水泥基电磁防护吸波多功能复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基电磁防护吸波复合材料(CEMC)是将电磁波转化成其它形式的能量而使电磁波耗散掉的一种建筑功能材料,它对建筑物的防护、电磁污染的净化、电磁信息的保密和地面军事建筑的隐身具有重要民用与军事意义。已有CEMC存在诸多问题,既包括组合结构、耐久性、功能性设计方面的问题,又包括频带窄、吸收效能低、稳定性差、环境适应差和质量重、成本高等材料自身的问题。严重制约了其在所须的建筑工程,尤其是在复杂地理与气候环境作用下建筑结构中的应用。
     论文针对这些问题,提出了新的设计理念,通过对CEMC的组成、结构与性能进行系统的研究,研究开发了基于球型谐振腔理论具有对电磁波吸收、散射与谐振损耗功能的CEMC吸波体设计方法;研究并掌握了其组成、结构与性能的相关规律和集吸波、抗裂、保温、耐久和环保于一体的高性能水泥基复合材料设计与制备关键技术,为该类材料的设计、制备及应用提供了重要的依据和理论指导。
     本文进行的主要工作和取得的重要成果有:
     运用球型谐振腔与球型颗粒瑞利散射原理,设计制备出具有吸收、散射和谐振损耗功能的结构单元:壳—核结构球型吸波谐振器。在此基础上,提出CEMC的理想结构模型。大量既充当透波骨料又充当球型谐振腔的吸波谐振器均匀分散于经辅助胶凝材料、聚合物与纤维改性后的水泥基体中,改善了电磁波在材料中的传输通道,降低表面反射,增加电磁波在球型腔体内的谐振损耗,显著提高了CEMC的吸波性能,改善了CEMC的物理力学性能、韧性和耐久性能,为制备CEMC提供了理论指导。
     确定了吸波谐振器的组成材料,它是以超轻多孔结构透波骨料为核,以电阻型吸波组分为壳,通过特殊的工艺制备得到。根据电磁学理论,建立了粒径为d的吸波谐振器散射的空间几何模型,并以此为研究对象,推导出吸波谐振器的散射、吸收与谐振损耗数学表达式,准确描述了电磁波入射到吸波谐振器表面时的散射、吸收与谐振损耗机理,对实现CEMC电磁波的高效吸收与频带的拓宽提供了理论依据。在此基础上,通过对吸波谐振器组成材料的结构与性能研究,确定了其配料与制备工艺关键参数,制备出粒径为0.6~4.75mm,堆积密度为490 kg·m-3,筒压强度为2.2 MPa,30 min吸水率为12.3%的壳—核结构吸波谐振器。掌握了壳—核结构吸波谐振器的制备工艺,通过数学分析与演算,建立了吸波谐振器壳层厚度控制数学关系式,实现了吸波谐振器结构、性能与吸波功能的可设计与可控制性,为CEMC的吸波体设计提供了关键功能骨料。
     系统研究了CEMC基体材料的性能以及吸波谐振器对其性能的影响规律。结果表明:辅助胶凝材料、聚合物和纤维对基体材料的协同改性作用,可显著提高基体的物理力学性能与韧性;随电磁波频率的变化,基体的厚度、水胶比、水化龄期、吸波剂与吸波谐振器的颗粒特征参数对CEMC基体材料的吸波性能影响差异较大;通过控制材料的厚度、水胶比、吸波谐振器参数并结合复掺辅助胶凝材料、纤维与聚合物技术,可制备出高吸收损耗,物理力学性能优良的CEMC;确定了配制CEMC的主要技术参数,提出其配合比设计方法。
     探明了CEMC的密度与强度特性,分别建立了改性基体与吸波谐振器两介质体的密度与强度数学模型,该模型反映了CEMC的密度与强度形成机理。并结合耐久性与功能性试验,揭示了聚合物改性与纤维乱向分布形成三维网络互穿结构以及吸波谐振器的内养护作用,使材料结构密实是提高CEMC耐久性与抗裂性的本质原因。吸波谐振器的高闭孔率保证了CEMC的低吸水率和高气孔率,减弱空气的对流是提高CEMC的保温性能主要原因。以上共同匹配作用,实现了CEMC的高性能化与功能的多样化。
Cement-based composites with electromagnetic protection and microwave absorbing (CEMC) are buiding functional materials which can consume electromagnetic wave as energy of other form.lt plays important roles in civilian and military use which are protection of buildings, secrecy maintaining of electromagnetic information and stealth of surface structures. Pre-existing CEMC have many designing problems such as structure, durability and function. They include narrow frequency range, low absorbing efficiency, poor stability, poor suitability to invironment, heavy weight and high cost which seriously limited its application especially for complex geography and climatope conditions.
     In connection with those problems,new designing concepts have been raised.Through systemic investigation on composition, structure and performances of CEMC and based on spheroidal resonant cavity theory, methods of designing wave absorbing materials hve been studied and explored whose functions are electromagnetic wave absorption, scatterance and spheroidal energy reduction. Relative disciplines of composition, structure and performances were mastered, high-performance cement-based materials were designed and produced that were wave absorption, splitting resistance, heat preservation, durability and environmental protection. Significant basement and theoretical guidance were provided for designing, production and application of the materials.
     In this article, the main tasks and achievements are as below:
     Using spheroidal resonant cavity and spheroidal powder ray leigh scattering theory, structural unites with the functions of absorbing, scattering and wearing have been designed and produced which were core-stone and wave-absorbing spheroidal resonant equipments. Furthermore, the ideal structural model CEMC of was proposed. Lots of wave-absorbing spheroidal resonant equipments that functioned as wave-permeating aggregates were evenly distributed in cement-based materials whose performances were improved by assistant cementitious materials, polymer and fiber. Then, the transporting tunnels for wave in materials have been improved, surface reflectance was reduced, resonance loss of wave in materials was increased, wave-absorbing performances of CEMC were greatly enhanced, physical performances of strength, toughness and durability were improved. So, theoretical guidance was offered to production of CEMC.
     The constitution of microwave absorbing resonator has been fixed. The core of it is ultralight multiaperture wave-permeating aggregate. Through special technique, microwave absorbing resonator can be obtained. According to electromagnetics theories, special model that is microwave absorbing resonator scattering with radius of d has been established. Meanwhile, mathematical formula of microwave absorbing resonator'scattering, absorption and resonant loss has been exactly deduced which offered theoretical guidance to realization efficient absorption and bands'broadening of CEMC electromagnetic wave.Furthermore, through investigation on microwave absorbing resonator materials'structure and performance, the main paramaters of its charge mixture and producing technique have been fixed.Its grain size was 0.6-4.75mm, stacking density was 490 kg·m-3, crushing strength is 2.2 MPa and water absorption during the first 30 minutes was 12.3%. The preparation technology of microwave absorbing resonator with core-stone structure has been mastered. Through mathematical calculations, formula concerning its controlling of thickness was established. The possibilities of designing and controlling were realized to supply designing of CEMC with important functional aggregate.
     Performances of high-performance CEMC Materials and influence of microwave absorbing resonator on its characters have been systematically studied.Results showed that the cooperated roles of assitant cementitious materials, polymer and fibre on base materials can greatly improve its physical strength and toughness; accompanied with changes of electromagnetic waves of frequency, the influence of base thickness, water to cement ratio, hydration time, absorber and characteristic parameters of particles on wave-absorbing performance of CEMC-based materials changed a lot; through controlling materials'thickness, water to cement ratio and microwave absorbing resonator parameters and connecting technique of adding assitant cementitious materials, polymer and fiber, high-performance and high loss-absorbing CEMC with good physical and mechanical properties have been produced; the main technique parameters of composition of CEMC have been fixed and methods of mix design has been raised.
     Density and strength were made clear, density and strength formation models of two medium that are high-performance modified base and microwave absorbing resonator have been estabished which showed mechanism of CEMC density and strength formation. Furthermore, connecting durability and function experiments, three-dimensional crossing structure formed by modified polymer and fiber and inner maintenance of microwave absorbing resonator were the essential causes for improvement of durability and anti-crack performance; high rate of blind hole of CEMC ensured low water-absorbing rate and high air-hole rate. It is the main cause for increasing heat preservation performance; what are above functioned together to realize the high performance and multi-fuction.
引文
[1]王锦成.电磁屏蔽材料的屏蔽原理及研究现状.工新型材料.2002,30(7):16-18.
    [2]赵玉峰,肖瑞,赵东平等.电磁辐射的抑制技术.北京:中国铁道出版社.1980:10-19.
    [3]钟克煌,李中怡.屏蔽电磁波干扰的涂料[J].化工新型材料.1989,17(3):33-35.
    [4]C.Fray, A.Papiernik. Electromagnetic Properties of Shielded Ring Lines and Attenuation of the Fundamental Dipolar Mode[J]. Microwave Theory and Techniques. IEEE Transactions.1979,27(4):334-340.
    [5]K.B.Cheng, S.Ramakrishna, K.C.Lee. Electromagnetic Shielding Effectiveness of Copper/Glass Fiber Knitted Fabric Reinforced Polypropylene Composites [J]. Composites Part A:Applied Science and Manufacturing.2000,31(10):1039-1045.
    [6]孙福昌.微波辐射对人体的危害及防护[J].内蒙古广播与电视技术.1994,(2):180-183.
    [7]宋耀忠,陈浩然.高频电磁辐射防护材料的研究[J].环境工程.1995,13(5):33-37.
    [8]杜品森.高频电磁辐射对人体的危害及防护[J].云南环境科学.1995,14(3):57-59.
    [9]唐世钧,王保华,钟季康.生物医学电磁学非热效应现象与机理[J].国外医学生物医学分册.1998,21(1):12-19.
    [10]陈国璋,陈惠晓.谈谈生物电磁学研究热点—非热效应.物理.1998,27(3):151-55.
    [11]冯桂山.计算机泄密机理及其防护措施介绍.宇航计测技术.1994,13(1):27-32.
    [12]单国栋,戴英霞,王航.计算机电磁信息泄露与防护措施.电子技术应用.2002,(4):6-8.
    [13]高枚纲,张苏慧.电磁辐射的生物效应.安全与电磁兼容.2002,(6):49-52.
    [14]D.A.Halls, S.G,Rooney. Controlling the Tempest Adaptive Management in Advanced ATM Control Architectures[J]. IEEE Journal on Volume.1998, (3):414-423.
    [15]Hertfelder, B.J.Kummerer. Classical Analogs of Quasifree Quantum Stochastic Processes Given by Stochastic States of the Quantized Electromagnetic Field[J]. Mathematical Phys. 2001,(42):1006-1017
    [16]Wang Qun, Zhang Xiaoning, Mao Qianjin. Preparation of Modified Textiles Possessed of Absorbing and Shielding Characterizations[C].The 3rd International Symposium on Electromagnetic Compatibility, Beijing,2002:589-594.
    [17]廖海军,张超灿,赵清荣.防电磁辐射水泥基复合材料的性能与应用[J].房材与应用,2004,32(2):6-8.
    [18]黄世峰,徐荣华,刘福田等.水泥基功能复合材料研究进展及应用[J].硅酸盐通报,2003,22(4):58-63.
    [19]Kharkocsky S N, Hasar U C, Akay M F, et al. Measurement and monitoring of microwave reflection and transmission properties of cement-based materials for propagation modeling[C]. Vehicular Technology Conference. Greece:Rhodes.2001, vol.2:1202-1206.
    [20]Kharkocsky S N, Akay M F, Hasar U C, et al. Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens[J]. IEEE. Traps. Instr.& Meas.2002,51 (6):1210-1218.
    [21]葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性[J].功能材料与器件学报.2003,9(1):67-70.
    [22]熊国宣,邓敏,徐玲玲等.水泥基复合材料的吸波性能[J].硅酸盐学报.2004,32(10):1281-1284.
    [23]熊国宣,徐玲玲,邓敏等.掺杂Ti02水泥的吸波性能与力学性能研究[J].功能材料与器件学报.2005,11(1):87-91.
    [24]杨海燕,李劲,齐政等.钢纤维混凝土的吸波性能研究[J].功能材料.2002,33(3):341-343.
    [25]Chung D D L. Cement reinforced with short carbon fibers:a multifunctional material. Composites:Part B.2000,31 (6-7):511-526.
    [26]Yamane T, Numata S, Mizumoto T, etal. Development of wide-band ferrite fin electromagnetic wave absorber panel for building wall[C]. Electromagnetic Compatibility, 2002 International Symposium on Minnesota:Minneapolis.2002, vol.2:799-804.
    [27]管洪涛.石英和水泥基体平板吸波材料研究[D].大连:大连理工大学,2006.
    [28]张雄,刁志臻.建筑吸波材料及其开发利用前景[[J].建筑材料学报.2003,6(1):72-75.
    [29]Morimoto M, Kanda K, Hada H, et al. Development of electromagnetic absorbing board for wireless communication environment[C]. In Proceedings of the Coryerence of Architectural Institute of Japan.1998, D-1:1069-1070.
    [30]Oda.M. Radio wave absorptive building materials for depressing multipath indoors. Electromagnetic Compatibility[C]. International Symposium. Japan:Tokyo.1999:492-495.
    [31]陈兵,张东.新型水泥基复合材料的研究与应用[J].新型建筑材料.2000,(4):28-30.
    [32]唐明,陈勇.论混凝土材料的高功能化混凝土[J].2001,(3):14-18.
    [33]许卫东,杨数,张豹山等.铁氧体水泥基微波吸收复合材料的初步研究[J].兵器材料科学与工程.2003,26(6):6-9.
    [34]娄明连,阐涛.复合磁介质吸波材料[[J].磁性材料及器件.2002,33(5):13-15.
    [35]Jingyao Cao, D.D.L. Chung. Colloidalhite as an admixture in cement and as a coating on cement for electromagnetic interference shielding[J]. Cement and Concrete Research,2003, 33(12):1737-1740.
    [36]Jingyao Cao, D.D.L. Chung. Coke powder as an admixture in cement for electromagnetic interference shielding[J]. Letters to the Editor Carbon.2003,41:2433-2436.
    [37]Hu, S.G.; Tian, K.; Ding, Q.J.Design and test of new cement based microwave absorbing materials[C]. The 8th International Symposium on Antennas, Propagation and EM Theory Proceedings.2008:956-959.
    [38]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [39]谭宏斌,薛丽皎,林友军等.石墨、不锈钢纤维、焦炭对水泥基材料电磁屏蔽效能的影响[J].混凝土与水泥制品.2007,(5):43-45.
    [40]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社.1989:16-82.
    [41]宛德福,罗世华.磁性物理[M].北京:电子工业出版社.1987:259-308.
    [42]江家京,王春芳,孟海乐等.吸波建筑材料的研究及应用进展[J].科技情报开发与经济.2005,15(1):132-133.
    [43]Sihai Wen, D.D.L. Chung. Electromagnetic interference shielding reaching 70dB in steel fiber cement[J]. Cement and Concrete Research,2004,34(3):329-332.
    [44]杨海燕,李劲,叶齐政等.钢纤维混凝土的吸波性能研究[J].功能材料,2002,33(3):341-343.
    [45]粟穗.金属纤维混凝土在防范电磁感应及辐射中的作用[J].混凝土与水泥制品,2000(21):210-212.
    [46]戴银所,陆春华,倪亚茹等.波浪型钢纤维水泥砂浆吸波性能的研究[J].新型建筑材料,2009,36(12):27-31.
    [47]张妃二,姚立宁.碳纤维混凝土吸波耗能研究纤维复合材料[J].纤维复合材料,2003,20(1):42-45.
    [48]午丽娟,沈国柱,徐政.掺铁氧体和SiC纤维水泥基复合材料的吸波性能硅酸盐学报,2007,35(7):904-908.
    [49]李克智,王闯,李贺军等.碳纤维增强水泥基复合材料电磁性能的研究[J].稀有金属材料与工程,2007,36(10):1702-1708.
    [50]康青.手性吸波混凝土研制与展望[J].材料导报.2005,19(4):74-76.
    [51]熊国宣.水泥基吸波材料[D].南京:南京工业大学.2005.
    [52]科夫涅里斯特,拉扎列娃,拉瓦耶夫著,蔡德录,刘承钧译.微波吸收材料[M].北京:科学出版社.1985.
    [53]吴晓光,车哗秋编译.国外微波吸收材料[M].长沙:国防科技大学出版社.1992.
    [54]陈抗生.电磁场与电磁波[M].北京:高等教育出版社.2003.
    [55]邢丽英等.隐身材料[M].北京:化学工业出版社.2004.
    [56]M. J. Ptikethly. Radar absorbing materials and their potential absorbers and scatters[J]. IEEE Colloquium on. UK:London.1992:71-72
    [57]阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版杜,1998,269-284.
    [58]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1989,16-82.
    [59]Sherman RD, Middleman LM, JacobsSM. Polymer Engineering and Science. 1983,23(1):36-39.
    [60]孙鑫.高聚物中的孤子和极化子[M].成都:四川教育出版社.1987,197-199.
    [61]孙社营.吸波材料及其在舰船上的应用[J].材料开发与应用.1996,(4):43-48.
    [62]胡曙光.先进水泥基复合材料[M].北京:科学出版社.2009,104-108.
    [63]陈抗生.电磁场与电磁波.北京:高等教育出版社.2003,88-98.
    [64]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构.硅酸盐学报,2005(6).
    [65]段玉平,刘顺华,管洪涛等.非连续体吸波平板的设计制备及吸波机理分析[J].复合材料学报,2006(3):40-42.
    [66]戴银所,陆春华,倪亚茹等.粉煤灰在水泥基材料中吸波性能的探索[J].2009,23(5):62-64.
    [67]Ohama Y, Demura K, Kobayashi K, et al. Pore size distribution and oxygen diffusion resistance of polymer-modified mortars [J]. Cement and Concrete Research.1991,21 (1):169-178.
    [68]申爱琴,李祝龙,龚俊生等.聚合物乳液改性水泥砂浆[J].公路.2000,(7):41-44.
    [69]钟世云,袁华编著.聚合物在混凝土中的应用[M].北京:化学工业出版社.2003.
    [70]葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性[J].功能材料与器件学报.2003,9(1):67-70.
    [71]毛倩瑾,于彩霞.空心微珠表面金属化及其电磁防护性能研究[J].北京上业大学学报,2003,3(29):108-111.
    [72]杜玉成,黄坤良.空心微珠为基核的纳米隐形材料的制备研究[J].中国非金属矿上业导刊.2001(6):19-20.
    [73]Jaeruen Shim, Hyo-Tae Kim. Design of wave absorber for small conducting sphere[J]. Electronics letters.1998,34(19):1833-1834.
    [74]Jin Au Kong,译者:吴季等.电磁波理论[M].北京:电子工业出版社.2003,452-453.
    [75]杨晓华,陈传飞,杨博等.玻化微珠与闭孔膨胀珍珠岩的性能比较[J].新型建筑材料,2009(4):42-44.
    [76]唐耿平,程海峰,赵建峰等.空心微珠表面改性及其吸波特性[J].材料工程.2005(6):11-12.
    [77]Jaeuren Shim, Hyo.toe.Kim. Desing of wave absorber of small condueting sphere[J]. Electronics letters.1998.34(19):1833-1834.
    [78]步文博,徐洁,丘泰.吸波材料基础理论的探讨及展望[J].江苏陶瓷.2001,34(2):1-4.
    [79]Jaeruen Shim, Hyo-Tae Kim. Design of wave absorber for small conducting sphere [J]. Electronics letters.1998,34(19):1833-1834.
    [80]Jin Au Kong,译者:吴季等.电磁波理论[M].北京:电子工业出版社,2003:452-453.
    [81]葛副鼎,朱静,陈利民.超微颗粒吸收与散射截面[J].电子学报.1990,24(6):82-86
    [82]理黎明,徐政.吸波材料的微波损耗机理及结构设计[J].现代技术陶瓷,2004(2):31-34,
    [83]J.A斯特莱顿.电磁理论[M].科学出版社.1992,459.
    [84]赵彦波,刘顺华,管洪涛.水泥基多孔复合材料吸波性能研究[J].硅酸盐学报.2006,34(2):221-224.
    [85]管洪涛,刘顺华,段玉平等.EPS水泥基复合材料的吸波性能研究[J].建筑材料学报.2006,9(4):459-463.
    [86]管洪涛,刘顺华,段玉平等.EPS水泥复合材料的吸波性能与抗压性能研究[J].材料科学与工程学报.2006,24(4):1-5.
    [87]杨晓华,陈传飞,杨博等.玻化微珠与闭孔膨胀珍珠岩的性能比较[J].新型建筑材料,2009,(4)42-44.
    [88]胡曙光,王发洲著.轻集料混凝土[M].北京:化学工业出版社,2006.
    [89]李家驹.陶瓷工艺学[M].北京:轻工业出版社.2001,31-49.
    [90]周宜吉,王浩,吴曙亮.淤泥—一种新型的矿产资源[J].江苏地质.2003,27(3):185-186.
    [91]王发洲,曾兴华,黄劲.利用东湖淤泥制备超轻陶粒的研究[J].低温建筑技术.2008(4):4-6.
    [92]李响,沈康,刘利亚等.膨胀石墨在阻燃材料中的应用及其表面改性[J].阻燃材料与技术.2001(5):11.
    [93]王平.导电涂料[J].现代涂料与涂装.1997(2):6-11.
    [94]宋新江,卢廷浩,李炳蔚.砂样平均粒径计算方法探讨[J].河海大学学报(自然科学版).2008(1):121-124.
    [95]Horoshi Mihi. Cost reduction effect due to lightweight embankment[C]. Proceeding of the International Workshop on Lightweight Geo-Materials. Tokyo,Japan.2002,14-16.
    [96]徐定华,徐敏.混凝土材料学概论[M].北京:中国标准出版社.2002.
    [97]胡曙光.聚合物水泥基复合材料其界面增强的机理研究[D].武汉:武汉工业大学,1992.
    [98]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社.1999.
    [99]Holland T C.Use of Silica-fume Concrete to repair Abrasion-erosion Damage on the Kizna Dam stilling Basin.2th CANMET/ACI International Conference on Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete SP-91.1986.
    [100]Gaze ME,Crammond NJ.The formation of thaumasite in a cement:lime:sand mortar exposed to cold magnesium and potassium sulfate solutions[J].Cement and Concrete Composites.2000, (22):209-220.
    [101]Hill,E.A.Byars,J.H.Sharp, eta,An experimental study of combined acid and sulfate attack of concrete[J].Cement and Concrete Composite.2003, (25):997-1003.
    [102]A.P.Barker, D.W.Hobbs.Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5 ℃ [J]. Cement and Concrete Composites.1999, (21):129-137.
    [103]Sunil Kumar, C.V.S.Kameswara Rao. Strength loss in concrete due to varying sulfate exposures[J]. Cement and Concrete Research.1995,25(1):57-62.
    [104]梁咏宁,袁迎曙.超声检测混凝土硫酸盐侵蚀的研究[J].混凝土.2004,8:15-17.
    [105]Fevziye Akoz,,Fikret Tiirker, Sema Koral, Nabi Yiizer. Effects of sodium sulfate concentration on the sulfate resistance of mortars with and without silica fume [J].Cement and Concrete Research.1995,25(6):1360-1368.
    [106]Cao HT, Buoea L, Ray A, Yozghadian S. The Effect of Cement Composition and PH of Environment on Sulfate Resistance of Portland cements and blended cement[J]. Cement Concrete Composite.1997,19(2):61-71.
    [107]Carlson R W, Reading T J. Model Study of Shrinkage Cracking in Concrete uilding Walls [J]. ACI Structural Journal.1988,85(4):396-403.
    [108]Aeles Christos A.Hover Kenneth C.Influence of Mix Proportions and onstruction Operations on Plastic Shrinkage Cracking in Thin Slabs[J].ACI Materials Journal.1988,85(6):497-502.
    [109]Hwai-chung wu,Yun Mook Lim,VCLi. Application of Recycled Tire Cord in concrete for Shrinkage Crack Control[J]. Jornal of Materials Science Letters.1996, (15):1828-1831.
    [110]Miroslaw Grzybowski,Surendra P Shah. Shrinkage Cracking of Fibe Reinforced Concrete[J].ACI Materials Journal.1990,87(2):138-148.
    [111]Christos A,Hover Kenneth C.Influence of Mix Proportions and Construction Operations on Plastic Shrinkage Cracking in Thin Slabs.ACIMaterials Journal,1988,85(6):497-502.
    [112]杨医博.化学外加剂和矿物掺合料对砂浆干缩性能的影响研究[D].广州:华南理工大学.2002:32-68.
    [113]Paul P.Kraai.A Proposed Test to Determine the Cracking Potential Due to Drying Shrinkage of Concrete[J].Concrete Construction.2005:775-778.