纳米结构的增强拉曼散射光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体子(Plasmon)是导体中自由电子集体的电磁振荡量子化后得到的准粒子。表面等离子体子(Surface Plasmon)则是限制在导体表面的等离子体子。如果导体自身尺度非常小或者导体有细微的表面结构,并且其尺寸远小于光波长,那么在光场照射下这类表面上激发出的表面等离子体子将被限制在特定的表面结构处,形成叫做局域表面等离子体子(Localized Surface Plasmon)。与光滑导体表面上存在的表面等离子体子不同,存在于纳米尺度导体结构上的局域表面等离子体子可以与光子产生强耦合共振,从而在导体纳米微结构表面产生一个局域的增强电场。金属纳米结构在激发光照射下在纳米结构表面产生局域增强电场的现象有很多应用,表面增强拉曼散射(Surface-enhanced Raman Scattering)和针尖增强拉曼散射(Tip-enhanced Raman Scattering)是其中两个非常重要的方面。表面增强拉曼散射是利用存在于金属纳米结构中的增强电场放大吸附在金属表面分子的拉曼散射信号:而针尖增强拉曼散射则是利用存在于扫描探针显微镜的金属针尖处的局域增强电场来放大吸附在样品表面分子的拉曼散射信号。由于扫描探针激发而得的光谱信号的来源被限制在针尖下部有限范围内,随着针尖在样品表面上的移动就可以得到表面不同位置的光谱信息,这样就突破光波长的极限实现分辨纳米尺度量级的光学信息。
     本论文第一章概述等离子体子和表面等离子体子的一些概念、性质和相关研究状况;第二章介绍表面增强拉曼散射的原理及相关应用并对纳米线阵列中表面增强拉曼散射的光偏振依赖性进行了研究;第三章介绍针尖增强拉曼散射的相关信息,研究了“双针尖”耦合形式的针尖增强拉曼散射光谱,并对针尖增强拉曼散射研究中出现的各种现象进行了讨论。第四章介绍用扫描隧道显微镜对金表面上的纳米颗粒和吸附的分子所进行的一些研究。
Plasmons are quasiparticles resulting from the quantization of collective oscillations of the free charges in a conductive medium, and surface plasmons are plasmons which are confined to the surface of the conductive medium. The surface-plasmon polaritons (SPP) are quasipartcles formed when the suface plasmons are coupled with photon field. If the surface of a metal exhibits tiny structures or the size of a metal partcle is much smaller than the wavelength of the excitation light, the excited surface plasmons will be bounded to the tiny structures of the metal or the metal particle, leading to the formation of localized surface plasmons (LSPs). The LSPs can be excited by light and, in a resonant condition, a vast locally enhanced electromagnetic field can be created in the vicinity of the nanometer sized metal structures. Localized surface plasmon resonance (LSPR) on nanometer sized metal structures has many usages, of which two important ones are surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). The mechanisms of SERS can be ascribed to the electromagnetic enhancement part and the chemical enhancement part. For the former one, the locally enhanced electromagnetic field coherently amplifies both the excitation and the emission of absorbed molecules, resulting in the enhancement of the Raman signal. TERS has an advantage over the SERS in the sense that it not only provides the Raman signal enhancement with presence of the sharp tip, but also provides high spatial resolution topographic and near-field optical informations simultaneously.
     The thesis is organized as follows. Chapter 1 presents the introduction to the concepts of plasmons and SPPs with examples. Chapter 2 discusses SERS related issues and gives details about the polarization dependence of SERS on gold nanoparticle-decorated nanowire arrays. Chapter 3 describes TERS related issues with an emphasis on the technology developments. Finally, in Chapter 4, an STM study of gold surfaces and gold surface reconstructions due to particle depositions and molecule adsorptions is presented.
引文
[1]Maier,S.,Plasmonics:Fundamentals and Applications.2007:Springer.
    [2]Kittel,C.,Introduction to Solid State Physics,ed.t.edition.2005:Wiley.
    [3]B(o|¨)er,K.W.,Survey of Semiconductor Physics,ed.n.ed.2002:Wiley
    [4]Raether,H.,Excitation of plasmons and interband transitions by electrons.1980:Springer-Verlag.
    [5]Bozhevolnyi,S.I.,et al.,Waveguiding in surface plasmon polariton band gap structures.Physical Review Letters.2001,86(14):3008-3011.
    [6]Craig,A.E.,G.A.Olson,and D.Sarid,EXPERIMENTAL-OBSERVATION OF THE LONG-RANGE SURFACE-PLASMON POLARITON.Optics Letters.1983,8(7):380-382.
    [7]Darmanyan,S.A.and A.V.Zayats,Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study.Physical Review B.2003,67(3).
    [8]Nikolajsen,T.,K.Leosson,and S.I.Bozhevolnyi,Surface plasmon polariton based modulators and switches operating at telecom wavelengths.Applied Physics Letters.2004,85(24):5833-5835.
    [9]Nikolajsen,T.,et al.,Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths.Applied Physics Letters.2003,82(5):668-670.
    [10]Tan,W.C.,et al.,Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings.Physical Review B.1999,59(19):12661-12666.
    [11]Tsang,J.C.,J.R.Kirtley,and T.N.Theis,SURFACE-PLASMON POLARITON CONTRIBUTIONS TO STOKES EMISSION FROM MOLECULAR MONOLAYERS ON PERIODIC AG SURFACES.Solid State Communications.1980,35(9):667-670.
    [12]Weeber,J.C.,et al.,Near-field observation of surface plasmon polariton propagation on thin metal stripes.Physical Review B.2001,64(4).
    [13]Huffman,F.N.,et al.,SPATIAL DISTRIBUTION OF ENERGY ABSORBED FROM AN ELECTRON BEAM PENETRATING ALUMINUM.Physical Review.1957,106(3):435-440.
    [14]Raether,H.,SURFACE-PLASMONS ON SMOOTH AND ROUGH SURFACES AND ON GRATINGS.Springer Tracts in Modern Physics.1988,111:1-133.
    [15]Kretschm E,DETERMINATION OF SURFACE-ROUGHNESS OF THIN-FILMS USING MEASUREMENT OF ANGULAR-DEPENDENCE OF SCATTERED LIGHT FROM SURFACE PLASMA-WAVES.Optics Communications.1974,10(4):353-356.
    [16]Otto,A.,SURFACE ENHANCED RAMAN-SCATTERING(SERS),WHAT DO WE KNOW.Applied Surface Science.1980,6(3-4):309-355.
    [17] Otto, A., et al., SURFACE-ENHANCED RAMAN-SCATTERING. Journal of Physics-Condensed Matter. 1992, 4(5): 1143-1212.
    [18] Girlando, A., et al., RAMAN-SPECTRA OF THIN ORGANIC FILMS ENHANCED BY PLASMON SURFACE-POLARITONS ON HOLOGRAPHIC METAL GRATINGS. Journal of Chemical Physics. 1980, 72(9): 5187-5191.
    [19] Kirtley, J., T. N. Theis, and J. C. Tsang, LIGHT-EMISSION FROM TUNNEL-JUNCTIONS ON GRATINGS. Physical Review B. 1981, 24(10): 5650-5663.
    [20] Knoll, W., et al., SURFACE-PLASMON ENHANCED RAMAN-SPECTRA OF MONOLAYER ASSEMBLIES. Journal of Chemical Physics. 1982, 77(5): 2254-2259.
    [21] Kretschmann, E., The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Optics Communications. 1972, 5(5): 331-336.
    [22] Haes, A.J., et al., A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease. Nano Letters. 2004, 4(6): 1029-1034.
    [23] Haes, A. J. and R. P. Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society. 2002, 124(35): 10596-10604.
    [24] Hutter, E. and J. H. Fendler, Exploitation of localized surface plasmon resonance. Advanced Materials. 2004, 16(19): 1685-1706.
    [25] Jensen, T.R., et al., Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. Journal of Physical Chemistry B. 2000, 104(45): 10549-10556.
    [26] Malinsky, M. D., et al., Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society. 2001, 123(7): 1471-1482.
    [27] Willets, K. A. and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry. 2007, 58: 267-297.
    [28] Zhao, J., et al., Localized surface plasmon resonance biosensors. Nanomedicine. 2006, 1(2): 219-228.
    [29] Crozier, K. B., et al., Optical antennas: Resonators for local field enhancement. Journal of Applied Physics. 2003, 94(7): 4632-4642.
    [30] Hao, E. and G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics. 2004, 120(1): 357-366.
    [31] Jackson, J. B. , et al. , Controlling the surface enhanced Raman effect via the nanoshell geometry. Applied Physics Letters. 2003, 82(2): 257-259.
    [32]Kall,M.,H.X.Xu,and P.Johansson,Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy.Journal of Raman Spectroscopy.2005,36(6-7):510-514.
    [33]Lu,Y.,et al.,Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect.Nano Letters.2005,5(1):119-124.
    [34]Zou,S.L.and G.C.Schatz,Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields.Chemical Physics Letters.2005,403(1-3):62-67.
    [35]Maier,S.A.and H.A.Atwater,P]asmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures.Journal of Applied Physics.2005,98(1).
    [36]Maier,S.A.,et al.,Plasmonics-A route to nanoscale optical devices.Advanced Materials.2001,13(19):1501-+.
    [37]Ozbay,E.,Plasmonics:Merging photonics and electronics at nanoscale dimensions.Science.2006,311(5758):189-193.
    [38]Zia,R.,et al.,Plasmonics:the next chip-scale technology.Materials Today.2006,9(7-8):20-27.
    [39]Pelton,M.,J.iizpurua,and G.Bryant,Metal-nanoparticle plasmonics.Laser &Photonics Reviews.2008,2(3):136-159.
    [40]Evlyukhin,A.B.andS.I.Bozhevolnyi,Surfaceplasmon.polariton scattering by small ellipsoid particles.Surface Science.2005,590(2-3):173-180.
    [41]Felidj,N.,et al.,Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays.Physical Review B.2002,66(24).
    [42]Wang,H.,et al.,Nanorice:A hybrid plasmonic nanostructure.Nano Letters.2006,6(4):827-832.
    [43]Brioude,A.and M.P.Pileni,Silver nanodisks:Optical properties study using the discrete dipoleapproximationmethod.Journal of Physical Chemistry B.2005,109(49):23371-23377.
    [44]Langhammer,C.,et al.,Plasmonic properties of supported Pt and Pd nanostructures.Nano Letters.2006,6(4):833-838.
    [45]Maillard,M.,P.R.Huang,and L.Brus,Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed[Ag+].Nano Letters.2003,3(11):1611-1615.
    [46]Christ,A.,et al.,Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures.Journal of Microscopy-Oxford.2008,229(2):344-353.
    [47] Leveque, G. and O. J. F. Martin, Tunable composite nanoparticle for plasmonics. Optics Letters. 2006, 31(18): 2750-2752.
    [48] McLellan, J. M., et al. , The SERS activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization. Nano Letters. 2007, 7(4): 1013-1017.
    [49] Haes, A. J., et al., Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. Journal of Physical Chemistry B. 2004, 108(22): 6961-6968.
    [50] Suzuki, D. and H. Kawaguchi, Janus particles with a functional gold surface for control of surface plasmon resonance. Colloid and Polymer Science. 2006, 284(12): 1471-1476.
    [51] Kottmann, J. P. and O. J. F. Martin, Retardation-induced plasmon resonances in coupled nanoparticles. Optics Letters. 2001, 26(14): 1096-1098.
    [52] Olk, P., et al., Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Letters. 2008, 8(4): 1174-1178.
    [53] Sweatlock, L. A., et al. , Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Physical Review B. 2005, 71(23).
    [54] Xiao, J. J., J. P. Huang, and K. W. Yu, Optical response of strongly coupled metal nanoparticles in dimer arrays. Physical Review B. 2005, 71(4).
    [55] Zelenina, A. S., R. Quidant, and M. Nieto-Vesperinas, Enhanced optical forces between coupled resonant metal nanoparticles. Optics Letters. 2007, 32(9): 1156-1158.
    [56] Ishifuji, M., M. Mitsuishi, and T. Miyashita, Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array. Applied Physics Letters. 2006, 89(1).
    [57] Miao, X. Y. and L. Y. Lin, Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Optics Letters. 2007, 32(3): 295-297.
    
    [58] schultz, s., P NATL ACAD SCI USA. 2000, 97: 966.
    [59] Aizpurua, J., et al., Optical properties of gold nanorings. Physical Review Letters. 2003, 90(5): 4.
    [60] Hao, F., et al., Plasmon resonances of a gold nanostar. Nano Letters. 2007, 7(3): 729-732.
    [61] Barrelet, C. J., A. B. Greytak, and C. M. Lieber, Nanowire photonic circuit elements. Nano Letters. 2004, 4(10): 1981-1985.
    [62] Tong, L. M., et al., Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Letters. 2005, 5(2): 259-262.
    [63] Tong, L. M., et al. , Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature. 2003, 426(6968): 816-819.
    [64] Rakich, P. T., et al. , Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2-2.0 mu m supercontinuum. Optics Express. 2005, 13(3): 821-825.
    [65] Sanders, A. W. , et al., Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters. 2006, 6(8): 1822-1826.
    [66] Knight, M. W., et al., Nanoparticle-mediated coupling of light into a nanowire. Nano Letters. 2007, 7(8): 2346-2350.
    [67] Loo, C., et al., Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment. 2004, 3(1): 33-40.
    [68] Loo, C. , et al., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters. 2005, 5(4): 709-711.
    [69] Fortina, P., et al. , Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends in Biotechnology. 2007, 25(4): 145-152.
    [70] Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews. 1998, 27(4): 241-250.
    [71] Tian, Z. Q. , B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. Journal of Physical Chemistry B. 2002, 106(37): 9463-9483.
    [72] Constantino, C. J. L., et al., Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers. Analytical Chemistry. 2001, 73(15): 3674-3678.
    [73] Corni, S. and J. Tomasi, Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study. Journal of Chemical Physics. 2002, 116(3): 1156-1164.
    [74] Kneipp, K., et al. , Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Applied Spectroscopy. 1998, 52(2): 175-178.
    [75] Kneipp, K., et al., Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Physical Review E. 1998, 57(6): R6281-R6284.
    [76] Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters. 1997, 78(9): 1667-1670.
    [77] Otto, A. , Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Physica Status Solidi a-Applied Research. 2001, 188(4): 1455-1470.
    [78] Xu, H. X., et al., Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E. 2000, 62(3): 4318-4324.
    [79] Fleischm.M, P. J. Hendra, and McQuilla. Aj, RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chemical Physics Letters. 1974, 26(2): 163-166.
    [80] Jeanmaire, D. L. and R. P. Vanduyne, SURFACE RAMAN SPECTROELECTROCHEMISTRY . 1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE. Journal of Electroanalytical Chemistry. 1977, 84(1): 1-20.
    [81] Albrecht, M. G. and J. A. Creighton, ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE. Journal of the American Chemical Society. 1977, 99(15): 5215-5217.
    [82] Michaels, A.M., M. Nirmal, and L. E. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society. 1999, 121(43): 9932-9939.
    [83] Vanduyne, R. P., J. C. Hulteen, and D. A. Treichel, ATOMIC-FORCE MICROSCOPY AND SURFACE-ENHANCED RAMAN-SPECTROSCOPY . 1. AG ISLAND FILMS AND AG FILM OVER POLYMER NANOSPHERE SURFACES SUPPORTED ON GLASS. Journal of Chemical Physics. 1993, 99(3): 2101-2115.
    [84] Xu, H. X., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters. 1999, 83(21): 4357-4360.
    [85] Doering, W. E. and S.M. Nie, Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. Journal of Physical Chemistry B. 2002, 106(2): 311-317.
    [86] Campion, A., et al., ON THE MECHANISM OF CHEMICAL ENHANCEMENT IN SURFACE-ENHANCED RAMAN-SCATTERING. Journal of the American Chemical Society. 1995, 117(47): 11807-11808.
    [87] Lecomte, S., P. Matejka, and M. H. Baron, Correlation between surface enhanced Raman scattering and absorbance changes in silver colloids. Evidence for the chemical enhancement mechanism. Langmuir. 1998, 14(16): 4373-4377.
    [88] Arango, A. C., et al., Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Advanced Materials. 2000, 12(22): 1689-+.
    [89] Shenhar, R., T. B. Norsten, and V. M. Rotello, Polymer-mediated nanoparticle assembly: Structural control and applications. Advanced Materials. 2005, 17(6): 657-669.
    [90] Trindade, T., P. O'Brien, and N. L. Pickett, Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials. 2001, 13(11): 3843-3858.
    [91] Birk, H. , M. J. M. Dejong, and C. Schonenberger, SHOT-NOISE SUPPRESSION IN THE SINGLE-ELECTRON TUNNELING REGIME. Physical Review Letters. 1995, 75(8) : 1610-1613.
    [92] Feldheim, D. L., et al. , Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures. Journal of the American Chemical Society. 1996, 118(32): 7640-7641.
    [93] Simon, U. , Charge transport in nanoparticle arrangements. Advanced Materials. 1998, 10(17): 1487-1492.
    [94] Konstantatos, G. , et al., Ultrasensitive solution-cast quantum dot photodetectors. Nature. 2006, 442(7099): 180-183.
    [95] Landes, C. , et al., Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine. Journal of Physical Chemistry B. 2001, 105(15): 2981-2986.
    [96] Wang, W. Z., I. Germanenko, and M.S. El-Shall, Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS. Chemistry of Materials. 2002, 14(7): 3028-3033.
    [97] Zhou, H. S., et al. , CONTROLLED SYNTHESIS AND QUANTUM-SIZE EFFECT IN GOLD-COATED NANOPARTICLES. Physical Review B. 1994, 50(16): 12052-12056.
    [98] Fendler, J.H., Self-assembled nanostructured materials. Chemistry of Materials. 1996, 8(8): 1616-1624.
    [99] Shipway, A. N. , E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem. 2000, 1(1): 18-52.
    [100] West, J. L. and N. J. Halas, Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering. 2003, 5: 285-292.
    [101] Biswas, P. and C. Y. Wu, 2005 Critical Review: Nanoparticles and the environment. Journal of the Air & Waste Management Association. 2005, 55(6): 708-746.
    [102] Kulmala, M. , et al. , Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science. 2004, 35(2): 143-176.
    [103] Swihart, M. T., Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science. 2003, 8(1): 127-133.
    [104] Magnusson, M. H., et al., Size-selected gold nanoparticles by aerosol technology. Nanostructured Materials. 1999, 12(1-4): 45-48.
    [105] Fissan, H., et al. , Experimental comparison of four differential mobility analyzers for nanometer aerosol measurements. Aerosol Science and Technology. 1996, 24(1): 1-13.
    [106] Hummes, D. , et al., Experimental determination of the transfer function of a differential mobility analyzer (DMA) in the nanometer size range. Particle & Particle Systems Characterization. 1996, 13(5): 327-332.
    [107] Barrelet, C. J., et al., Hybrid single-nanowire photonic crystal and microresonator structures. Nano Letters. 2006, 6(1): 11-15.
    [108] Martensson, T. , et al., Nanowire arrays defined by nanoimprint lithography. Nano Letters. 2004, 4(4): 699-702.
    [109] McAlpine, M. C., et al., High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Letters. 2003, 3(11): 1531-1535.
    [110] Zhong, Z. H. , et al. , Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Letters. 2003, 3(3): 343-346.
    [111] Bjork, M. T., et al., Nanowire resonant tunneling diodes. Applied Physics Letters. 2002, 81 (23) : 4458-4460.
    [112] Thelander, C., et al., Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Communications. 2004, 131(9-10): 573-579.
    [113] Zervos, M. and L. F. Feiner, Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs(111) nanowires. Journal of Applied Physics. 2004, 95(1): 281-291.
    [114] Cui, Y., et al., High performance silicon nanowire field effect transistors. Nano Letters. 2003, 3(2): 149-152.
    [115] Fan, Z. Y. , et al. , ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters. 2004, 85(24): 5923-5925.
    [116] Heo, Y. W. , et al., ZnO nanowire growth and devices. Materials Science & Engineering R-Reports. 2004, 47(1-2): 1-47.
    [117] Park, H., et al., Fabrication of metallic electrodes with nanometer separation by electromigration. Applied Physics Letters. 1999, 75(2): 301-303.
    [118] Djalali, R., Y. Chen, and H. Matsui, Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society. 2002, 124(46): 13660-13661.
    [119] Kolmakov, A. and M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research. 2004, 34: 151-180.
    [120] Liu, L. and J. F. Song, Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes. Analytical Biochemistry. 2006, 354(1): 22-27.
    [121] McAlpine, M. C., et al., Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Materials. 2007, 6(5): 379-384.
    [122] Zheng, G. F., et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology. 2005, 23(10): 1294-1301.
    [123] Zhong, Z. H., et al., Nanowire crossbar arrays as address decoders for integrated nanosystems. Science. 2003, 302(5649): 1377-1379.
    [124] Cheng, G. S. and M. Moskovits, A highly regular two-dimensional array of an quantum dots deposited in a periodically nanoporous GaAs epitaxial layer. Advanced Materials. 2002, 14(21): 1567-+.
    [125] Wang, X., et al., Fabrication of GaN nanowire arrays by confined epitaxy. Applied Physics Letters. 2006, 89(23).
    [126] Cao, B. Q. , et al. , A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology. 2005, 16(11): 2567-2574.
    [127] Kim, B.H., et al. , Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly (3,4-ethylenedioxythiophene) nanotubes and nanowires. Synthetic Metals. 2005, 150(3): 279-284.
    [128] Li, S. Y. , et al. , Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics. 2004, 95(7): 3711-3716.
    [129] Akiyama, T., K. Nakamura, and T. Ito, Structural stability and electronic structures of InP nanowires: Role of surface dangling bonds on nanowire facets. Physical Review B. 2006, 73(23).
    [130] Bao, J. M., et al. , Optical properties of rotationally twinned InP nanowire heterostructures. Nano Letters. 2008, 8(3): 836-841.
    [131] Jiang, X.C., et al., InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Letters. 2007, 7: 3214-3218.
    [132] Mikkelsen, A., et al., The influence of lysine on InP(001) surface ordering and nanowire growth. Nanotechnology. 2005, 16(10): 2354-2359.
    [133] Mohan, P. , J. Motohisa, and T. Fukui, Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology. 2005, 16(12): 2903-2907.
    [134] Chen, C. C., et al. , Catalytic growth and characterization of gallium nitride nanowires. Journal of the American Chemical Society. 2001, 123(12): 2791-2798.
    [135] Hannon, J. B., et al., The influence of the surface migration of gold on the growth of silicon nanowires. Nature. 2006, 440(7080): 69-71.
    [136] Persson, A.I., et al., Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Materials. 2004, 3(10): 677-681.
    [137] Stach, E. A., et al. , Watching GaN nanowires grow. Nano Letters. 2003, 3(6): 867-869.
    [138] Westwater, J., et al., Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. Journal of Vacuum Science & Technology B. 1997, 15(3): 554-557.
    [139] Sato, T., et al., SITE-CONTROLLED GROWTH OF NANOWHISKERS. Applied Physics Letters. 1995, 66(2): 159-161.
    [140] Wu, Z.H., et al., Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Applied Physics Letters. 2002, 81(27): 5177-5179.
    [141] Ohlsson, B. J., et al. , Size-, shape-, and position-controlled GaAs nano-whiskers. Applied Physics Letters. 2001, 79(20): 3335-3337.
    [142] Thelander, C., et al., Single-electron transistors in heterostructure nanowires. Applied Physics Letters. 2003, 83(10): 2052-2054.
    [143] Bjork, M. T., et al. , One-dimensional steeplechase for electrons realized. Nano Letters. 2002, 2(2): 87-89.
    [144] Choi, W.B., et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters. 1999, 75(20): 3129-3131.
    [145] Martensson, T., et al., Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth. Nanotechnology. 2003, 14(12): 1255-1258.
    [146] Melechko, A. V., et al., Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres. Nanotechnology. 2003, 14(9) : 1029-1035.
    [147] Aizpurua, J., et al., Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B. 2005, 71(23): 13.
    [148] Oldenburg, S. J. , et al., Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. Journal of Chemical Physics. 1999, 111(10): 4729-4735.
    [149] Liu, A. Q., et al., Label-free detection with micro optical fluidic systems (MOFS): a review. Analytical and Bioanalytical Chemistry. 2008, 391(7): 2443-2452.
    [150] Lucotti, A. and G. Zerbi, Fiber-optic SERS sensor with optimized geometry. Sensors and Actuators B-Chemical. 2007, 121(2): 356-364.
    [151] Vo-Dinh, T., Surface-enhanced Raman spectroscopy using metallic nanostructures. Trac-Trends in Analytical Chemistry. 1998, 17(8-9): 557-582.
    [152] Yan, F. and T. Vo-Dinh, Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensors and Actuators B-Chemical. 2007, 121(1): 61-66.
    [153] Anema, J. R. and A. G. Brolo, The use of polarization-dependent SERS from scratched gold films to selectively eliminate solution-phase interference. Plasmonics. 2007, 2(3): 157-162.
    [154] Brolo, A. G., E. Arctander, and C. J. Addison, Strong polarized enhanced Raman scattering via optical tunneling through random parallel nanostructures in Au thin films. Journal of Physical Chemistry B. 2005, 109(1): 401-405.
    [155] Etchegoin, P. G., C. Galloway, and E. C. Le Ru, Polarization-dependent effects in surface-enhanced Raman scattering (SERS). Physical Chemistry Chemical Physics. 2006, 8(22): 2624-2628.
    [156] Goudonnet, J. P., et al. , ANGULAR AND POLARIZATION DEPENDENCE OF SURFACE-ENHANCED RAMAN-SCATTERING IN ATTENUATED-TOTAL-REFLECTION GEOMETRY. Physical Review B. 1987, 36(2): 917-921.
    [157] Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996, 12(3): 788-800.
    [158] Tao, A. R. and P.D. Yang, Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires. Journal of Physical Chemistry B. 2005, 109(33): 15687-15690.
    [159] Svedberg, F., et al. , Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Letters. 2006, 6(12): 2639-2641.
    [160] Zhao, K., et al. , One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering. Journal of Chemical Physics. 2006, 125(8): 6.
    [161] Tong, L. M., et al., Single gold-nanoparticle-enhanced Raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. Journal of Physical Chemistry C. 2008, 112(18): 7119-7123.
    [162] Anderson, M.S., Locally enhanced Raman spectroscopy with an atomic force microscope. Applied Physics Letters. 2000, 76(21): 3130-3132.
    [163] Anderson, M.S. and W. T. Pike, A Raman-atomic force microscope for apertureless-near-field spectroscopy and optical trapping. Review of Scientific Instruments. 2002, 73(3): 1198-1203.
    [164] Emory, S. R. and S. M. Nie, Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles. Analytical Chemistry. 1997, 69(14): 2631-2635.
    [165] Hamann, H. F. , A. Gallagher, and D. J. Nesbitt, Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution. Applied Physics Letters. 1998, 73(11): 1469-1471.
    [166] Hartschuh, A., et al., Tip-enhanced optical spectroscopy. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences. 2004, 362(1817): 807-819.
    [167] Hayazawa, N. , et al., Near-field Raman scattering enhanced by a metallized tip. Chemical Physics Letters. 2001, 335(5-6): 369-374.
    [168] Ichimura, T., et al., Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Physical Review Letters. 2004, 92(22).
    [169] Keilmann, F. and R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences. 2004, 362(1817): 787-805.
    [170] Krug, J. T., E. J. Sanchez, and X. S. Xie, Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. Journal of Chemical Physics. 2002, 116(24): 10895-10901.
    [171] Mehtani, D., et al., Nano-Raman spectroscopy with side-illumination optics. Journal of Raman Spectroscopy. 2005, 36(11): 1068-1075.
    [172] Nieman, L. T., G. M. Krampert, and R. E. Martinez, An apertureless near-field scanning optical microscope and its application to surface-enhanced Raman spectroscopy and multiphoton fluorescence imaging. Review of Scientific Instruments. 2001, 72(3): 1691-1699.
    [173] Pettinger, B., et al., Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters. 2004, 92(9).
    [174] Pettinger, B., et al., Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields. Journal of Raman Spectroscopy. 2005, 36(6-7): 541-550.
    [175] Ren, B. , et al., Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angewandte Chemie-International Edition. 2005, 44(1): 139-142.
    [176] Richards, D., et al., Tip-enhanced Raman microscopy: practicalities and limitations. Journal of Raman Spectroscopy. 2003, 34(9): 663-667.
    [177] Stockle, R. M. , et al., Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters. 2000, 318(1-3): 131-136.
    [178] Watanabe, H., et al., Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Physical Review B. 2004, 69(15).
    [179] Zeisel, D., et al., Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chemical Physics Letters. 1998, 283(5-6): 381-385.
    [180] Zhang, W. H., et al., Single molecule tip-enhanced Raman spectroscopy with silver tips. Journal of Physical Chemistry C. 2007, 111(4): 1733-1738.
    [181] Hayazawa, N., et al., Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. Journal of Chemical Physics. 2002, 117(3): 1296-1301.
    [182] Ichimura, T., et al., Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Applied Physics Letters. 2004, 84(10): 1768-1770.
    [183] Binnig, G. and H. Rohrer, SCANNING TUNNELING MICROSCOPY. Helvetica Physica Acta. 1982, 55(6): 726-735.
    [184] Binnig, G. and H. Rohrer, SCANNING TUNNELING MICROSCOPY. Ibm Journal of Research and Development. 1986, 30(4): 355-369.
    [185] Binnig, G., et al., 7X7 RECONSTRUCTION ON SI(111) RESOLVED IN REAL SPACE. Physical Review Letters. 1983, 50(2): 120-123.
    [186] Binnig, G., et al., TUNNELING THROUGH A CONTROLLABLE VACUUM GAP. Applied Physics Letters. 1982, 40(2): 178-180.
    [187] Pettinger, B., et al., Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces. Single Molecules. 2002, 3(5-6): 285-294.
    [188] Wang, X., et al. , Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Applied Physics Letters. 2007, 91(10).
    [189] Steidtner, J. and B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Physical Review Letters. 2008, 100(23).
    [190] Sugimoto, Y., et al., Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007, 446(7131): 64-67.
    [191] Dickmann, K. , J. Jersch, and F. Demming, Focusing of laser radiation in the near-field of a tip (FOLANT) for applications in nanostructuring. Surface and Interface Analysis. 1997, 25(7-8): 500-504.
    [192] Dunn, R. C., Near-field scanning optical microscopy. Chemical Reviews. 1999, 99(10): 2891-+.
    [193] Durig, U. , D. W. Pohl, and F. Rohner, NEAR-FIELD OPTICAL-SCANNING MICROSCOPY. Journal of Applied Physics. 1986, 59(10): 3318-3327.
    [194] Hecht, B. , et al. , Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. Journal of Chemical Physics. 2000, 112(18): 7761-7774.
    [195] Kalkbrenner, T., et al. , A single gold particle as a probe for apertureless scanning near-field optical microscopy. Journal of Microscopy-Oxford. 2001, 202: 72-76.
    [196] Aigouy, L., et al. , Polarization effects in apertureless scanning near-field optical microscopy: an experimental study. Optics Letters. 1999, 24(4): 187-189.
    [197] Bachelot, R., P. Gleyzes, and A. C. Boccara, Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip. Applied Optics. 1997, 36(10): 2160-2170.
    [198] Baykul, M. C., Preparation of sharp gold tips for STM by using electrochemical etching method. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2000, 74(1-3): 229-233.
    [199] Guckenberger, R., et al., Scanning Tunneling Microscopy II. 1995, Berlin: Springer.
    [200] Mamin, H. J., et al., GOLD DEPOSITION FROM A SCANNING TUNNELING MICROSCOPE TIP. Journal of Vacuum Science & Technology B. 1991, 9(2): 1398-1402.
    [201] Vasile, M. J., et al., SCANNING PROBE TIP GEOMETRY OPTIMIZED FOR METROLOGY BY FOCUSED ION-BEAM ION MILLING. Journal of Vacuum Science & Technology B. 1991, 9(6): 3569-3572.
    [202] Becker, M., et al., The SERS and TERS effects obtained by gold droplets on top of Si nanowires. Nano Letters. 2007, 7(1): 75-80.
    [203] Dickmann, K., F. Demming, and J. Jersch, New etching procedure for silver scanning tunneling microscopy tips. Review of Scientific Instruments. 1996, 67(3): 845-846.
    [204] Ito, T., P. Buhlmann, and Y. Umezawa, Scanning tunneling microscopy using chemically modified tips. Analytical Chemistry. 1998, 70(2): 255-259.
    [205] Ren, B., G. Picardi, and B. Pettinger, Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Review of Scientific Instruments. 2004, 75(4): 837-841.
    [206] Hayazawa, N. , et al. , Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chemical Physics Letters. 2003, 376(1-2): 174-180.
    [207] Domke, K. F., D. Zhang, and B. Pettinger, Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). Journal of the American Chemical Society. 2006, 128(45): 14721-14727.
    [208] Neacsu, C.C., et al., Scanning-probe Raman spectroscopy with single-molecule sensitivity. Physical Review B. 2006, 73(19): 4.
    [209] Bjerneld, E.J., et al., Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B. 2002, 106(6): 1213-1218.
    [210] Jiang, J., et al., Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Journal of Physical Chemistry B. 2003, 107(37): 9964-9972.
    [211] Kneipp, K., et al., Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews. 1999, 99(10): 2957-+.
    [212] Nie, S. M. and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997, 275(5303): 1102-1106.
    [213] Dou, R. F., et al., Self-assembled monolayers of aromatic thiols stabilized by parallel-displaced pi-pi stacking interactions. Langmuir. 2006, 22(7): 3049-3056.
    [214] Bigioni, T. P., R. L. Whetten, and 0. Dag, Near-infrared luminescence from small gold nanocrystals. Journal of Physical Chemistry B. 2000, 104(30): 6983-6986.
    [215]Mooradia.A,PHOTOLUMINESCENCE OF METALS.Physical Review Letters.1969,22(5):185-&.
    [216]Liu,B.Z.and J.Nogami,Ascanning tunneling microscopy study of dysprosium silicide nanowire growth on Si(001).Journal of Applied Physics.2003,93(1):593-599.
    [217]Ono,T.,H.Saitoh,and M.Esashi,Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy.Applied Physics Letters.1997,70(14):1852-1854.
    [218]Ouattara,L.,et al.,GaAs/AIGaAs nanowire heterostructures studied by scanning tunneling microscopy.Nano Letters.2007,7(9):2859-2864.
    [219]Ulman,A.,Formation and structure of self-assembled monolayers.Chemical Reviews.1996,96(4):1533-1554.
    [220]Batz,V.,et al.,Electrochemistry and structure of the isomers of aminothiophenol adsorbed on gold.Journal of Electroanalytical Chemistry.2000,491(1-2):55-68.
    [221]Delamarche,E.andB.Michel,Structure and stability ofself-assembledmonolayers.Thin Solid Films.1996,273(1-2):54-60.
    [222]Esplandiu,M.J.,et al.,Electrochemical STM investigation of 1,8-octanedithiol monolayers on Au(111).Experimental and theoretical study.Surface Science.2006,600(1):155-172.
    [223]Min,B.K.,et al.,Reaction of iu(111) with sulfur and oxygen:Scanning tunneling microscopic study.Topics in Catalysis.2005,36(1-4):77-90.
    [224]Sondaghuethorst,J.A.M.,C.Schonenberger,and L.G.J.Fokkink,FORMATION OF HOLES IN ALKANETHIOL MONOLAYERS ON GOLD.Journal of Physical Chemistry.1994,98(27):6826-6834.
    [225]Losic,D.,J.G.Shapter,and J.J.Gooding,Influence of surface topography on alkanethiol SAMs assembled from solution and by microcontact printing.Langmuir.2001,17(11):3307-3316.
    [226]Delamarche,E.,et al.,THERMAL-STABILITY OF SELF-ASSEMBLED MONOLAYERS.Langmuir.1994,10(11):4103-4108.