一元、二元离子掺杂钛酸钡的水热(溶剂热)法制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡(BaTiO_3)电子材料是目前最具研究活力和应用最为广泛的先进材料之一。自从BaTiO_3被发现以来,其已在现代电子材料工业发挥重要作用。随着近年电子器件的高性能化和微型化方向的发展,高介电常数、低损耗,具有介温稳定性、高温稳定性、纳米级晶粒的介电材料愈加受到关注,偏重此方向的研究也越来越多。在此背景下,本文从一元、二元元素掺杂改善BaTiO_3粉末及陶瓷材料的性能入手,以提高介频和介温的稳定性、提高介电常数、降低介电损耗为目标,对BaTiO_3材料的制备及其性能进行了研究。
     一、获得高活性高纯度粉体是进一步研究对BaTiO_3掺杂的基础。BaTiO_3掺杂的方法虽然种类较多,采用价格低廉的Ba、Ti化合物作为反应前躯体,仍然是经济有效的合成途径。本文采用水热法(溶剂热)研究了不同Ti化合物为钛源对BaTiO_3合成的影响,进一步筛选合理的合成条件。实验证明:以BaCl2、钛酸四丁酯、NaOH作为合成原料在较低温度条件下即可获得纯度高、单分散性好、粒径范围窄、粒径在纳米级并且粒径可调的的粉体。
     二、采用水热法制备了Nd~(3+)掺杂的BaTiO_3,研究了不同掺杂量的Nd~(3+)对BaTiO_3粉末和陶瓷介电性能的影响。发现在室温下Nd~(3+)含量较低时,BaTiO_3具有较高的介电常数和较低的介电损耗,其介频和介温稳定性有很大提高。随着Nd~(3+)浓度的提高,介电常数和介电损耗迅速降低。同时随着Nd~(3+)浓度的进一步升高,在高温烧结阶段伴随杂相BaTi_2O_5的出现。通过对不同Ba/Ti比条件下制备的Nd~(3+)掺杂的钛酸钡的晶格参数进行分析,认为Nd~(3+)在BaTiO_3中是一种A位掺杂剂。
     三、考虑钛酸锶钡(BST)具有较高的介电常数和较低的相变温度,钛酸锆钡(BZT)则能有效降低居里温度。为有效降低BST陶瓷的相变温度同时改善BZT的介电性能,采用水热(溶剂热法法)制备了Sr~(2+)、Zr~(4+)共掺杂的纳米级BaTiO_3颗粒,探讨了不同掺杂量对BaTiO_3结构与性能的影响。实验发现Zr~(4+)掺杂的BST(BSZT),能有效地抑制BaTiO_3晶粒的生长,显著降低居里点温度。随着Zr掺杂量的增加,弥散相范围增加,对BST的居里峰有较好的展宽效应,提高了BSZT的介温稳定性。同时分析了Sr~(2+)、Zr~(4+)共掺杂BaTiO_3的溶液反应机制。
     四、本文分析了Ca~(2+)掺杂对BZT陶瓷结构和性能的影响。结果表明Ca~(2+)掺杂后的锆钛酸钡(BCZT)陶瓷颗粒的形状由片状逐渐转变为立方体结构。同时随Ca~(2+)掺杂量的增加, BCZT陶瓷的弥散相变增强,介温稳定性提高。
At present, BaTiO_3is one of the most dynamic and the most widely used advancedceramic materials. Since1940the discovery of BaTiO_3, it has played an important role inmodern ceramic industry. In recent years, the development direction has developed alongmore performance oriented and miniaturization. The dielectric of high dielectric constant,low loss and high-temperature stabilizing shows more attention and expectation andmore research in the field has been developed. Under thus background, this paper beginswith developing performance of BaTiO_3ceramic material doped with different elements.In order to improve dielectric-frequency stability and dielectric-temperature stability, thephysicochemical properties and related mechanisms have been investigated.
     1. For the preparation of BaTiO_3ceramics with optimum properties, it is necessary toobtain highly active and high purity powder first. The method for the synthesis of dopedBaTiO_3is the variety of ways, it is an effective and economic way with inexpensivecompound of barium and titanate to prepare BaTiO_3. In this paper, the influence onsynthesizing BaTiO_3powders with different titanate precursors has been investigated, theoptimum synthesis conditions was carried out. Experiments indicate that highly pure,monodisperse, narrow diameter distribution, nanometric and size controllable BaTiO_3powder synthesized with hydrothermal method at lower temperature.
     2. Nd-doped barium titanates were successfully synthesized via a hydrothermal route.The influence of Nd~(3+)content on dielectric properties was studied. The results indicatethat Nd doped barium titanate shows high dielectric constant and low dielectric loss, thestability of dielectric properties-frequency and dielectric properties-temperature has a dramatic increase. With the improvement of Nd content, the dielectric constant and thedielectric loss decrease rapidly. The impure phase BaTi_2O_5appeared after high heatsintering with the further improvement of Nd content. Results analysisof lattice parameters of Nd-doped barium titanates reveales that the substituent position ofNd is A site in BaTiO_3.
     3. Considering the high dielectric constant and low phase transition temperature ofBST, BZT shows a low Curie temperature. In order to decrease the phase transitiontemperature and increase the dielectric properties, Sr and Zr co-doped barium titanate(BSZT) nanoparticles were synthesized by solvothermal method under identicalpreparation conditions of Sr and the effect on microstructure and properties was discussed.The results show that the growth of grains was restrained, the Curie temperaturedecreases and broadened gradually. The degree of diffusion phase transition increaseswith increasing Zr content and the stability of dielectric constant-temperature increases.The reaction mechanisms of BSZT nanoparticles synthesized by solvothermal methodwere analyzed.
     4. The effect of Ca doped barium zirconate titanate on microstructure and dielectricproperties was investigated. The result shows that the shape changes from laminated sheetto cube,the dielectric loss decrease and the Curie peak becomes broadening in the rangeof temperature measurement and the stability of dielectric constant-temperatureincreases..
引文
[1] Wang, S. F.; Dayton, G. O. J. Am. Ceram. Soc.1999,82:2677–2682
    [2] Hennings, D.; Klee, M.; Waser, R. AdV. Mater.1991,3:334–340
    [3] Yildirim, F. A.; Ucurum, C.; Schliewe, R. R.; Bauhofer, W.; Meixner, R. M.; Goebel, H.;Krautschneider, W. Appl. Phys. Lett.2007,90:083501(1–3)
    [4] Tang, P.; Towner, D. J.; Meier, A. L.; Wessels, B. W. IEEE Photonic Tech. Lett.2004,16:1837–1839
    [5] Petraru, A.; Schubert, J.; Schmid, M.; Buchal, C. Appl. Phys. Lett.2002,81:1375–1377
    [6] Pevtsov, E. P.; Elkin, E. G.; Pospelova, M. A. Proc. SPIE-Int. Soc.Opt. Am.,1997,3200:179–182.
    [7] Funakoshi, H.; Okamoto, A.; Sato, K. J. Mod. Opt.2005,52:1511–1527
    [8] Abe, K.; Komatsu, S. J.Appl.Phys.1995,77:6461
    [9] Jaffe, B.; Cook, W. R.; Jaffe, H. Piezoelectric Ceramics, Vol.3; Academic Press: New York,1971
    [10] Lines, M. E.; Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials;Clarendon Press: Oxford,1977
    [11] Strukov, B. A.; Levanyuk, A. P. Ferroelectric Phenomena in Crystals; Springer-Verlag: Berlin,1998
    [12] Moulson, A. J.; Herbert, J. M. Electroceramics, Chapman and Hall Press, New York1996
    [13] Lines, M. E.; Glass, A. M. Principles and applications of ferroelectrics and related materialsclarendon Press, Oxford1977
    [14] Von Hippel, A.R. Rev. Mod. Phys.1950,22:228
    [15] Kanzig, W. Phys. Acta1951,24:175
    [16] Binhayeeniyi, N.; Sukvisut, P.; Thanachayanont, C.; Muensit, S. Physical and electromechanicalproperties of barium zirconium titanate synthesized at low-sintering temperatureMaterials Letters2010,64:305–308
    [17] Sawangwan, N.; Barrel, J.; Mackenzie, K.; tunkasiri, T. The effect of Zr content on electricalproperties of Ba(Ti1xZrx)O3ceramics Appl. Phys. A2008,90:723–727
    [18] Shaw, T. M.; Trolier-McKinstry, S.; McIntyre, P. C. Annu. ReV. Mater.Sci.2000,30:263–298
    [19] Frey, M. H.; Payne, D. A. Phys. ReV. B1996,54,3158–3168
    [20] Zhao, Z.; Buscaglia, V.; Vivani, M.; Buscaglia, M. T.; Mitoseriu, L.;Testino, A.; Nygren, M.;Johnsson, M.; Nanni, P. Phys. ReV. B2004,70:024107
    [21] Buscaglia, V.; Buscaglia, M. T.; Vivani, M.; Mitoseriu, L.; Nanni, P.; Terfiletti, V.; Piaggio, P.;Gregora, I.; Ostapchuk, T.; Pokorny, J.;Petzelt, J. J. Eur. Ceram. Soc.2006,26:2889–2898
    [22] Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M.J. Appl. Phys.2006,99:054311–054318
    [23]Yashima, M.; Hoshina, T.; Ishimura, D.; Kobayashi, S.; Nakamura,W.; Tsurumi, T.; Wada, S. J.Appl. Phys.2005,98:014313
    [24] Duan, W.; Liu, Z. R. Curr. Opin. Solid State Mater.2006,10:40–51
    [25] Wang, C. L.; Smith, S. R. P. J. Phys.: Condens. Matter1995,7163–7171
    [26] Akdogan, E. K.; Safari, A. J. Appl. Phys.2007,101:064114
    [27] Spanier, J. E.; Kolpak, A. M.; Urban, J. J.; Grinberg, I.; Ouyang, L.;Yun, W. S.; Rappe, A. M.;Park, H. Nano Lett.2006,6:735–739
    [28] Urban, J. J.; Spanier, J. E.; Lian, O. Y.; Yun, W. S.; Park, H. AdV.Mater.2003,15:423–426
    [29] Urban, J. J. Synthesis and Characterization of Transition Metal Oxide and ChalcogenideNanostructures. Ph.D. Dissertation, Harvard University, Cambridge, MA,2004
    [30] Ghosez, P.; Rabe, K. M. Appl. Phys. Lett.2000,76:2767–2769
    [31] Meyer, B.; Vanderbilt, D. Phys. ReV. B2001,63:205426
    [32] Fong, D. D.; Stephenson, G. B.; Streiffer, S. K.; Eastman, J. A.;Auciello, O.; Fuoss, P. H.;Thompson, C. Science2004,304:1650–1653
    [33] Wang, C. L.; Smith, S. R. P. J. Phys.: Condens. Matter1995,7163–7171
    [34] Binhayeeniyi, N.; Sukvisut, P.; Thanachayanont, C.; Muensit, S. Physical and electromechanicalproperties of barium zirconium titanate synthesized at low-sintering temperature Materials Letters2010,64:305–308
    [35] Arlt, G.; Hennings, D. G.D. Dielectric properties of fine-grained barium titanate ceramics.J.Appl.Phys.1985,58(4):1619-1625
    [36] Uchino, K.; Sadanaga, E.; Hirose, T. Dependence of the crystal structure on particle size in bariumtitanate, J. Am. Ceram. Soc.1989,72(8):1555–1558
    [37] Mitoseriu, L.; Harnagea, C.; Nanni, P.;et al. Observation of the discrete transition of opticallytrapped particle position in the vicinity of an interface.Appl.Phys.Lett.2004,84(1):13-15
    [38] Yashima, M.; Hoshina, T.; Ishimura, D.; Kobayashi, S.; Nakamura, W.; Tsurumi, T.; Wada, S. Sizeeffect of crystal structure of barium titanate nano-particles. J. Appl. Phys.2005,98:014313
    [39] Xiao, C.J.; Chi, Z.H.; Zhang, W.W.; Li, F.Y.; Feng, S.M.; Jin, C.Q.; Wang, X.H.; Deng, X.Y.; Li,L.T. J. Phys. Chem. Solids2007,68:311
    [40] Zhao, Z.; Buscaglia, V.; Viviani, M.; et al. Grain-size effects on the ferroelectric behavior ofdense nanocrystalline BaTiO3ceramics.Phys. Rev.B.2004,70(2):024107
    [41] Frey, M.H.; Payne, D.A. Nanocrystalline barium titanate: Evudence for the absence offerroelectricity in sol-gel derivedthin-layer capacitors. Appl.Phys.Lerr.1993,63(20):2753-2755
    [42] Pithan, C.Y.; Shiratori, R.; Waserz, J.; Dornseiffer, F.H. Solvothermal Preparation andCharacterization of Barium Titanate Nanocubes. J. Am. Ceram. Soc.2006,89:2908
    [43] Kobaysshi, Y.; Nishikata, A.; Tanase, T.; Konno, Mikio. Size effect on crystal structures of bariumtitanate nanoparticles prepared by a sol-gel method. Journal of sol-gel science and technology.2004,29:49–55
    [44] Chao Fang, DongXiang Zhou, ShuPing Gong Core-shell structure and size effect in bariumtitanate nanoparticle Physica B2011,406:1317–1322
    [45] Smith, M. B.; Page, K.; Siegrist, T.; Redmond, P.L. Crystal Structure and theParaelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3J. Am. Chem. Soc.2008,130:6955–6963
    [46] Spanier, J. E.; Kolpak, A. M.; Urban, J. J.; Grinberg, I.; Ouyang, L.; Yun, W. S.; Rappe, A. M.;Park, H. Nano Lett.2006,6:735–739
    [47] Ghosez, P.; Rabe, K. M. Appl. Phys. Lett.2000,76:2767–2769
    [48] Meyer, B.; Vanderbilt, D. Phys. ReV. B2001,63:205426
    [49] Chang, L. W.; McMillen, M.; Morrison, F. D.; Scott, J. F.; Gregg, J. M. Size Effects on Thin FilmFerroelectrics: Experiments on Isolated Single Crystal Sheets. Appl. Phys.Lett.2008,93:132904
    [50] Tanaka, M.; Makino, Y. Finite Size Effects in Submicron Barium Titanate Particles. FerroelectricsLett Sec.1998,24:13–23
    [51] Hoshina, T.; Kakemoto, H.; Tsurumi, T.; Wada, S.; Yashima, M. Size and Temperature-InducedPhase Transition Behaviors of Barium Titanate Nanoparticles. J. Appl. Phys.2006,99:054311
    [52] Zhong, W. L.; Jiang, B.; Zhang, P. L.; Ma, J. M.; Cheng, H. M.;Yang, Z. H. Phase Transition inPbTiO3Ultrafine Particles of Different Sizes. J. Phys.: Condens Matter.1993,5:2619–2624
    [53] Frey, M.; Payne, D. Grain-Size Effect on Structure and Phase Transformations for Barium Titanate.Phys. Rev. B.1996,54:3158–3168
    [54] Spanier, J. E.; Kolpak, A. M.; Urban, J. J.; Grinberg, I.; Ouyang, L.; Yun, W. S.; Rappe, A. M.;Park, H. Ferroelectric Phase Transition in Individual Single-Crystalline BaTiO3Nanowires. NanoLett.2006,6:735–739
    [55] Fong, D. D.; Stephenson, G. B.; Streiffer, S. K.; Eastman, J. A.;Auciello, O.; Fuoss, P. H.;Thompson, C. Ferroelectricity in Ultrathin Perovskite Films. Science2004,304:1650–1653
    [56] Petkov, V.; Buscaglia, V.; Buscaglia, M. T.; Zhao, Z.; Ren, Y. Structural Coherence andFerroelectricity Decay in Submicron-and Nano-Sized Perovskites. Phys. Rev. B.2008,78:1–7
    [57] Lee, S.; Liu, Z.-K.; Randall, C. A. J. Appl. Phys.2007,101:054119
    [58] Frey, M. H.; Payne, D. A. Phys. ReV. B1996,54,3158–3168
    [59] Choi, K. J.; Biegalski, M.; Li, Y. L.; Sharan, A.; Schubert, J.; Uecker,R.; Reiche, P.; Chen, Y. B.;Pan, X. Q.; Gopalan, V.; Chen, L.-Q.;Schlom, D. G.; Eom, C. B. Science2004,306:1005–1009
    [60] Spanier, J. E.; Kolpak, A. M.; Urban, J. J.; Grinberg, I.; Ouyang, L.;Yun, W. S.; Rappe, A. M.;Park, H. Nano Lett.2006,6:735–739
    [61] Scott, J. F. Applications of modern ferroelectrics. Science2007,315:954–959
    [62]Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.;Park, N. Y.; Stephenson, G. B.; et al. Ferroelectric Thin Films: Review of Materials,Properties, andApplications. J. Appl. Phys.2006,100:051606
    [63] Gregg, J. M. Ferroelectrics at the nanoscale. Phys. Stat. Solidi A.2009,206:577–587
    [64] Szwarcman, D.; Vestler, D.; Markovich, G. The size dependent ferroelectric phase transition inBaTiO3nanocrystals probed by surface plasmons Acsnano2011,5(1):507–515
    [65] Hartman, P. Crystal Growth: An Introduction; North-Holland Publishing Co.: Amsterdam,1973.
    [66] Testino, A.; Buscaglia, M. T.; Buscaglia, V.; Viviani, M.; Bottino, C.; Nanni, P. Chem. Mater.2004,16:15361543
    [67] Testino, A.; Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Nanni, P. Chem. Mater.2005,17:53465356
    [68]刘菊水热法人工晶体生长的原理及应用天津化工2010,24(5):61-62
    [69] Sahoo, T.; Pradhan, G.K.; Rath, M.K.; Pandey, B. Characterization and photoluminescence studieson hydrothermally synthesized Mn-doped barium titanate nano powdersMaterials Letters2007,61:4821–4823
    [70] Kubo, T.; Hogiri, M.; Kagata, H.; Nakahira, A. Synthesis of Nano-sized BaTiO3Powders by therotary-hydrothermal process. J. Am. Ceram. Soc.2009,92:S172–S176
    [71] Chen, H.J.; Chen,Y.W. Hydrothermal Synthesis of Barium Titanate Ind. Eng. Chem. Res.2003,42:473-483
    [72] Gebauer, D.; Volkel, A.; C lfen, H. Science2008,322:18191822
    [73] Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Science2009,324:13091312
    [74] Yao, J. F.; Li, D.; Zhang, X. Y.; Kong, C. H.; Yue, W. B.; Zhou, W. Z.; Wang, H. T. Angew.Chem., Int. Ed.2008,47:83978399
    [75] Davis, T. M.; Drews, T. O.; Ramanan, H.; He, C.; Dong, J. S.; Schnablegger, H.; Katsoulakis, M.A.; Kokkoli, E.; McCormick, A. V.;Penn, R. L.; Tsapatsis, M. Nat. Mater.2006,5:400408.
    [76] Meldrum, F. C.; C lfen, H. Chem. Rev.2008,108:43324432
    [77] Zhang, J.; Huang, F.; Lin, Z. Nanoscale2010,2:1834
    [78] Mintova, S.; Olson, N. H.; Valtchev, V.; Bein, T. Science1999,283:958960
    [79] Chen, X. Y.; Qiao, M. H.; Xie, S. H.; Fan, K. N.; Zhou, W. Z.; He, H. Y. J. Am. Chem. Soc.2007,129:1330513312
    [80] Greer, H.; Wheatley, P. S.; Ashbrook, S. E.; Morris, R. E.; Zhou,W. Z. J. Am. Chem. Soc.2009,131:1798617992
    [81] Wulff, G. Z. Kristallogr.1901,34:449480
    [82] Bravais, A. études Cristallographic; Gauthier-Villars: Paris,1866
    [83] Zhan, H.Q.;Yang, X.F.; Wang, c.m.;Chen,J.;el Multiple Nucleation and Crystal Growth of BariumTitanate Cryst.Growth.Des.2012,12(3):1247–1253
    [84] Dong, D.; Liu, X.B.; Yu, HX.; Hu, WC. Fabrication of highly dispersed Crystallizednanoparticles of barium Strontium titanate in the presence of N,N-dimethylacetamideCeramicsInternational2011,37:579–583
    [85] Ioachim, A.; Toacsan, M.I.; Banciu, M.G.; Nedelcu, L. Transitions of barium strontium titanateferroelectric ceramics for different strontium content Thin Solid Films2007,515(16):6289–6293
    [86] Pullar, R.C.; Zhang, Y.; Chen,L.F.; Yang, S.F.; el. Dielectric measurements on a novelBa1-xCaxTiO3(BCT) bulk ceramic combinatorial library J Electroceram2009,22:245-251
    [87] Zhan, W.W.; Shen, Z.G.; Chen, J.F. Preparation and characterization of nanosized barium calciumtitanate crystallites by low temperature direct synthesis J Mater Sci2006,41:5743–5745
    [88] Kumar, P.; Singh, S.; Juneja, J.K.; Raina. Chandra, P.K.K. Influence of calcium substitution onstructural and electrical properties of substituted barium titanate ceramics international2011,37(5):1697–1700
    [89] Vold, R. E. BaTiO3Hydrothermal synthesis of lead doped barium titanate Journal of MaterialsScience2001,36:2019–2026
    [90] Tang, X.G.; Wang, J.; Wang X.X. et al. Effect of grain size on the dielectric properties andtunabilities of sol–gel derived Ba(Zr0.2-Ti0.8)O3ceramics Solid State Commun2004,131:163–168.2004,30:1271–1274
    [91] Zhou Z.H.; Cheng, X. Formation and Dielectric Properties of Mn-Doped BSTN CompositeCeramicsJournal of Wuhan University of Technology-Mater. Sci. Ed. Feb.2010
    [92] Cai, W.; Fu, C.L.; Gao, J.H.; Deng, X.L. Effect of Mn doping on the dielectric properties ofBaZr0.2Ti0.8O3ceramicsJ Mater Sci: Mater Electron2010,21:317–325
    [93] H rdtl, K.H.; Wernicke, R.; Lowering the curie temperature in reduced BaTiO3Solid StateCommun1972,10:153–157
    [94] Lin, J.; Wei, W.C. Low-temperature sintering of BaTiO3with Mn-Si-O glass. J Electroceram2010,25:179–187
    [95] Langhammera H.T. Copper-doped hexagonal barium titanate ceramics Journal of the EuropeanCeramic Society2004,24:1489–1492
    [96] Devi, S.; Jha, A.K. Phase transitions and electrical characteristics of tungsten substituted bariumtitanate Physica B2009,404:4290–4294
    [97] Li, Y.X.; Yao, X.; Zhang, L.Y. High permittivity neodymium-doped barium titanate sintered inpure nitrogen. Ceramics International2004,30:1325–1328
    [98] Weiss, C. V.; Okatan, M. B.; Alpay, S. P.; Cole, M. W.; Ngo, E.; Toonen, R. C. Compositionallygraded ferroelectric multilayers for frequency agile tunable devices. J Mater Sci200944:5364–5374
    [99]王智民掺铜改性钛酸钡纳米多晶粉体的制备和表征无机材料学报2002.9第17卷5期
    [100] Rath, M.K.; Pradhan, G.K.; Pandey, B.; Verma, H.C. Synthesis, characterization and dielectricproperties of europium-doped barium titanate nanopowders. Materials Letters2008,62:2136–2139
    [101]陈慧英.钆、锆复合掺杂钛酸钡陶瓷制备及介电性能的研究.稀土2008年6月第29卷第3期.
    [102]范素华.钽掺杂对钛酸钡基陶瓷介电性能影响的研究.硅酸盐通报2002年4期.
    [103] Hou, B.; Xu, Y.; Wu, D.; Sun, Y.H. Preparation and characterization of single-crystalline bariumstrontium titanate nanocubes via solvothermal methodPowder Technology2006,170:26–30
    [104] Joshi, U.A.; Yoon, S.; Baik, S.; Lee, J.S. Surfactant-free hydrothermal synthesis of highlytetragonal barium titanate nanowires:a structural investigation J. Phys. Chem.B,2006,110(25):12249–12256
    [1] Xu, J.; Liu, H.X.; He, B.; Hao, H.; Cao, M.H. High-permittivity and conduction mechanism ofLa-doped Ba0.67Sr0.33TiO3ceramics Phys. Status. Solidi B2012,249:1452-1458
    [2] Ren, P.R.; Fan, H.Q.; Wang, X.; Liu, K. Effects of magnesium doping on phase transitions anddielectric figure of merit of barium strontium titanate ceramics Int. J. Appl. Ceram. Technol2012,9:358-365
    [3] Kumar, P.; Singh, S.; Juneja, J.K.; Prakash, C.; Raina, K.K. Influence of calcium substitution onstructural and electrical properties of substituted barium titanate2011,37:1697–1700
    [4] Jin, X.Q.; Sun, D.Z.; Zhang, M.J.; Zhu,Y.D.;Qian, J.J Investigation on FTIR spectra of bariumcalcium titanate ceramics J Electroceram2009,22:285–290
    [5] Berlincourt, D.A.; Kulcsar, F. J Acoust Soc Am1952,24:709
    [6] Jaffe, B.; Cook W.R.; Jaffe, H. In piezoelectric ceramics. Academic Press, London and New York1971, p91
    [7] Zhang, W.W.; Shen, Z.G.; Chen, J.F. Preparation and characterization of nanosized bariumcalcium titanate crystallites by low temperature direct synthesisJ Mater Sci2006,41:5743–5745
    [1] Wang, S.; Su, H.; Yuan, H.Y.; Chen, L.Y. Effect of nanometer barium titanate powders on thedielectric properties of X7R ceramics J. Mater. Sci: Mater. Electron2011,22:1213-1217
    [2] Hsi, C.S.; Chen, M.Y.; Jantunen, H.L.; Hsu, F.C.; Lin, T.C. Sintering of titanate based dielectricsdoped with lithium fluoride and calcium borosilicate glass. Mater. Sci-Poland2011,29:29-34
    [3] Hanemann, T.; Gesswein, H.; Schumacher, B. Dielectric property improvement ofpolymer-nanosized strontium titanate-composites for applications in microelectronics Microsyst.Technol2011,17:1529-1535
    [4] Cai, W.; Fan, Y.Z.; Gao, J.C.; Fu, C.L.; Deng, X.L. Microstructure, dielectric properties and diffusephase transition of barium stannate titanate ceramics. J Mater Sci: Mater. Electron2011,22:265-272
    [5] Zenkner, M.; K ferstein, R.; Ebbinghaus, S.G.; J ger, L. The influence of BaGeO3on the propertiesof Ba(Ti1xSnx)O3ceramics on the basis of sol-gel powders J. Mater. Sci2011,46:2456-2466
    [6] Panigrahi, M. R.; Panigrahi, S. Ferroelectric relaxor behavior in Ba0.925Dy0.075TiO3ceramicJ. Electroceram2011,26:78-83
    [7] Wang, C.; Ji, H.M.; Wang, J. Effects of solvent system on tape casting of theBaSrTiO3-MgO-based dielectric ceramics containing B2O3. J. Mater. Sci2012,47:2486-2491
    [8] Ali, W.F.F.W.; Rejab, N.A.; Othman, M.; Ain, M. F.; Ahmad, Z.A. An investigation of dielectricresonator antenna produced from silicon (100) enhanced by strontium doped-barium zirconatefilms J Sol-Gel. Sci. Technol2012,61:411-420
    [9] Senthil, V.; Badapanda, T.; Kumar, S. N.; Kumar, P.; Panigrahi, S. Relaxation and conductionmechanism of PVA: BYZT polymer composites by impedance spectroscopy Polym. Res2012,19:9838
    [10] Yun, J.M.; Kim, H.I. Electromagnetic interference shielding effects of polyaniline-coatedmulti-wall carbon nanotubes/maghemite nanocomposites Polym. Bull2012,68:561-573
    [11] Mendes, K.S.F.; Costa, C.M.; Caparros, C.; Sencadas, V.; Lanceros-Méndez, S. Effect of fillersize and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3nanocomposites J. Mater. Sci2012,47:1378-1388
    [12] Ducharme, S.; An inside-out approach to storing electrostatic energy. Acsnano2009,3(9):2447–2450.
    [13] Krowne, C.M.; Kirchoefer, S.W.; Chang, W.; Pond, J.M.; Alldredge, B.L.M. Examination of thepossibility of negative capacitance using ferroelectric materials in solid state electronic devices.Nano Lett.2011,11:988–992.
    [14] Shannon, R.D. Crystal physics, diffraction, theoretical and general crystallography. Acta. Cryst.A1976,32:751-767
    [15] Rejab, N.A.; Sreekantan, S.; Razak, K.A.; Ahmad, Z.A. Structural characteristics and dielectricproperties of neodymium doped barium titanate. J Mater Sci: Mater Electron2011;22:167–173
    [16] Rejab, N.A.; Othman, M.; Ahmad, W.F.F.W.; Ain, M.F.; Ahmad, Z.A.(Ba0.93Nd0.07)TiO3thinfilms prepared by sol–gel method as a potential dielectric resonator antenna application. J Sol-GelSci Technol2011;57:172–177
    [17] Li Y.X., Yao X., Zhang L.Y. High permittivity neodymium-doped barium titanate sintered inpure nitrogen Cream. Int2004,30:1325-1328
    [18] Rejab N.A., Sreekantan S., Razak K.A., Ahmad Z.A. Structural characteristics and dielectricproperties of neodymium doped barium titanate J. Mater Sci: Mater Electron2011,22:167-173
    [19] Li, Y.X.; Yao, X.; Zhang, L.Y. High permittivity neodymium-doped barium titanate sintered inpure nitrogenCeramics International2004,30:1325–1328
    [20] Li, Y.X.; Yao, X.; Zhang, L.Y. High permittivity neodymium-doped barium titanate sintered inpure nitrogen. Ceramics International2004,30:1325–1328.
    [21] Dunbar, T.D.; Warren, W.L.; Tuttle, B.A.; Randall, C.A.; Tsur, Y. Electron paramagneticresonance investigations of lanthanide-doped barium titanate: dopant site occupancy J. Phys.Chem. B2004,108:908-917
    [22] Possenriede, E.; Schirmer, O.F.; Godefroy, G. ESR of Nd3+in BaTiO3Phys. Status. Solidi. B1990,161: K55-K58
    [23] Shaikh, A.S.; Vest, R.W. Defect Structure and Dielectric Properties of Nd2O3-Modified BaTiO3J. Am. Ceram. Soc1986,69:689-694
    [24] Abdulsabirov, R.Y.; Falin, M.L.; Fazlizhanov, I.I.; Kazakov, B.N.; Korableva, S.L.; Ibragimov,I.R.; Safiullin, G.M. EPR and optical spectroscopy of neodymium ions in KMgF3and KZnF3crystals Appl. Magn. Reson1993,5:377-385
    [25] Que, w.x.; Liu, w.g.; Hu. x. Preparation and optical properties of sol–gel neodymium-dopedgermania/γ-glycidoxypropyltrimethoxysilane organic–inorganic hybrid thin films. Appl. Phys. B.2006,83:295-301
    [26] Seregina, E. A.; Kabakov, D.V. Spectral properties of Neodymium in POCl33–BCl3–Nd+. Opticsand Spectroscopy,2011,110(1):42-47
    [27] B ttcher, R.; Erdem, E.; Langhammer, H.T.; Müller, T.; Abicht, H.P. Incorporation of chromiuminto hexagonal barium titanate:an electron paramagnetic resonance. J. Phys: Condens. Matter.2005,17:2763–2774
    [28] Jung, Y.J.; Lim, D.Y.; Nho, J.S.; Cho, S.B.; Riman, R.E.; Lee. B.W. Glycothermal. synthesis andcharacterization of tetragonal barium titanate. Journal of Crystal Growth2005,274:638–652
    [29] Reverón, H.; Aymonier, C.; Seran, AL.; Elissalde, C.; Maglione, M.; Cansell, F. Single-stepsynthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids.Nanotechnology2005,16:1137–1143
    [30] Lazarevi, Z..; Vijatovi, M.; Doh evi-Mitrovi, Z.; Romˇcevi, N..; Rom evi, M.J.;Paunovi, N.; Stojanovi, B.D. The characterization of the barium titanate ceramic powdersprepared by the Pechini type reaction route and mechanically assisted synthesis. Journal of theEuropean Ceramic Society2010,30:623–628
    [31] Nyutu, E.K.; Chen, C.H.; Dutta, P.K.; Suib, S.L. Effect of Microwave Frequency onHydrothermal Synthesis of Nanocrystalline Tetragonal Barium Titanate. J. Phys. Chem. C2008,112:9659–9667
    [32] Khalameida, S.; Sydorchuk, V.; Skubiszewska-Zie ba, J.; Leboda, R.; Zazhigalov, V. Synthesis,thermoanalytical, and spectroscopical studies of dispersed barium titanate J. Therm. Anal.Calorim2010,101:779-784
    [33] Ghosh, S.; Dasgupta, S.; Sen, A.; Maiti, H. S. Synthesis of barium titanate nanopowder by a softchemical process Mater. Lett2007,61:538-541
    [34] Yong, J.J; Lim, D.Y.; Nho, J.S.; Cho, S.B.; Richard, E.R.; Byeong, W.L. Glycothermal synthesisand characterization of tetragonal barium titanate. J. Cryst. Growth2005,274:638-652
    [35] Ghosh S., Dasgupta S., Sen A., Maiti H.S. Synthesis of barium titanate nanopowder by a softchemical process Mater Lett2007,61:538-541
    [36] Lee S., Randal C.A. Liu Z.K. Factors limiting equilibrium in fabricating a simple ferroelectricoxide: BaTiO3J. Am. Ceram. Soc2009,92:222-228
    [37] Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A.Mechanochemical synthesis of barium titanate J. Eur. Ceram. Soc2005,25:1985-1989
    [38] Shannon R.D., Prewtt C.T. Structural Crystallography and Crystal Chemistry Acta Crystallogr B,1970,26:1046-1048
    [39] Rai A.K., Rao K.N., Kumar L.V., Mandal K.D. Synthesis and characterization of ultra finebarium calcium titanate, barium strontium titanate and Ba12xCaxSrxTiO3(x=0.05,0.10) J. Alloy.Compd2009,475:316-320
    [40] Buscaglia M.T., Harnagea C., Dapiaggi M., Buscaglia V., Pignolet A., Nanni P. FerroelectricBaTiO3nanowires by a topochemical solid-state reaction Chem. Mater2009,21:5058
    [41] Cruickshank K.M., Jing X.P., Wood G., Lachowski E.E., West A.R. Barium neodymium titnateelectroceramics: phase equilibria studies of Ba6-3xNd8+2xTi18O54solid solution J. Am. Ceram. Soc1996,79:1605-1610
    [42] Jin X.Q., Sun, D.Z. Zhang M.J., Zhu Y.D., Qian J.J. Investigation on FTIR spectra of bariumcalcium titanate ceramics J. Electroceram2009,22:285-290
    [43] Reverón H., Aymonier C., Loppinet-Serani A., Elissalde C., Maglione M., Cansell F. Single-stepsynthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluidsNanotechnology2005,16:1137-1143
    [44] Lazarevi Z.., Vijatovi M., Doh evi-Mitrovi Z., Romcevi N.., Rom evi M.J., PaunoviN., Stojanovi B.D. The characterization of the barium titanate ceramic powders prepared by thePechini type reaction route and mechanically assisted synthesis J. Eur. Ceram. Soc2010,30:623-628
    [45] Qin S.B., Liu D., Zuo Z.Y., Sang Y.H., Zhang X.L., Zheng F.F., Liu H., Xu X.G.UV-Irradiation-Enhanced Ferromagnetism in BaTiO3J. Phys. Chem. Lett2010,1:238-241
    [46] Hou R.Z., Ferreira P., Vilarinho P.M. Observation of hierarchical porous BaTiO3derived fromhard template Chem. Mater2009,2:3536-3541
    [1] Ming, L.L.; Liang, H.; Xu, M.X. Mater. Chem. Phys.2008,112:337
    [2] Tarasevich, T.V.; Lebedev, S.A. Microstructure and Dielectric Properties of BaTiO3–CeO2–SnO2Ceramics. Inorg Mater2010,46:79–84
    [3] Zhang, W.W.; Shen, Z.G.; Chen, J.F. Preparation and characterization of nanosized bariumcalcium titanate crystallites by low temperature direct synthesis. J Mater Sci2006,41:5743–5745.
    [4] Fan, Y.H.; Yuan, S.H.; Sun, R.; Li, L.; Yin, Y.S.; Wong, K.W.; Du, R.X. Microstructure andelectrical properties of Mn-doped barium strontium titanatethin films prepared on copper foils.Appl Surf Sci2010,256:6531–6535
    [5] Feng, H.J. Barium titanate ceramics. Structure, dielectric and electrical properties of cerium dopedbarium zirconium titanate ceramics. J Alloys Compd2012,512:12–16
    [6] Cai, W.; Fu, C.L.; Gao, J.C.; Lin, Z.b.; Deng, X.L. Effect of hafnium on the microstructure,dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3ceramics Ceramics International2012,38:3367–3375
    [7] Sagar, R.; Madolappa, S.; Raibagkar, R.L. Electrical, dielectric and pyroelectric behavior ofneodymium substituted barium zirconium titanate. Solid State Sci2012,14:211–215.
    [8] Wang, X.R.; Zhang, Y.; Ma, Deng, C.S.; Dai, X.M. Effects of MnO2concentration on dielectricproperties of barium strontium titanate glass ceramics. Ceram Int2012,38S:S57–60
    [9] Kim J, Kim D, Noh T, Ahn B, Lee H. Microstructure and thermal properties of dysprosium andthulium co-doped barium titanate ceramics for high performance multilayer ceramic capacitors.Mater Sci Eng B2011,176:1227–1231.
    [10] Hou, B.; Xu, Y.; Wu, D.; Sun, Y.H. Powder. Technol.2006,170:26
    [11] Kwon, S.G.; Park, B.H.; Choi, K.; Choi, E.S.; Nam, S.; Kim, J.W. J. Eur. Ceram. Soc.2006,26:1401
    [12] Lin, Y.T.; Miao, X.R.; Qin, N.; Zhou, H.; Deng, W.L.; Bao, D.H. Effects of Mn doping onstructural and dielectric properties of sol–gel-derived (Ba0.835Ca0.165)(Zr0.09Ti0.91)O3thin films. ThinSolid Films2012,520:5146–5150
    [13] Lin, H.C.; W. de Oliveira, P.; Huch, V.; Veith, M. Hydroxometalates from Anion exchangereactions of [BF4]-based ionic liquids: formation of [M(OH)6)]2-(M=Ti, Zr) and [Zr(OH)-5]. Chem.Mater2010,22:6518–23
    [14] Li, J.; Jin, D.G.; Zhou, L.X.; Cheng, J.R. Dielectric properties of Barium Strontium Titanate (BST)ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater Lett2012,76:100–102
    [15] Wu, A.Y.; Vilarinho, P.M.; González, M. Synthesis and characterization of barium strontiumtitanate nano powders by low temperature ambient pressure sol process. J Nanopart Res2010,12:2221–2231
    [16] Solanki, A.; Shrivastava, J.; Upadhyay, S.; Choudhary, S.; Sharma, V.; Sharma, P. et al. Modifiedstructural, morphological and photoelectrochemical properties of120MeV Ag9+ion irradiatedBaTiO3thin films. Curr Appl Phys2013,13:344–350.
    [17] Liu, S.Z.; Wang, T.X.; Yang, L.Y. Low temperature preparation of nanocrystalline SrTiO3andBaTiO3from alkaline earth nitrates and TiO2nanocrystalsPowder. Technol.2011,212:378-381
    [18] Ura, B.; Trawczyński, J.; Kotarba, A.; Bieniasz, W.; Illán-G mez, M.J et al. Effect of potassiumaddition on catalytic activity of SrTiO3catalyst for diesel soot combustion. Appl CatalB-Environ.2011,101:169-175
    [19] Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T. Difference in surface reactionsbetween titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphateformation on titanium using XPS and cathodic polarization. Mater. Sci. Eng. C.2009,29:1702-1708
    [20] Norman, C.; Leach, C.; Membrane. J. Sci.2011,382:158-162
    [21] Van Der Heide P.A.W. Surf. Interface. Anal2002,33:414
    [22] Salavati-Niasari, M.; Dadkhah, M.; Davar, F. Synthesis and characterization of pure cubiczirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV)nitrate as new precursor complex. Inorg Chim Acta2009,362:3969–3974
    [23] George, C.N.; Thomas, J.K.; Kumar, H.P.; Suresh, M.K.; Kumar, V.R.; Wariar, P.R.S. et al.Characterization, sintering and dielectric properties of nanocrystalline barium titanate synthesizedthrough a modified combustion process. Mater charact2009,60:322–326
    [24] Li, M.L.; Liang, H.; Xu, M.X. Simple oxalate precursor route for the preparation of brain-likeshaped barium–strontium titanate: Ba0.6Sr0.4TiO3. Mater Chem Phys2008,112:337–341
    [25] Yang, X.W.; Zeng, Y.W.; Cai, T.X.; Hu, Z.X. Preparation of (Ba,Sr)TiO3@polystrene core-shellnanoparticles by solvent-free surface-initiated atom transfer radical polymerization. Appl SurfSci2012,258:7365–7371
    [26] Yu, C.; Wu, D.M.; Liu, Y.; Qiao, H.; Yu, Z.Z.; Dasari, A.; Du. X.S.; Mai. Y.W. Electrical anddielectric properties of polypropylene nanocomposites Compos Sci and Technol2011,71:1706–1712
    [27] Xua, Y.B.; Huang, G.H. Long, H. Sol–gel synthesis of BaTi2O5. Mater Lett2003,57:3570–3573
    [28] Salavati-Niasari, M.; Dadkhah, M.; Davar, F. Synthesis and characterization of pure cubiczirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV)nitrate as new precursor complex. Inorg Chim Acta2009,362:3969–3974.
    [29] Li, X.C.; Hu, Q.H.; Yang, Y.F.; Wang, Y.; He, F. Studies on stability and coking resistance ofNi/BaTiO3–Al2O3catalysts for lower temperature dry reforming of methane (LTDRM). ApplCatal A: Gen2012,413–414:163–169
    [30] Jha, P.A.; Jha, A.K. Influence of processing conditions on the grain growth and electricalproperties of barium zirconate titanate ferroelectric ceramics. J Alloys Compd2012,513:580–585
    [31] Wei, X.Y.; Yao, X. Nonlinear dielectric properties of barium strontium titanate ceramics MaterSci Eng2003, B99:74–78
    [32] Binhayeeniyi, N.; Sukvisut, P.; Thanachayanont, C.; Muensit, S. Physical and electromechanicalproperties of barium zirconium titanate synthesized at low-sintering temperature. Mater Lett2010,64:305–308
    [33] Buscaglia, M.T.; Buscaglia, V.; Viviani, M.; Petzelt, J.; Savinov, M.; Mitoseriu, L.; Testino, A.;Nanni, P.; Harnagea, C.Ferroelectric properties of dense nanocrystalline BaTiO3ceramics.Nanotechnology2004,15:1113–1117
    [34] Chattopadhyay, S.; Ayyub, P.; Palkar, V.R.; Multani, M. Size-induced diffuse phase transition inthe nanocrystalline ferroelectric PbTiO3. Phys. Rev. B1995,52:13177–13183[35] Cohen R.E.Origin of ferroelectricity in perovskite oxides. Nature1992,358:136–138
    [36] Fong D.D.; Stephenson, G.B.; Streiffer, S.K.; Eastman, J.A.; Auciello, O.; Fuoss P.H.; Thompson,G. Ferroelectricity in ultrathin perovskite films. Science2004,304:1650–1653.
    [37] Wang, B.; Woo C.H. The order of transition of a ferroelectric thin film on a compliant substrateActa Mater2004,52:5639–5644
    [38] Wang, B.; Woo, C.H. Curie temperature and critical thickness of ferroelectric thin films. J. Appl.Phys.2005,97:84109–84110
    [39] Wang, C.L.; Zhong, W.L.; Zhang, P.L. The Curie temperature of ultra-thin ferroelectric films J.Phys.: Condens. Matter1992,4:4743–4749
    [40] Lang, X.Y.; Jiang, Q. Size and interface effects on Curie temperature of perovskite ferroelectricnanosolids Journal of Nanoparticle Research2007,9:595–603
    [41] Chourasia, R.; Shrivastava, O.P. Polyhedron.2011,30:738
    [42] Rout, S.K.; Sinha, E.; Panigrahi, S. Dielectric properties and diffuse phase transition inBa1-xMgxTi0.6Zr0.4O3solid solutions Mater. Chem. Phys.2007,101:428-432
    [43] Sagar, R.; Madolappa, S.; Raibagkar, R.L. Electrical, dielectric and pyroelectric behavior ofneodymium substituted barium zirconium titanate. Solid State Sci2012,14:211–215
    [44] Hagfeldt, C.; Kessler, V.; Persson, I. Structure of the hydrated, hydrolysed and solvated zirconium(IV) and hafnium (IV) ions in water and aprotic oxygen donor solvents. A crystallographic,EXAFS spectroscopic and large angle X-ray scattering study Dalton Trans.2004,2142–2151
    [45] Baes, C. F.; Mesmer, R. E. The Hydrolysis of Cations, Wiley New York,1976
    [46] Messner, C.B.; Hofer, T.S.; Randolf, B. R.; Rode, B.M. Structure and dynamics of the Zr4+ion inwater Phys. Chem. Chem. Phys.2011,13:224–229
    [47] Stillinger, F. H.; Rahman, A. Revised central force potentials for water. J. Chem. Phys.,1978,68:666–670
    [48] Bopp, P.; Jansc, G.; Heinzinger, K. An improved potential for non-rigid water molecules in theliquid phase Chem. Phys. Lett1983,98:129–133
    [49] Brendebach, B.; Altmaier, M.; Rothe, J.; Neck, V.; Denecke, M.A. EXAFS study of aqueous ZrIVand ThIVcomplexes in alkaline CaCl2solutions: Ca3[Zr(OH)6]4+and Ca4+4[Th(OH)8]. Inorg Chem
    2007,46:6804-6810.
    [1] Yu, Z.; Ang, C.; Gua, R.; Bhalla, A.S. Mater Lett2007,61:326.
    [2] Kumara, P.; Sangeeta, f.; Singhb, Spahc, M.; Junejad, J.K. Synthesis and dielectric properties ofsubstituted barium titanate ceramicsJournal of Alloys and Compounds2010,489:59–63