粉煤灰和矿渣在水泥浆体中的反应程度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰和矿渣现已成为高性能水泥中必不可少的性能调节型辅助性胶凝材料,确定水泥浆体中粉煤灰或矿渣的反应程度,对评价它们的反应活性及其对该体系结构形成的贡献、研究反应动力学等具有重要意义。由于粉煤灰质量的变异性很大,因地制宜地选取代表性粉煤灰,找出粉煤灰的组成、颗粒级配与反应程度之间的关系就显得非常有必要。
     本文选取全国有代表性的粉煤灰与矿渣,采用选择性溶解法测定了粉煤灰和矿渣的反应程度,研究了水泥浆体中粉煤灰或矿渣的反应程度与比表面积、掺量、龄期等参数的关系,并建立了关联模型;分析了粉煤灰或矿渣的反应程度、反应深度以及粒径分布参数之间相关关系;探索了粉煤灰与矿渣反应消耗的氢氧化钙的量与粉煤灰或矿渣的反应程度之间的关系以及水泥胶砂强度与反应程度之间的关系;以单位粉磨能耗对反应程度以及水泥胶砂强度的贡献为参数,对粉煤灰和矿渣作为辅助胶凝材料应用进行了能量经济分析。
     研究结果表明,粉煤灰、矿渣的反应程度与比表面积、掺量以及水化龄期之间近似符合幂函数关系。不同种类粉煤灰的反应程度大小顺序为:中钙型>高钙型>低钙高铝型>低钙中铝型(7d、28d);低钙高铝型>中钙型>高钙型>低钙中铝型(90d)。从反应程度方面来说,粉煤灰的推荐比表面积为:以石景山粉煤灰为代表的低钙高铝型粉煤灰,600±10m2/kg;以宝钢粉煤灰为代表的中钙粉煤灰,600±10m2/kg(90d及以前),500±10m2/kg(180d);以石横粉煤灰为代表的低钙中铝型粉煤灰,700±10 m2/kg(28d及以前),500±10 m2/kg(90d)。矿渣的推荐比表面积为500±10m2/kg。
     当粉煤灰或矿渣掺量为50%,水胶比为0.5时,粉煤灰以及矿渣在各龄期的反应程度与粒径特征参数呈负相关。在各个粒径特征参数中,表面积平均粒径与粉煤灰或矿渣的反应程度之间联系最紧密。粉煤灰在90d龄期时的反应程度以及矿渣的反应程度均与表面积平均粒径呈线性相关。水泥胶砂抗压强度与粉煤灰或矿渣的反应程度之间呈现出良好的对数关系。因此,表面积平均粒径可作为粉煤灰、矿渣粉体加工的质量控制参数。表面积平均粒径同时兼顾了颗粒分布和比表面积的特点,它比单纯采用勃氏比表面积或筛余作为控制指标要更科学,更能反映粉煤灰和矿渣粉体的微观特性。
     根据粉煤灰和矿渣的粒径分布参数,可以由粉煤灰或矿渣的反应程度推导出其反应深度。粉煤灰的反应深度大小顺序为:高钙型>中钙型>低钙中铝型>低钙高铝型(7d);中钙型>高钙型>低钙高铝型>低钙中铝型(28d、90d)。
     随着粉磨时间的增加,粉煤灰的比表面积呈线性增长,矿渣的比表面积呈对数增长。随着粉煤灰或矿渣比表面积的增加,其颗粒均匀性系数亦增加,特征粒径降低;但当比表面积增加到600m2/kg左右时,随着比表面积的提高,颗粒均匀性系数开始下降或基本上不再改变。
     当粉煤灰掺量为50%、水胶比为0.5时,水泥浆体中氢氧化钙消耗量与粉煤灰的反应程度之间近似服从线性相关。当矿渣掺量为50%、水胶比为0.5时,水泥浆体中氢氧化钙消耗量与矿渣的反应程度的相关性不显著。
     从单位粉磨电耗对粉煤灰或矿渣的反应程度的增加量的贡献来看,粉煤灰与矿渣的推荐比表面积为:低钙高铝型粉煤灰,600±10m2/kg(1d、3d),700±10m2/kg(7d、14d、28d、60d、90d、180d);中钙型粉煤灰,600±10m2/kg(1d、3d、7d、14d、28d、60d、90d),500±10m2/kg(180d);低钙中铝型粉煤灰,600±10m2/kg(3d), 700±10m2/kg(7d、28d);500±10m2/kg(90d);矿渣:500±10m2/kg。
Fly ash and blast furnace slag have become absolutely necessarily binding materials in cement industry. To make sure the reaction degree of fly ash and blast furnace slag in cement pastes is very important. It is significant in evaluating the reactive activity of fly ash and blast furnace slag ,estimating the contribution to the structure, researching the reactive kinetics. The quality of fly ash varies in a big range. It is vital to select typical fly ash and research the relationship among the reaction degree, constitute and particle size distribution of fly ash.
     In this dissertation, typical fly ash and slag were selected and the reaction degree of fly ash and blast furnace slag were measured by selective solution method at first. Then, the relationship between reaction degree of fly ash or blast furnace slag in cement pastes and specific surface area of fly ash or blast furnace slag, replacement ratio of fly ash or blast furnace slag at different ages were constructed. Correlation among reaction degree, reaction depth and particle size distribution parameter were established. The relationship between Ca(OH)2 reduction content in cement pastes and reaction degree of fly ash and blast furnace slag and the relationship between strength and reaction degree of fly ash and blast furnace slag were also researched. Lastly, the contribution of every grinding energy cost to reaction degree and strength were analyzed.
     The results showed that the reaction degree of fly ash or blast furnace slag has good power function correlation with specific surface area of fly ash or blast furnace slag, replacement ratio of fly ash or blast furnace slag and ages. The sequence of reaction degree of different fly ashes were: median calcium type>high calcium type>low calcium with high aluminum type>low calcium with median aluminum type (7d,28d);and low calcium with high aluminum> median calcium type> high calcium type>low calcium with median aluminum type(90d). The proposed specific surface area of fly ash and slag for good reaction degree were: 600±10m2/kg for low calcium high aluminum type fly ash; median calcium type,600±10m2/kg(90d or before it), 500±10m2/kg(180d);low calcium median calcium type, 700±10 m2/kg(28d or before it),500±10 m2/kg(90d);slag, 500±10m2/kg.
     When the replacement ratio of fly ash or blast furnace slag is 50% and the ratio of water to binding materials is 0.5, reaction degree of fly ash or blast furnace slag has negative correlation with particle size distribution characteristic parameter. Of all the characteristic parameter, the correlation between reaction degree and surface area mean particle size is best. Reaction degree of fly ash or blast furnace slag has good liner correlation with surface area mean particle size. Compressive strength of cement pastes has good logarithmic correlation with reaction degree of fly ash or blast furnace slag. So, surface area mean particle size can be good quality control parameter for fly ash or blast furnace slag. Surface area mean particle size has the trait of both particle size distribution and special surface area,it is more scientific than sieve residue or specific surface area as quality control parameter for fly ash or blast furnace slag.
     Based on the particle size distribution parameter of fly ash or blast furnace slag, reaction depth of it can be deduced from reaction degree of it. The sequence of reaction depth of different fly ashes were: high calcium type> median calcium type>low calcium with median aluminum type >low calcium with high aluminum type (7d), and median calcium type> high calcium type>low calcium with high aluminum> low calcium with median aluminum type(28d,90d).
     The increase of specific surface area of fly ash has positive liner correlation with the increase of grinding time. The increase of specific surface area of blast furnace slag has positive logarithmic correlation with the increase of grinding time. With the increase of specific surface area for fly ash or blast furnace slag, the particle equality coefficient increase and characteristic particle size decrease. When the specific surface area add to 600m2/kg,the equality coefficient begin to drop or stabilize.
     When the replacement ratio of fly ash or blast furnace slag is 50% and the ratio of water to binding materials is 0.5, Ca(OH)2 reduction content in cement pastes have good liner correlation with reaction degree of fly ash, Ca(OH)2 reduction content in cement pastes have no good relation with reaction degree of blast furnace slag.
     From the contribution of grinding energy to reaction degree of fly ash or blast furnace slag, the proposed specific surface area of fly ash and blast furnace slag were: low calcium high aluminum type fly ash , 600±10m2/kg(1d,3d), 700±10m2/kg (7d,14d,28d, 60d,90d,180d) ; median calcium type,600±10m2/kg(90d or before it), 500±10m2/kg(180d);low calcium median aluminum type, 600±10 m2/kg(3d), 700±10 m2/kg(7d,28d),500±10 m2/kg(90d);blast furnace slag, 500±10m2/kg.
引文
[1]沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989.
    [2] R.E.Davis. Historical accounts of mass concrete[A].Proceeding of Symposium on Mass Concrete[C], Detroit MI:American Concrete Institute,1963.
    [3]国分山田著,任子明译.粉煤灰水泥[A].建筑材料科学研究院水泥所译.第六届国际水泥化学会议论文集(第三卷)——水泥及其性能[C],北京:中国建筑工业出版社,1980:111-135.
    [4] Sersale R.火山灰和粉煤灰的结构和特性[A].第七届国际水泥化学会议论文选集[C].北京:中国建筑工业出版社,1985.321.
    [5]沈旦申.我国粉煤灰利用科学技术的可持续发展[J].建筑材料学报,1998,1(2):170-174.
    [6]沈旦申,张荫济.粉煤灰效应的探讨[J].硅酸盐学报,1981,9(1):57-63.
    [7]沈旦申.试论模糊逻辑灰色系统研究粉煤灰的资源化[J].上海硅酸盐,1988(1):22-27.
    [8]沈旦申,瞿秋云.粉煤灰物理序参量的系统化[J].硅酸盐学报,1992,20(4):302-308.
    [9] D.S.Shen, Q.Y.Qu, Y.H.Li. Philosophy of mixes proportioning of fly ash concrete-potentialization[A].International Symposium on New Development in Concrete in Concrete Science and Technology[C]. Nanjing,1995.507.
    [10]严悍东.废渣特性及其多元复合对水泥基材料高性能的贡献与机理[D].博士学位论文,南京:东南大学,2001.
    [11]袁润章,高琼英,欧阳世翕.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987,(3):297.
    [12]欧阳东.超高强混凝土及其第六组分的研究[D].博士学位论文,广州:华南理工大学,1997
    [13] G.J.McCarthy, J.K.Solem, O.Manz, et al. Use of a database of chemical,mineralogical and physical fly ash and its utilization as a mineral admixture in concrete[J].Materials Research Society Symposium Proceedings,1990,178(22):3-33.
    [14] L.L.Sloss, I.M.Smith, M.B.Adams. Pulverized coal ash-requirements for utilization[A].IEA Coal Researh[C],London:UK,1996.
    [15]刘巽伯,沈旦申,陈以理,等.上海粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    [16] D.L.Biggs, J.J.Bruns. Transmitted and reflected visible light microscopy of two bituminous fly ashes[J]. Materials Research Society Symposium Proceedings,1985:21-30.
    [17] B.E.Scheetz, W.B.White. Characterization of crystalline phases in fly ash by microfocus Raman spectroscopy[J]. Materials Research Society Symposium Proceedings,1985,43 53-60.
    [18] G.J.McCarthy, K.D.Swanson, L.P.Keller, et al. Mineralogy of western fly ash.Cement andConcrete Research,1984,14(4):471-478.
    [19] G.J.McCarthy, O.E.Manz, R.J.Stevenson, et al. Western fly ash research,development and data center[J].Materials Research Society Symposium Proceedings,1986,65:165-166.
    [20] G.J.McCarthy, O.E.Manz, D.M.Johansen, et al. Correlation of chemistry and mineralogy of Western U.S. fly ash[J].Materials Research Society Symposium Proceedings,1987,86: 109-112.
    [21] S.Diamond, J.Olek. Some properties of contrasting end-member high calcium fly ashes[J]. Materials Research Society Symposium Proceedings,1987,86:315-324.
    [22]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [23] D.M.Roy, K.Luke, S.Diamond. Characterization of fly ash and its reactions in concrete[J].Materials Research Society Symposium Proceedings,1985,43:20.
    [24] J.Bensted, P.Barnes. Structure and Performance of Cements[M].Second edition.London:Spon Press,2002.
    [25]孙抱真,贾传玖,水翠娟.粉煤灰的颗粒形貌及其物理性质[J].硅酸盐学报, 1982,10(1): 64-69.
    [26]牛全林,杨静,冯乃谦,等.矿渣微粉对水泥强度的影响[A].俞家范等编.矿渣微粉研究和应用论文集[C],上海:上海远东出版社,2003.
    [27] A.Q.Wang, C.Z.Zhang, W.Sun. Fly ash effectsⅡ.The active effect of fly ash[J].Cement and Concrete Research,2004,34(11):2057-2060.
    [28] A.Q.Wang, C.Z.Zhang, W.Sun. Fly ash effectsⅢ.The microaggregate effect of fly ash[J].Cement and Concrete Research,2004,34(11):2061-2066.
    [29] M.Cyr, P.Lawrence, E.Ringot. Mineral admixtures in mortars-Quantification of the physical effects of inert materials on short-term hydration[J].Cement and Concrete Research,2005, 35(4):719-730.
    [30] P.Lawrence, M.Cyr, E.Ringot. Mineral admixtures in mortars-effect of inert materials on short-term hydration[J].Cement and Concrete Research,2003,33(12):1939-1947.
    [31] K.G.Babu, G.S.Nageswara Rao. Early behavior of fly ash concretes[J]. Cement and Concrete Research, 1994,24(2):277-284.
    [32] J.Paya, J.Monzo, E.Peris-Mora, et al. Early strength development of Portland cement mortars containing air-classified fly ash[J]. Cement and Concrete Research, 1995,25(2):449-456.
    [33] Y.M.Zhang, W.Sun, L.F.Shang, et al. Mechanical properties of high performance concrete made with high calcium high sulfate fly ash[J]. Cement and Concrete Research, 1997,27(7):1093-1098.
    [34]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [35] D.M.Roy, G.R.Goudu, A.Brobrowsky. Very high strength cement pastes prepared by hotpressing and other high pressure techniques[J]. Cement and Concrete Research, 1972,2:349.
    [36]吴中伟.高技术混凝土[J].硅酸盐通报,1994,13(1):41-45.
    [37]唐明述.混凝土耐久性研究领域应成为最活跃的研究领域[J].混凝土与水泥制品,1989,5:4-17.
    [38] S.A.Abo-EI-Enein, M.Daimon, S.Ohsawa, et al. Hydration of low porosity slag-lime pastes[J]. Cement and Concrete Research, 1974, 4(2):299-312
    [39] R.N.Swamy. Fly ash concrete-potential without misuse[J]. Materials and Structures, 1990,23(22):397-411.
    [40] F.de Larrard, T.Sedran. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994,24(6):997-1198
    [41] T.Kutti, R.Malinowski, M.Srebnik. Investigation of mechenical properties and structure of alkaline activated blastfurnace slag mortars[J]. Silicon Industry,1983,9:175
    [42] G.Pan, W.Sun, D.Ding, et al. Experimental study on the micro-aggregate effect in high strength and super-high strength cementitious composites[J]. Cement and Concrete Research, 1998, 28(2):171-176
    [43]潘钢华.水泥基复合材料的组成结构和界面效应与强度关系的研究[D].博士学位论文,南京:东南大学,1997.
    [44]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [45] V.Johnsen, P.J.Andersen. Particle packing and concret properties[A].John L.Tassoulas Fourteeth Engineering Me-chanics Conference. Texas:the University of Texas at Austin[C],1991.1501.
    [46] T.Stovall, F.Delarrard, M.Buil. Linear packing density model of grain mixture[J]. Powder Technology, 1986, 48(1):1-12.
    [47] N.Standish, D.E.Borger. The porosity of particulate mix-ture[J]. Powder Technology, 1979,22:121-125.
    [48] P.K.Mehta. Influence of fly ash characteristics on the strength of portland-fly ash cement[J]. Cement and Concret Research, 1985,15(4):669-674.
    [49]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色系统研究[J].硅酸盐学报,1998,26(4):424-429.
    [50] P.K.Dhir, A.G.Apte, G.L.Munday. Effect in source variability of pulverized-fuel ash upon the strength of OPC/PFA concrete[J]. Magazine of Concrete Research,1981,33(10):68.
    [51]龙广成,谢友均,王新友.矿物掺合料对新拌水泥浆体密实性能的影响[J].建筑材料学报,2002, 5(1):21-25.
    [52]龙湘敏,谢友均,刘宝举.超细粉煤灰在低水胶比浆体中的密实填充作用[J].混凝土,2002,(3):38-40.
    [53]张永娟,张雄.矿渣微粉颗粒分布与其水泥流动性的灰色关联[J].同济大学学报,2003, 31(12):1449-1453.
    [54]牛全林,杨静,冯乃谦.矿渣微粉粒径分布与其活性指数的灰色关联分析[A].第三届全国高性能混凝土学术研讨会论文集[C],2001.
    [55] F.M.Lea著,唐明述译.水泥和混凝土化学[M].第三版.北京:中国建筑工业出版社,1980.535.
    [56]蒲心诚.应用比强度指标研究活性矿物在水泥混凝土中的火山灰效应[J].混凝土与水泥制品,1997,(3):6-14.
    [57]袁润章,朱颉安,章丽云.评定粉煤灰的火山灰活性的研究[J].武汉建材学院学报,1982,(2):169.
    [58]袁润章,高琼英.矿渣的结构特性对其水硬活性的影响[J].武汉工业大学学报,1982,(1): 7-13.
    [59] M.Regourd. Blast-furnace slag hydration surface analysis[J].Cement and Concrete Research, 1983, 13(4):549-556.
    [60] R.F.Feldman, G.G.Carette, V.M.Malhotra. Studies on mechanism of development of physical and mechanical properties of high-volume fly ash concrete[J].Cement and Concrete Composities,1990,12(4):245-251.
    [61] E.E.Berry, R.T.Hemmings, B.J.Cornelious. Mechanism of hydration reactions in high volume fly ash pastes and mortars[J].Cement and Concrete Composites,1990,12(4):253-261.
    [62] E.E.Berry, R.T.Hemmings, M.H.Zhang, et al. Hydration in high-volume fly ash concrete binders[J].ACI Materials Journal,1994,91(4):382-389.
    [63] M.H.Zhang. Microstructure, crack propagation and mechanical properties of cement pastes containing high volumes of fly ashes[J].Cement and Concrete Research,1995,25(6): 1165-1178.
    [64] A.Xu, S.Sarkar. Microstructural development in high-volume fly ash cement system[J]. Journal of Materials in Civil Engineering,ASCE,1994(6):117-136.
    [65] K.Asaga, H.Kuga, S,Takahashi, et al. Effect of pozzolanic additives in the portland cement on the hydration rate of alite [A].Proceeding of the 10th International Congress on the Chemistry of Cement [C].Gothenbug: 1997,vol3:107.
    [66] H.F.W. Taylor. Cement Chemistry [M]. London: Thomas Telford Publishing, 1997.
    [67] K.Takemoto, H.Uchikawa.火山灰质水泥水化[A].第七届国际水泥化学会议论文选集[C].北京:中国建筑工业出版社,1985:340-370.
    [68] W.A.Gutteridge, J.A.Daiziel. Filler cement; the effect of the secondary component on the hydration of portland cement—part 2: fine hydraulic binders[J]. Cement and Concrete Research, 1990,20(5):778-782.
    [69] S.S.Beedle, G.W.Groxes. The effect of fine pozzolanic and other particles on the hydration ofC3S [J]. Advanced Cement Research, 1989,2(5):3-8.
    [70] Y.Maltis, J.Marched. Influence of curing temperature on the cement hydration and mechanical strength development of fly ash mortars [J]. Cement and Concrete Research, 1997,27(7):1009-1020.
    [71] F.Wei, M.W.Grutzeck, D.M.Roy. The retarding effects of fly ash upon the hydration of cement paste: the first 24 hours [J].Cement and Concrete Research, 1985,15(1):174-184.
    [72] F.Massazza, M.Daimon. Chemistry of hydration of cements and cementitious systems [A]. Proceedings of the 9th Internatrional Congress on the Chemistry of Cement [C]. New Delhi:1992,vol1:383-446.
    [73] P.C.Hewlett. Lea’s Chemistry of cement and Concrete [M].London: Arnold,1998,518.
    [74] K.C.Narang. Portland and blended cements [A]. Proceeding of the 9th International Congress on the Chemistry of Cement [C]. New Delhi:1992,vol1:213-257.
    [75] H.F.W.Taylor, K.Mohan, G.K.Moir. Analytical study of pure and extended portland cement paste:Ⅱ, fly ash and slag cement pastes [J]. Journal of the American Ceramic Society,1985,68(2):685-690.
    [76] N.Tenoutasse, S.A.Redco.混合材水泥的耐久性与其微结构间的关系[A].第八届国际水泥化学会议论文集(中译本)[C](下册).北京:中国建筑材料科学研究院,1987,3:63-69.
    [77] S.Diamond, D.Ravina, J.Lovell. The occurrence of duplex films on fly ash surfaces [J]. Cement and Concrete Research, 1980,10(2):297-300.
    [78] A.L.A.Fraay, J.M.Bijen, Y.M.Han. The reaction of fly ash in concrete: a critical examination [J]. Cement and Concrete Research, 1989,19(3):235-246.
    [79] R.Hardtl. The pozzolanic reaction of fly ash in the connection with different types of cement [A]. Proceeding of the 10th International Congress on the Chemistry of Cement [C]. Gothenbury: 1997,vol3:82.
    [80] K.Luke.K,F.P.Glasser.Selective dissolutin of hydrated blast furnace slag cements[J].Cement and Concrete Research,1987,17(2):273-282.
    [81] S.A.Rodger, G.W.Groves. The microstructure of tricalcium silicate/pulverized fuel ash blended cement pastes [J]. Advanced Cement Research, 1988,1(2):84-91.
    [82] S.A.Rodger, G.W.Groves. Electron microscopy study of ordinaryportland cement and ordinary porland cement_pulverized fuel ashblended pastes [J]. Journal of the American Ceramic Society, 1989, 72 (6): 1037-1039.
    [83] H. Uchikawa, S. Uchida, S. Hanchara. Element distribution on the polished surface of hardened cement pastes estimated by EPMA with ultra high speed wide area multianlyser [J]. Il Cemento, 1987(2):117-130.
    [84]王培铭,陈志源,H.Scholz.粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学报,1997,25(4):475-479.
    [85] S. Ohsawa,K. Asaga,S. Goto,etal.Quantitative determination of fly ash in the hydrated fly ash-CaSO4·2H2O-Ca(OH)2 system[J].Cement and Concrete Research,1985,15(2):357-366.
    [86] L.Lam,Y.L.Wong,C.S.Poon.Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J].Cement and Concrete Research,2000,30(5):747-756.
    [87] S.Li, D.M.Roy ,A.Kumar. Quantitative determination of pozolanas in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume[J].Cement and Concrete Research,1985,15(6):1079-1086.
    [88] S.K.Antiohos, A.Papageorgiou, V.G.apadakis, et al. Influence of quicklime addition on the mechanical properties and hydration degree of blended cements containing different fly ashes[J].Construction and building materials,2008,22(6):1191-1200.
    [89] Y.M.Zhang, W.Sun,H.D.Yan. Hydration of high-volume fly ash cement pastes[J].Cement and Concrete Composites,2000,22(6):445-452.
    [90] K.Luke, F.P.Glasser. Internal chemical evolution of the constitution of blended cements[J].Cement and Concrete Research,1988,18(4):495-502.
    [91]陈益民,张洪滔,林震.三峡大坝粉煤灰的水化反应速率与大坝混凝土贫钙问题[J].水利学报,2002(8):7-11.
    [92]黄士元,李志华,程吉平.粉煤灰-Ca(OH)2-H2O系统中的反应动力学[J].硅酸盐学报,1986,14(1):191-197.
    [93]朱蓓蓉,杨全兵,吴学礼.I级粉煤灰火山灰反应性研究[J].混凝土与水泥制品,2002(1):3-6.
    [94]张云升,孙伟,郑克仁,等.水泥-粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版),2006,36(1):18-123.
    [95]郑克仁,孙伟,贾艳涛,等.水泥-矿渣-粉煤灰体系中矿渣和粉煤灰反应程度测定方法[J].东南大学学报(自然科学版),2004,34(3):361-365.
    [96]胡曙光,何永佳,王晓,等.不同养护制度下混合水泥反应程度的研究[J].武汉科技学院学报,2005,18(12):33-36.
    [97]胡曙光,王晓,吕林女,等.煤矸石对硅酸盐水泥水化历程的影响[J].水泥,2005(8):5-7.
    [98] P.Termkhajornkit, T.Nawa, K.Kurumisawa. Effect of water curing condiions on the hydration degree and compressive strengths of fly ash-cement paste[J].Cement and Concrete Composites,2006,28(9):781-789.
    [99] S.Y.Huang, J.P.Cheng. The evaluation of pozzolanic reactivity of fly ashes[A]. Proceedings of the 8th international congress on the chemistry of cement[C], Brazil,1986,3:41-45.
    [100]贾艳涛.矿渣和粉煤灰水泥基材料的水化机理研究[D].硕士学位论文,南京:东南大学,2005.
    [101] GB/T12960-2007,水泥组分的定量测定[S].中华人民共和国国家标准.
    [102] R.Kondo, S.Ohsawa. Proceedings of 5th international symposium on the chemistry of cement[C],Tokya,1968, 4,255-262.
    [103] S.Takashima. Review of the 12th general meeting.Cement Associaion of Japan,Tokyo, 1958:12.
    [104] E.Demoulian, C.Vernet, F.Hawthorn, etal. Determination de la tenrur en laitier dans les ciments par dissolution selectives[A]. Proceedings of the 7th international congress on the chemistry of cement[C], Paris:1980,3:151-156.
    [105] F.J.Levelt, E.B.Vriezen, R.V.Galen. Determination of the slag content of blast furnace slag cements by means of a solution method[J].Zement-Kalk-Gips,1982,35:96-99.
    [106] H.C.Ernitroy. Zement-Kalk-Gips. (English Translation),1987,40:270.
    [107] Anon. European committee for standardization.Methods of testing cement-quantitative determination of constituents.Pr ENV 196-4.Brussels1982.BSI Document No.82/11931.
    [108] R.Goguel. A new consecutive dissolution method for the analysis of slag cements[J].Cement concrete and aggregate,1995,17(1):84-91.
    [109]J.S.Lumley, R.S.Gollop, G.K.Moir, et al. Degrees of reaction of the slag in some blends with portland cements[J].Cement and Concrete Research,1996,26(1):139-151.
    [110]张福根,荣跃龙,周伟麟.粒径测量及用于磨料的各种颗粒仪器[J].中国粉体技术,2000, 6(1):26-29.
    [111]中国建材研究院水泥所编著.水泥性能及其检验[M].北京:中国建材工业出版社,1994 :194-198.
    [112]沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉理工大学出版社,1991:141.
    [113]T.C.Powers,T.L.Brownyard. Studies of the physical properties of hardened Portland cement paste[A].Bulletin 22 of the Research Laboratories of the Portland Cement Association[C].The Portland CementAssociation,Chicago,1948:252.
    [114]L.G.Parrott , R.G.Patel, D.C.Killoh,etal. Effect of age on diffusion in hydrated Alite cement[J]. Journal of the American Ceramic Society,1984,67(4):233-237.
    [115]B.E.Jazairi,J.M.Illston.A simultaneous semi-isothermal method of thermogravimetry[J], Cement and Concrete Research,1977,7:247-258.
    [116]H.F.W.Taylor,K.Mohan,G.K.Moir. Analytical study of pure and extended Portland cement pastes:Ⅰ,pure Portland cement pastes, andⅡ,fly ash and slag-cement pastes[J]. Journal of the American Ceramic Society,1985,68(12):680-690.
    [117]P.Smith.Resistance to fire and high temperatures, Significance of Tests and Properties of Concrete and Concrete Making Materials[S]. ASTM STP 169 C,1994:282-295
    [118]李永鑫.含钢渣粉掺合料的水泥混凝土组成、结构与性能的研究[D].博士学位论文.北京:中国建筑材料科学研究院,2003.
    [119]陈绍龙,张朝发,李福州.水泥生产破碎与粉磨工艺技术及设备[M].北京:化学工业出版社,2007.11-12.