牛磺酸对大鼠视网膜神经节细胞谷氨酸兴奋毒性的防护及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酸(glutamate,Glu)是中枢神经系统主要的神经递质,它介导兴奋性突触传递。但突触间过量的Glu会引起神经元损伤甚至死亡,称为Glu的兴奋毒性。大量实验证据显示,Glu的兴奋毒性在中枢神经系统缺血、创伤及神经退行性疾病的神经元死亡中起着重要作用。现已明确,Glu的兴奋毒性是Glu在突触间的过量释放及对突触后神经元的进一步激活。其作用机制为:过量释放的Glu激活突触后膜上大量的谷氨酸受体,引起相应的离子通道开放,影响Na~+、Cl~-、Ca~(2+)等的跨膜流动,主要导致细胞内Ca~(2+)浓度升高(称为细胞内Ca~(2+)超载),过量的Ca~(2+)激活细胞内Ca~(2+)依赖的信号级联途径,最终导致神经细胞死亡。其中,细胞内Ca~(2+)超载是Glu兴奋毒性引起神经细胞死亡的中心环节。Glu增加细胞内Ca~(2+)主要是通过以下几种机制:①激活可透过Ca~(2+)的离子型NMDA受体通道:②激活离子型AMPA受体引起膜去极化从而开放电压依赖的Ca~(2+)通道;③激活代谢型谷氨酸受体导致其耦联的磷酸肌醇水解,后者使Ca~(2+)从细胞内钙池释放。
     Glu亦是视网膜中最主要的兴奋性神经递质,感光细胞和双极细胞均以Glu为递质,视网膜神经节细胞(Retinal ganglion ceils,RGCs)接受双极细胞的Glu能突触传递。很早就观察到兴奋性氨基酸对视网膜内层细胞的毒性作用,其中RGCs对Glu的兴奋毒性最为敏感。目前认为Glu兴奋毒性是视网膜缺血—再灌注损伤、缺氧、青光眼、视网膜变性性疾病等的RGCs死亡的主要机制之一。研究表明:RGCs及视网膜其它内层神经元的兴奋毒性损伤主要是由对NMDA受体的过度刺激引起的。AMPA及KA受体也参与Glu对RGCs的损伤,Glu能激活培养RGCs的AMPA/KA受体,引起细胞内Ca~(2+)浓度增加,降低RGCs存活。Glu介导的神经细胞死亡中,既有急性的细胞坏死,又有迟发性的细胞凋亡存在。大量研究表明,预防性阻断Glu兴奋毒性可以保护RGCs,减少视网膜损伤和RGCs死亡。目前预防Glu兴奋毒性保护RGCs的研究主要集中于两方面:(1)拮抗NMDA受体、AMPA及KA受体;(2)降低细胞内Ca~(2+)超载,如Ca~(2+)通道阻断剂。但由于NMDA受体在体内同时介导其它正常的生理作用,将其受体拮抗剂用于人体会对中枢神经系统产生副作用,使其临床应用受到限制。对
    
    第三军医大学博士学位论文
    Ca2+通道阻断剂的临床应用研究也刚刚起步。
     牛磺酸(t aurine)是一种日丙氨酸,它是中枢神经系统最丰富的游离氨基酸之一,在
    许多哺乳动物的大脑中其浓度甚至超过了Glu。牛磺酸在中枢神经系统可作为渗透压
    调节剂和抑制性神经调质。早就发现,牛磺酸能减轻癫痛病的症状,近来发现,牛磺
    酸还具有神经保护作用,这可能与其对抗Glu及其类似物诱发的兴奋毒作用有关。目
    前公认,牛磺酸是一个调节及降低神经细胞内ca2+水平的强有力因子。有研究提示,
    牛磺酸的神经保护机制与其防止或降低Glu诱导的胞内CaZ十水平的升高有关。牛磺酸
    在视网膜也有广泛的生理功能,它是视网膜发育所必需的营养因子,具有调节渗透压、
    抗氧化、调节ca2+、调节蛋白磷酸化等作用,但目前未见牛磺酸用于防护视网膜尤其
    是RGCs的Glu兴奋毒性的研究。
     基于以上分析,结合国内外研究进展,本课题通过体内和体外研究观察牛磺酸对
    Glu引起的RGCs兴奋毒性的防护作用。体内研究通过在大鼠玻璃体内注射Glu造成
    视网膜Glu兴奋毒性的动物模型,通过视网膜全铺片RGCs计数、视网膜电图
    (E lectroretinograms,ERG)、视网膜组织结构及超微结构观察等方法观察牛磺酸对大鼠
    视网膜Glu兴奋毒性的体内防护作用;并运用原位TUNEL检测、免疫组化、免疫印
    迹、RT一PCR等技术,进一步观察牛磺酸对Glu所致的视网膜RGCs凋亡、视网膜Glu、
    Thy一1、神经丝蛋白轻链(neurofilaments light ehain,NF一L)、神经胶质原纤维酸性蛋白
    (olial fibrillary aeid protein,G队P)蛋白及mRN^的表达水平改变的影响。体外研究采
    用两种细胞模型:原代培养的大鼠视网膜神经元及原代纯化培养的大鼠RGCs,分别
    以终浓度为1幻以们比oUL的Glu作用于原代培养视网膜神经细胞10而n、25 p moUL Glu
    作用于RGCs3天制备Glu兴奋毒性模型。通过台盼蓝拒染实验、钙黄绿素一AM染
    色存活细胞、TUNEL检测、Thy一l蛋白表达检测等技术观察牛磺酸对培养的视网膜神
    经细胞、纯化培养的RGcs Glu兴奋毒性的防护效应;利用激光共聚焦ca2+成像技术,
    观察牛磺酸对Glu引起的培养Rocs细胞内ca2+([ ca2+li)超载的影响,并通过对Glu及
    牛磺酸影响RGcs[C a2+li的动态观察,从牛磺酸调节Glu兴奋毒性所致细胞内ca2+失
    衡的角度,探讨牛磺酸防护大鼠RGCs Glu兴奋毒性的机制。
     本研究主要实验结果如下:
     1.视网膜全铺片计数大鼠视网膜节细胞层(Retinal ganglion eells,GCL)细胞,发
    现:正常的视网膜,GcL的平均细胞密度是6426个/毫米2,其中36%是RGcs,64%
    是非RGCs细胞。玻璃体内注射Glu使GCL的细胞数显著减少,以RGCs的减少为主
    (减少75%),腹腔注射高剂量(25m叭g体重)牛磺酸使RGCs丢失显著减少,而低剂量
    
    第三军医人学博士学位论文
    (5m岁kg)牛磺酸的作用不明显。玻璃体注射Glu使视网膜内网状层(Inner plexiform
As the major neurotransmitter in mammalian central nervous system (CNS), Glutamate (Glu) contributes to excitatory neurotransmission in many central synapses. However, extracellular glutamate in excess can lead to neuronal injury or death, this so-called glutamate-induced excitotoxicity has been implicated as an important mechanism underlying a variety of brain injuries such as ischemia, trauma,and neurodegenerative diseases of CNS. The key reason for this excitotoxicity is because glutamate can increase the concentration of intracellular Ca2+ ([Ca2+];) in neurons, and thus finally induce neuronal death by activating proteases, phospholipases, and endonucleases. Several mechanisms explain how glutamate increases intracellular Ca2+ level. The activation of Ca2+-permeable N-methyl-D-aspartate (NMDA) receptors, opening of voltage-dependent Ca2+ channels following membrane depolarization induced by activation of 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and/or activation of metabotropic
    glutamate receptors(mGluRs) linked to phosphoinositide hydrolysis, which releases Ca2+ from intracellular stores are leading factors.
    Glutamate is the principal excitatory neurotransmitter in retina as well as in CNS, and retinal ganglion cells (RGCs) are primarily glutamatergic. Glutamate-induced excitotoxicity has been implicated as an important cause of death of RGCs in retinal ischemia, glaucoma, and degenerative retinopathy. Over-stimulating NMDA receptors contributes to the death of glutamate-induced inner retinal neurons include RGCs. Some researches indicate that low concentration glutamate can activate Ca2+-permeable AMPA-KA receptors in cultured RGCs, leading to increases in [Ca2+], and decreased survival, suggesting that the activation of AMPA-KA receptors may also play a role in neurotoxicity in retinal neurons. Accumulating evidence suggests that blocking glutamate excitotoxicity can protect RGCs and reduce RGCs death, which is the theoretical foundation of the current two methods that are provided to protect RGCs from glutamate-induced excitotoxicity: (1) Glutamate -receptor antagonists. However, since NMDA-receptor activitie
    s are essential for normal neuronal function, potential neuroprotective agents that block virtually all NMDA-receptor
    
    
    activity will have unacceptable clinical side effects. (2) Agents to reduce Ca2+ overload, such as Ca2+-channel blocker. It is just the beginning of these kinds of research.
    Taurine, another one of the most abundant free amino acid in CNS other than glutamate, is a 0 -amino acid. As a matter of fact, the concentration of taurine in the brain even exceeds that of glutamate in many mammals. Taurine is known to act as an osmoregulator and an inhibitory neuromodulator in CNS. It relieves epileptic seizures and serves as a neuroprotector, which may explain its protective effect against glutamate-induced excitotoxicity. There is a consensus that taurine is a powerful agent in regulating and reducing the intracellular calcium levels in neurons, it functions in retina as osmoregulatory agent, anti-oxidant, and Ca2* modulator. In short, taurine is an essential nutrient agent in retinal development, but the effects of taurine on glutamate-induced excitotoxicity in RGCs are still poorly understood.
    Based on the researches from both at home and abroad, the purpose of this study was to determine whether taurine has neuroprotective effects in experimental in vitro and in vivo models. During in vivo study, we used a rat model of retinal glutamate excitotoxicity induced by intravitreal injection of 40nmol glutamate. The retinal damage was evaluated by counting the number of cells in the ganglion cell layer (GCL), examining the a- and b-waves in the electroretinogram (ERG), Hematoxylin-eosin (HE) staining, and observing ultrastructure of retina. For the purpose of advanced research in the protective effects of taurine, situ TUNEL test, immunohistochemistry, western blotting, and RT-PCR methods were used to study the RGCs apoptosis, the expression of glutamate, Thy-1, Neuro
引文
1. Olney JW. Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol,1969,28(3): 455-474.
    2. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994, 330:613-622.
    3. Girkin CA. Strategies for neuroprotection. J Glaucoma, 2001,10: S78-S80.
    4. Kermer P, Klocker N, Bahr M. Modulation of metabotropic glutamate receptors fails to prevent the loss of adult rat retinal ganglion ceils following axotomy or N-methyl-D-aspartate lesion in vivo. Neurosci Lett,2001, 315(3): 117-20
    5. Kikuchi M., Kashii S, Honda Y, et al. Protective action of zinc against glutamate neurotoxicity in cultured retinal neurons. Invest Ophthalmol Vis Sci,1995, 36: 2048-2053.
    6. Otori Y, Wei JY, Barnstable CJ. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci, 1998, 39:972-981.
    7. Chidlow G, Osborne NN. Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res, 2003, 963(1-2): 298-306.
    8. Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol, 2002,1(6):383-386.
    9. Zhao p, Huang YL,Cheng JS. Taurine antagonizes calcium overload induced by glutamate or chemical hypoxia in culured rat hippocampal neurons. Neurosci Lett, 1999, 268(1):25-8.
    10. Foos TM, Wu JY. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res, 2002,27(1-2) :21-26
    11. Chen WQ, Jin H, Nuyen M. Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J neurosci Res, 2001,66(4):612-619
    12. Saransaari P, Oja SS. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus. Amino Acids, 2003,24(1-2): 213-221.
    13. Laabich A, Cooper NG.. Regulation of calcium/calmodulin-dependent protein kinase Ⅱ
    
    in the adult rat retina is mediated by ionotropic glutamate receptors.Exp Eye Res, 1999,68(6):703-713.
    14. Sun Q, Ooi VE, Chan SO. N-methyl-D-aspartate-induced excitotoxicity in adult rat retina is antagonized by single systemic injection of MK-801. Exp Brain Res, 2001, 138(1): 37-45.
    15. Lam TT, Ablen AS, Kwong JMK, et al. N-methyl-D-aspartate(NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci, 1999, 40:2391-2397.
    16. Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drags, 2000, 59(1): 33-78
    17. Fletcher EL, Hack I, Branstatter JH et al. Synaptic localization of NMDA receptor subunit in the rat retina. J Comp Neurol, 2000, 420:98-112.
    18. Moncaster JA, Walsh DT, Gentleman SM, et al. Ergothioneine treatment protects neurons against N-methyl-D-aspartate excitotoxicity in an in vivo rat retinal model. Neurosci Let, 2002,328(1),55-59.
    19. Idrissi EA, Harris C, Trenkner E. Taurine modulates glutamate-and growth factors-mediated signaling mechanisms. Adv Exp Med Biol, 1998, 442:385-396.
    20. Lima L, Matus P, Drujan B. Taurine-induced regeneration of goldfish retina in culture may involve a calcium-mediated mechanism. J Neurochem, 1993,60(6): 2153-2158.
    21. Moncaster JA, Walsh DT, Gentleman SM, et al. Ergothioneine treatment protects neurons against N-methyl-D-aspartate excitotoxicity in an in vivo rat retinal model. Neurosci Lett, 2002, 328(1): 55-59.
    22. Perry VH. Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. Neuroscience, 1981, 6:931-944.
    23. Larsen AK, Osborne NN. Involvement of adenosine in retinal ischemia. Studies on the rat. Invest Ophthalmol Vis Sci, 1996, 37:2603-2611.
    24. Adachi K, Kashii S, Masai H, et al. Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch Clin Exp Ophthalmol, 1998, 236:766-774.
    25. Hangai M, Yoshimura N, Hiroi K, et al. Role of nitric oxide during the initial phase of reperfusion after retinal ischemia in the rat. Ophthalmic Res, 1999, 31:16-23.
    26. Rothstein, JD. Excitotoxicity hypothesis. Neurology ,1996,47,S19-S25
    
    
    27. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis.Invest Ophthalmol Vis Sci,1995,36(5):774-786.
    28. Kerrigan LA, Zack DJ, Quigley HA, TUNEL-positive ganglion cells in human primary open-angle glaucoma.Arch Ophthalmol, 1997,115(8): 1031-1035.
    29. Kurokawa T, Katai N, Shibuki H, et al. BDNF diminishes caspase-2 but not c-Jun immunoreactivity of neurons in retinal ganglion cell layer after transient ischemia. Invest Ophthalmol Vis Sci,1999, 40:3006-3011.
    30. Villani L, Guarnieri T, Dell'Erba G. Apoptosis is induced by excitotoxicity in goldfish retina.J Hirnforsch, 1997,38(4):481-486.
    31. Mehmet RM, Bilgin C, Kemal O, et al. The effect of taurine treatment on oxidative stress in experimental liver fibrosis. Hepatology Res, In Press, 2004.
    32. Verzola D, Bertolotto MB, Villaggio B, et al. Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells. J Investig Med, 2002, 50:443-451.
    33. Alfieri RR, Cavazzoni A, Petronini PG, et al. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. J Physiol, 2002, 540:499-508.
    34. Wang JH, Redmond HP, Watson RW, et al. The beneficial effect of taurine on the prevention of human endothelial cell death. Shock, 1996, 6:331-338.
    35. Schaffer SW, Solodushko V, Kakhniashvili D. Beneficial effect of taurine depletion on osmotic sodium and calcium loading during chemical hypoxia. Am J Physiol Cell Physiol, 2002, 282:C1113-C1120.
    36. Tomoka Takatani, Kyoko Takahashi, Yoriko Uozumi. Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochemical and Biophysical Research Communications, 2004, 316:484-489.
    37. Barnstable CJ, Drager UC. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience, 1984, 11(4): 847-855.
    38. Nash MS, Osborne NN. Assessment of Thy-1 mRNA levels as an index of retinal ganglion cell damage. Invest Ophthalmol Vis Sci, 1999, 40(6): 1293-1298.
    39. Schlamp CL, Johnson EC, Li Y, et al. Changes in Thyl gene expression associated with
    
    damaged retinal ganglion cells. Mol Vis, 2001, 7:192-201.
    40. Chidlow G, Osborne NN. Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Research, 2003, (1-2): 298-306.
    41. Hoffman PN, Cleveland DW, Griffin JW, et al. Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Aead Sci, 1987, 84:3472-3476.
    42. Kong WC and Cho EY. Antibodies against neurofilament subunits label retinal ganglion cells but not displaced amacrine cells of hamsters. Life Sci, 1999, 64: 1773-1778.
    43. Hoffman PN, Pollock SC and Striph GG. Altered gene expression after optic nerve transection: reduced neurofilament expression as a general response to axonal injury. Exp Neurol, 1993, 119:32-36.
    44. Minzenberg M, Berkelaar M, Bray G, et al. Changes in retinal ganglion cell axons after optic nerve crush: neurofilament expression is not the sole determinant of calibre. Biochem Cell Biol, 1995,73:599-604.
    45. Lima L, Matus P, Drujan B. Taurine-induced regeneration of goldfish retina in culture may involve a calcium-mediated mechanism. J Neurochem, 1993,60(6):2153-2158.
    46. Fletcher EL, Kalloniatis M. Localisation of amino acid neurotransmitters during postnatal development of the rat retina. J Comp Neurol, 1997, 380(4): 449-471.
    47. Kosenko E, Llansola M, Montoliu C, et al. Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int. 2003 Sep-Oct;43(4-5):493-9.
    48. Fletcher EL, Kalloniatis M. Neurochemical architecture of the normal and degenerating rat retina. J Comp Neurol, 1996, 376(3): 343-360.
    49. Dahchour A, De Witte P. Taurine blocks the glutamate increase in the nucleus accumbens microdialysate of ethanol-dependent rats. Pharmacol Biochem Behav, 2000, 65(2): 345-350.
    50. Li YP and Lombardini JB. Inhibition by taurine of the phosphorylation of specific synaptosomal proteins in the rat cortex: Effects of taurine on the stimulation of calcium uptake in mitochondria and inhibition of phosphoinositide turnover. Brain Res, 1991, 553:89-96.
    51.黄国荣,糜漫天,许红霞等。牛磺酸影响视网膜谷氨酸、γ—氨基丁酸含量。中国公
    
    共卫生.2003,19(12):1436-1437
    52. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP—31 years (1969-2000). Neurochem Res, 2000, 25:1439-1451.
    53. Newman E, Reichenbach A. The Müller cells: a functional element of the retina. TINS, 1996,19:307-311.
    54. Napper GA, Pianta MJ, Kalloniatis M. Reduced glutamate uptake by retinal gial cells under ischemic/hypoxia conditions. Vis Neurosci, 1999, 16(1): 149-158.
    55. Kim D, Kim MJ, Lee JH, et al. Concomitant distribution shift of glial GABA transporter and S100 calcium-binding proteins in the rat retina after kainate-induced excitotoxic injury. Neurosci Lett, 2003, 353(1): 17-20.
    56. Nakamichi N, Chidlow G, Osborne NN. Effects of intraocular injection of a low concentration of zinc on the rat retina. Neuropharmacology, 2003, 45(5): 637-648.
    57. Casson RJ, Chidlow G, Wood JP, et al. The effect of retinal ganglion cell injury on light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci, 2004, 45(2): 685-693.
    58. Casson RJ, Wood JP, Melena J, et al. The effect of ischemic preconditioning on light-induced photoreceptor injury. Invest Ophthalmol Vis Sci, 2003, 44(3): 1348-1354.
    59. Kurachi M, Yoshihara K, Aihara H. Effect of taurine on depolarizations induced by L-glutamate and other excitatory amino acids in the isolated spinal cord of the frog. Jpn J Pharmacol, 1983, 33:1247-1254.
    60. Kashii S, Takahashi M, Mandai M, et al. Protective action of dopamine against glutamate neurotoxicity in the retina. Invest Ophthalmol Vis Sci, 1994, 35:685-695.
    61. Schaffer SW, Lombardini JB, Azuma J. Interaction between the actions of taurine and angiotensin Ⅱ. Amino Acids, 2000, 18(4): 305-318.
    62. Izumi Y, Shimamoto K, Benz AM. Glutamate transporters and retinal excitotoxicity. Glia, 2002, 39(1): 58-68.
    63. Yasumasa Otori, Shunji Kusaka, Atsushi Kawasaki,et al. Protective effect of nilvadipine against glutamate neurotoxicity in purified retinal ganglion cells. Brain Research, 2003, 961(2): 213-219.
    64. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods, 1997, 71:145-158.
    
    
    65. Brewer GH. Serum-free B27/Neurobasal medium supports deferential growth of nerrons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res, 1995, 42:674-683.
    66. Papadopoulos NG, Dedoussis GV, Spanakos G, et al. Papamichail M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods. 1994, 177(1-2): 101-111.
    67. Levin LA, Clark JA, Johns LK. Effect of lipid peroxidation inhibition on retinal ganglion cell death. Invest. Ophthalmol Vis Sci, 1996, 37:2744-2749.
    68. Goto W, Ota T, Morikawa N, et al. Protective effects of timolol against the neuronal damage induced by glutamate and ischemia in the rat retina. Brain Res, 2002, 958(1): 10-19.
    69. Chert TA, Yang F, Cole GM, et al. Inhibition of caspase-3-like activity reduces glutamate induced cell death in adult rat retina. Brain Res, 2001, 904(1): 177-188.
    70. Watson RW, Redmond HP, Wang JH et al. Mechanisms involved in sodium arsenite-induced apoptosis of human neutrophils. J Leukoc Biol, 1996, 60:625-632.
    71. Wu QD, Wang JH, Fennessy F, et al. Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol, 1999, 277:C1229-C1238.
    72. Hizoh I, Haller C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Invest Radiol, 2002, 37:428-434.
    73. Heller-Stilb B, van Roeyen C, Rascher K, et al. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J, 2002,16(2): 231-213.
    74. Takahashi K, Ohyabu Y, Solodushko V, et al. Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol, 2003, 41:726-733.
    75. Condron C, Neary P, Toomey D, et al. Taurine attenuates calcium-dependent, Fas-mediated neutrophil apoptosias.Shock, 2003, 19(6): 564-569.
    76. Lang F, Madlung J, Siemen D, et al. The involvement of caspases in the CD95 (Fas/Apo-1)-but not swelling-induced cellular taurine release from Jurkat T-lymphocytes. Pflugers Arch, 2000, 440:93-99.
    77. El Idrissi A, Messing J, Scalia J. Prevention of epileptic seizures by taurine. Adv Exp Med Biol. 2003;526:515-25.
    
    
    78. Saransaari P, Oja SS. Taurine and neural cell damage. Amino Acids. 2000, 19(3-4): 509-526.
    79. Pellegrini DE, Gorter JA, Bennett MVL, et al. The GluR (GluR-B) hypothesis: Ca~(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci.1997, 20:464-470.
    80. Trenkner E, Dykens JA. Taurine moderates kynurenine excitotoxicity in vitro. Soc Neurosci Abstr, 1986, 16:29.
    81. El Idrissi A, Trenkner E. Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci. 1999, 19(21): 9459-9468.
    82. El Idrissi A, Trenkner E. Taurine regulates mitochondrial calcium homeostasis. Adv Exp Med Biol. 2003,526:527-36.
    83. Palmi M,Youmbi GT, Fusi F, et al. Potentiation of mitochondrial Ca~(2+) sequestration by taurine.Biochem Pharmacol. 1999 Oct 1;58(7): 1123-31.
    84. Militante JD, Lombardini JB. Stimulatory effect of taurine on calcium ion uptake in rod outer segments of the rat retina is independent of taurine uptake. J Pharmacol Exp Ther. 1999,291(1):383-389.
    85. Barakat L, Wang D, Bordey A. Carrier-mediated uptake and release of taurine from Bergmann glia in rat cerebellar slices. J Physiol, 2002,541(Pt 3):753-67.