合技术对根系发育及生理功能影响的研究[J].大豆科学,1987,6(3):225~230
    [96]郝晓玲,苗果园.小麦不同根群对产量形成的影响[A].中国小麦栽培研究进展[C].农业出版社,1993,473~479
    [97]王发宏,王旭清,李松坚,等.高产小麦生育后期不同层次土壤中根系活性的研究[J].作物学报,2001,27(6):891~895
    [98]王发宏,仁德昌,王旭清,等.施肥对小麦根系活性、延缓旗叶衰老及产量的效应[J].麦类作物学报,2001,27(3):51~54
    [99]刘刚才.川中丘陵区垄作土壤抗旱机理的研究[J].土壤通报,1997,28(6):248~250,253
    [100]艾应为.垄作不同土层施肥对小麦生长及氮肥的影响[J].植物营养与肥料学报,1997,3(3):255~260
    [101]郭文韬.再论中国古代的垄作耕法[J].中国农史,1992,2:77~80
    [102]牟正国.中国少耕免耕与覆盖技术研究[M].北京科学技术出版社,1991
    [103]Jones 0.R.,Stewart B.A.(1990) 《 Basin Tillage 》 Soil and Tillage Res. 1990,18:249~265
    [104]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报.2002,18(1):53~56
    [105]孙海国.直立作物残茬和整株秸秆覆盖对麦田土壤湿度及温度的影响[J].干旱地区农业研究,1996,14(2):1~4
    [106]黄高宝,柴强,柴守玺. 张掖市水资源利用现状与可持续开发[J]. 干旱地区农业研究,2001,19(3):98~103
    [107]王天雄. 张掖地区发展节水灌溉途径探讨[J]. 农业灌溉《发展》专辑,2001,48~50
    [108]宋先松. 黑河流域水资源约束下的产业结构调整研究——以张掖市为例[J]. 干旱区资源与环境,2004,18(5):81~84
    [109]张小明.地而灌水技术的改进[J].科技情报开发与经济.2003,13(12):290~291
    [110]刘钰,l.S.pereira.考虑地面灌水技术制约的灌溉制度优化[J]农业工程学报.2003,19(4)74~79.
    [111]司徒淞,张薇,庞鸿宾.地面灌水技术优化组合节水高产机理研究[J]灌溉排水1998,17(4):11~15
    [112]张智勇,柳晓龙.提高地面灌水技术要素[J],甘肃农业,2001,3(176):30~31
    [113]Sharma, R. K. and Singh, R. Furrow irrigated raised bed planting system An efficient input usage production technology[J].Indian farming 2002,6:25~27.
    [114]Aggarwal,P. and Goswami,B. Bed planting system for increasing water use efficiency of wheat(t. aestivum) grown in Inceptisol(Typic Ustochrept)[J]. Indian J.Agric.Sci.2003,73:422~425.
    [115]邓忠,黄高宝,仵峰.固定道耕作条件下秸秆覆盖对土壤水分变化和春小麦产量的影响[J].灌溉排水学报.2006,25(5):47~50