压缩空气储能系统若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,电力的消耗量持续增长,但是电力的生产能力以及输运网络的建设等的发展相对滞后;可再生能源(风能、太阳能等)电力在总的电力供应中的份额逐渐增加,但是可再生能源的发电存在固有间歇性的缺点;在用户侧,电力的消耗在一天中并不是恒定的,具有能耗的峰值和低谷等,这些问题增加了目前电力系统的复杂性以及不安全性。迫切需要引进新技术来解决电力生产、输运、消耗过程中面临的问题。电力储能系统通过一定介质存储电能,在需要时将所存能量释放发电。发展电力储能系统是解决目前可再生能源大规模利用瓶颈的迫切需要,也是提高常规电力系统效率、安全性和经济性的有效途径和发展分布式能源系统的关键技术。
     本文研究了基于压缩空气的储能系统的性能。该技术以压缩空气的形式存储用电低谷时的盈余电力或者来自可再生能源的电力;当用电高峰时,压缩空气吸收外界热量,膨胀做功产生电力,满足用电高峰需要。本研究首先回顾了压缩空气储能技术的研究进展,并进行了压缩空气储能系统的热力学分析,对比分析了不同类型的压缩空气储能技术的性能,为发展该技术提供参考。
     为了进一步探讨压缩空气储能存在的问题以及高压、绝热或者辅助热源的条件下的系统性能,研究者设计并搭建了小型压缩空气实验台。实验台主要包括高压压缩机、高压储气罐、加热器、膨胀机、动力测试系统以及数据采集系统。实验中,通过一台多级、往复式压缩机得到260bar的高压压缩空气,如果不计及压缩热存储,压缩机的效率在30%~43%之间,如果计及压缩热的回收,其效率将达到42~65%。以储气罐为研究对象,整个储能过程是一个变压的过程,储能过程的效率为25%~35%(不计及压缩热存储);如果存储压缩热,那么其效率将为35%~60%。膨胀机的出功在200~1650W之间,其气动效率为10%~35%。由于本实验采用的压缩机、膨胀机等部件的效率不太高,因此系统的总体效率不高,储气压力和膨胀压力对系统总体性能的影响不明显。
     依据实验结果,本研究讨论了提高储能系统总体性能的几种方法:①选用或者设计适合于本实验的高效率压缩机和膨胀机将可以大幅度提高压缩空气储能系统的性能,储能效率最大可以在65%以上。②储能过程中多级压缩机设计为变压工作模式,取代多级压缩机恒压工作、变压储气过程,将可以相对节省压缩空气过程能量;释能过程中,如果选用变压比的膨胀机,取代恒压工作的多级膨胀机,那么释能过程将可以使系统总输出功相对增加。③通过与常规动力系统相耦合,形成混合动力系统,可以增加储能系统的输出功,提高其效率。并且混合动力系统具有较高的总体效率,最大增幅在10%以上,提高了传统动力系统的燃料利用率,降低单位出功的温室气体排放,降幅可达40%以上。本部分的研究表明,压缩空气/液氮储能系统具有较好的工作性能和较强的应用灵活性,是一种值得研究和发展的能源动力系统。
     本文最后给出了结论和展望,提出了进一步开展压缩空气储能系统研究工作的重点。
Nowadays, there is a growing demand in electricity, while the corresponding request of electrical production and the transmission grid construction are lagged far behind. The percentage of the renewable energy (solar energy, wind energy, etc.) in the total power production is growing, but it comes along with inherent drawbacks, such as fluctuation and intermittence. On the customer side, the electricity consumption is not constant within a day or a week, in which there are peak and off-peak durations. All these problems make current electricity system complicated and unsafe. It is in great demand to introduce Electrical Energy Storage (EES) technology to solve the problems generating in the processes of electricity production, transmission and consumption. EES refers to a process of converting electrical energy from a power network into a form that can be stored for converting back to electrical energy when needed. The development of EES is a key way to break the bottleneck of the use of renewable energy in a large scale, and it also could increase the traditional power system efficiency, security and economy, and enhance the utility of distributed generation system.
     In this dissertation, the performance of the energy storage system based on compressed air is studied. With this system, the off-peak electricity from either traditional power plant or renewable energy plant is stored in a form of compressed air by high pressure compressor. After a certain time, when the electricity is in peak demand, the compressed air is released, then absorbs some heat, and drives an expander to generate power, which will feedback to the grid. Firstly, the research progress of Compressed Air Energy Storage (CAES) system is reviewed. Some research topics are highlighted, such as high pressure, thermal energy storage. And then, the thermodynamic analysis and comparisons are made among three configurations of CAES system, which provides a reference for CAES development.
     An experimental system is set up to explore further the performance of the CAES system, especially on high pressure, thermal storage etc.. The rig is made up of a high pressure compressor, high pressure cylinders, an electrical heater, an expander, a power measurement system and data acquisition system. This system was run successfully in a laboratory, which indicates the feasibility of lab-scale CAES system with high pressure. In experiments, the air could be compressed to be as high as260bar. The efficiency is in the range of30%~43%without compressed heat storage, while it could be35%~63%if the heat is taken into account. The pressure during energy storage process is changeable in cylinders, and the process efficiency is about25~35% (without compressed heat storage) or35~60% (with compressed heat storage). The power output of the expander is in the range of200-1650W, and the efficiency is about10~35%. The total system efficiency is not high due to compressor and expander efficiencies are not very good, and as a result the storage and expansion pressures do not affect the whole system too much.
     Based on the experimental analysis, some solutions to improve the whole system efficiency are discussed,(i) It could increase the storage system performance significantly by using more suitable components such as compressor and expander with high efficiencies. The round trip efficiency of the storage system can be above65%.(ii) During the energy storage process, the compressor chain works in a ramping pressure mode instead of the normal one in series mode with constant pressure output could decrease total relative compression energy consumption. During the energy discharging process, the expander chain works in a sliding mode instead of the normal one in series mode with constant pressure inlet could increase relative total energy output.(iii) It can also increase the power output and efficiency to couple the storage system with traditional power systems such as diesel engine as a hybrid power configuration. The maximum efficiency of the hybrid systems could be increased more than10%. The relative Greenhouse Gas (GHG) emission of these two hybrid system are quite lower, which could be40%less than that of diesel engine only. This research indicates the hybrid systems enjoy better performances and flexibility, and present the promising development.
     In the final part, the conclusion and future research prospects are drawn.
引文
[1]GWEC. Global Wind Energy Outlook 2010. Brussels:Global Wind Energy Council; 2010.
    [2]Advanced Electricity Storage Technologies Programme-Energy Storage Technologies:a review paper: Australian Greenhouse Office; 2005. Report No.:ISBN:1921120371.
    [3]Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: A critical review. Progress in Natural Science 2009; 19(3):291-312.
    [4]Arsie I, Marano V, Rizzo G, Moran M. Energy and Economic Evaluation of a Hybrid Power Plant With Wind Turbines and Compressed Air Energy Storage. In, ASME,2006:633-641.
    [5]Chi-Jen Yang EW. Energy storage for low-carbon electricity. Durham: Climate Change Policy Partnership, Duke University; 2009.
    [6]Choi SS, Tseng KJ, Vilathgamuwa DM, Nguyen TD. Energy storage systems in distributed generation schemes. In:Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE; 2008; 2008. p.1-8.
    [7]Christian Doetsch SB, Daniel Wolf. Electrical Energy storage-Stage of the art technologies, fields of use and costs for large scale application. Fraunhofer, Germany: Institute for Environmental, Safety and Energy Technology UMSICHT; 2008.
    [8]Makansi J, Abboud J. Energy storage-the missing link in the electricity value chain. St. Louis:Energy storage council; 2002 May,2002.
    [9]van der Linden S. Integrating Wind Turbine Generators (WTG's) With GT-CAES (Compressed Air Energy Storage) Stabilizes Power Delivery With the Inherent Benefits of Bulk Energy Storage. In, ASME,2007:379-386.
    [10]Swider DJ. Compressed Air Energy Storage in an Electricity System With Significant Wind Power Generation. Energy Conversion, IEEE Transactions on 2007;22(1):95-102.
    [11]Mason J, Fthenakis V, Zweibel K, Hansen T, Nikolakakis T. Coupling PV and CAES power plants to transform intermittent PV electricity into a dispatchable electricity source, progress in photovoltaics: research and applications 2008(16):649-668.
    [12]Lund H, Salgi G, Elmegaard B, Andersen AN. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Applied Thermal Engineering 2009;29(5-6):799-806.
    [13]Cavallo A. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy 2007;32(2):120-27.
    [14]Lee S-S, Kim Y-M, Park J-K, Moon S-I, Yoon Y-T. Compressed Air Energy Storage Units for Power Generation and DSM in Korea. In: Power Engineering Society General Meeting,2007 IEEE; 2007; 2007. p.1-6.
    [15]Ackermann T, Soder L. An overview of wind energy-status 2002. Renewable and Sustainable Energy Reviews 2002;6(2002):67-128.
    [16]van der Linden S. Bulk energy storage potential in the USA, current developments and future prospects. Energy 2006;31(15):3446-3457.
    [17]Schainker RB, Nakhamkin M. Compressed-Air Energy Storage (CAES):Overview, Performance and Cost Data for 25MW to 220MW Plants. Power Apparatus and Systems, IEEE Transactions on 1985;PAS-104(4):790-795.
    [18]Kim YM, Favrat D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy 2009;35(1):213-220.
    [19]McLarnon FR, Cairns EJ. Energy Storage. In,1989:241-271.
    [20]Baalbergen F, Bauer P, Ferreira JA. Energy Storage and Power Management for Typical 4Q-Load. Industrial Electronics, IEEE Transactions on 2009;56(5):1485-1498.
    [21]Hoffman P, Ferrante J. Energy Storage Capacitors of High Energy Density. Nuclear Science, IEEE Transactions on 1971;18(4):235-239.
    [22]Imre G. Energy Storage for a Greener Grid. In: David H, Levi B, Levine M, Schwartz P, editors., AIP, 2008:376-392.
    [23]Ter-Gazarian A. Energy Storage for Power Systems. London: Peter Peregrinus Ltd.,1994.
    [24]Ribeiro PF, Johnson BK, Crow ML, Arsoy A, Liu Y. Energy storage systems for advanced power applications. Proceedings of the IEEE 2001;89(12):1744-1756.
    [25]Ibrahim H, Ilinca A, Perron J. Energy storage systems--Characteristics and comparisons. Renewable and Sustainable Energy Reviews 2008; 12(5):1221-1250.
    [26]Alfred JC. Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems. In, ASME,2001:387-389.
    [27]EIA. http://www.eia.gov/.In,2011.
    [28]Succar S, Williams RH. Compressed Air Energy Storage:Theory, Resources, and Applications for Wind Power, report; 2008 08 April 2008.
    [29]ERRI. EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications. Technical Report; 2003.
    [30]刘文毅,杨勇平,宋之平.压缩空气蓄能(CAES)系统集成及性能计算.工程热物理学报2005;26(Z 1):25-28.
    [31]刘文毅,杨勇平.微型压缩空气储能系统静态效益分析与计算.华北电力大学学报2007;34(2):1-3.
    [32]张文亮,丘明,来小康.储能技术在电力系统中的应用.电网技术2008;32(7):1-9.
    [33]王亚林,陈光明,王勤.压缩空气蓄能系统应用于低温制冷性能分析.工程热物理学报2008;29(12):1998-2002.
    [34]Najjar YSH, Zaamout MS. Performance analysis of compressed air energy storage (CAES) plant for dry regions. Energy Conversion and Management 1998;39(15):1503-1511.
    [35]Davidson BJ, Glendenning I, Harman RD, Hart AB, Maddock BJ, Moffitt RD, et al. Large-scale electrical energy storage. Physical Science, Measurement and Instrumentation, Management and Education, Reviews, IEE Proceedings A 1980;127(6):345-385.
    [36]刘文毅.压缩空气蓄能(CAES)电站热力性能仿真分析.北京:华北电力大学;2008.
    [37]Crotogino F. Compressed Air Storage. In:Energy autonomy: Storing Renewable Energies. Hannover, Germany,2006.
    [38]Glendenning I. Long-term prospects for compressed air storage. Applied Energy 1976;2(1):39-56.
    [39]Mack DR. Something new in power technology. Potentials, IEEE 1993;12(2):40-42.
    [40]Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S. Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy. In: European Wind Energy Conference, EWEC 2004; 2004 22-25 November 2004; London; 2004. p.8.
    [41]Schainker RB, Nakhamkin M, Kulkarni P, Key T. New Utility Scale CAES Technology: Performance and Benefits (Including CO2 Benefits). In: POWER-GEN International. Las Vegas, Nevada,2009:6.
    [42]Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science 2004;30(3):231-295.
    [43]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews 2007;11(9):1913-1965.
    [44]Philibert C. The present and future use of solar thermal energy as a primary source of energy. Paris: International Energy Agency; 2005.
    [45]Mills D. Advances in solar thermal electricity technology. Solar Energy 2004;76(1-3):19-31.
    [46]Donatini F, Zamparelli C, Maccari A, Vignolini M. High efficiency integration of thermodynamic solar plant with natural gas combined cycle. In:Clean Electrical Power,2007 ICCEP'07 International Conference on; 2007 21-23 May 2007; 2007. p.770-776.
    [47]Beukes J, Jacobs T, Derby J, Conlon R, Henshaw I. Suitability of compressed air energy storage technology for electricity utility standby power applications. In:Telecommunications Energy Conference,2008 INTELEC 2008 IEEE 30th International; 2008; 2008. p.1-4.
    [48]Swanbarton_Limited. Status of Electrical Energy Storage System:Dti; 2004.
    [49]Penberton D, Jewitt J, Pletka R, Fischbach M, Meyer T, Ward M, et al. Mini-compressed air energy storage for transmission congestion relief and wind shaping applications. New York: New York State Energy Research and Development Authority; 2008 July 2008. Report No.:NYSERDA Report 08-05.
    [50]Grazzini G, Milazzo A. Thermodynamic analysis of CAES/TES systems for renewable energy plants. Renewable energy 2008;33:1998-2006.
    [51]Vongmanee V, Monyakul V. A new concept of small-compressed air energy storage system integrated with induction generator. In:Sustainable Energy Technologies,2008 ICSET 2008 IEEE International Conference on; 2008; 2008. p.866-871.
    [52]EA_Technology. Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK:Dti; 2004.
    [53]Knowlen C, Williams J, Mattick AT, Deparis H, Hertzberg A. Quasi-isothermal expansion engines for liquid nitrogen automotive propulsion. In: SAE, SAE International,1997.
    [54]Bossel U. Thermodynamic Analysis of Compressed Air Vehicle Propulsion. In,2005.
    [55]陈鹰,许宏,陶国良,王宣银,刘昊,贾光政.压缩空气动力汽车的研究与发展.机械工程学报2002;38(11):7-11.
    [56]刘昊,张浩,罗新法,陈鹰.压缩空气动力汽车集成技术.机电工程2003;20(4):95-97.
    [57]Nakhamkin M, Wolk RH, Linden Svd, Patel M. New Compressed Air Energy Storage Concept Improves the Profitability of Existing Simple Cycle, Combined Cycle, Wind Energy, and Landfill Gas Power Plants. In: ASME. Vienna, Austria, ASME,2004:103-110.
    [58]Nakhamkin M, Chiruvolu M. Available Compressed Air Energy Storage (CAES) Plant Concepts. In: Power-Gen International. Minnestota,2007.
    [59]Nakhamkin M, Chiruvolu M, Patel M, Byrd S. Second Generation of CAES Technology-Performance, Operations, Economics, Renewable Load Management, Green Energy. In:POWER-GEN International. Las Vegas Convention Center, Las Vegas, NV,2009.
    [60]Akita E, Gomi S, Cloyd S, Nakhamkin M, Chiruvolu M. The Air Injection Power Augmentation Technology Provides Additional Significant Operational Benefits. In: ASME Turbo Expo 2007:Power for Land, Sea and Air; 2007 14-17, May 2007; Montreal, Canada: ASME; 2007.
    [61]Schainker RB, Nakhamkin M, Kulkarni P, Key T. New Utility Scale CAES Technology: Performance and Benefits (Including CO2 Benefits):EPRI; 2007.
    [62]Katsuhisa Y, Toshiya N. Optimal daily operation of electric power systems with an ACC-CAES generating system. In,2005:15-23.
    [63]Creutzig F, Papson A, Schipper L, Kammen DM. Economic and environmental evaluation of compressed-air cars. Environmental Research Letters 2009;4(4):1-9.
    [64]Huang KD, Tzeng S-C. Development of a hybrid pneumatic-power vehicle. Applied Energy 2005;80(1):47-59.
    [65]Huang K. D QKVaTKT. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD. Energy Conversion and Management,2009,50(5):1271-1278.
    [66]翟昕,俞小莉,刘忠民.压缩空气-燃油混合动力的研究.浙江大学学报(工学版)2006;40(4):610-614.
    [67]Ibrahim H, Younes R, Ilinca A, Dimitrova M, Perron J. Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas. Applied Energy 2010;87(5):1749-1762.
    [68]Wang S, Chen G, Fang M, Wang Q. A new compressed air energy storage refrigeration system. Energy Conversion and Management 2006;47(18-19):3408-3416.
    [69]郭中纬,朱瑞琪.冷热联供的空气制冷不可逆循环分析.工程热物理学报2004;25(增刊):9-12.
    [70]Nakhamkin M, Wolk RH, Linden Svd, Patel M. New Compressed Air Energy Storage Concept Improves the Profitability of Existing Simple Cycle, Combined Cycle, Wind Energy, and Landfill Gas Power Plants. In, ASME,2004:103-110.
    [71]Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management 2009;50(5):1172-1179.
    [72]Salgi G, Lund H. System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources. Applied Energy 2008;85(4):182-189.
    [73]Denholm P, Sioshansi R. The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy 2009;37(8):3149-158.
    [74]Zafirakis D, Kaldellis JK. Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks. Energy Policy 2009;37(5):1958-1969.
    [75]Lerch E. Storage of fluctuating wind energy. In:Power Electronics and Applications,2007 European Conference on; 2007; 2007. p.1-8.
    [76]Denholm P. Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage. Renewable Energy 2006;31(9):1355-1370.
    [77]Brooks FJ. GE Gas Turbine Performance Characteristics. New York: GE; 2000. Report No.: GER-3567H.
    [78]GE. Heavy duty gas turbine products: GE; 2009.
    [79]Greenblatt JB, Succar S, Denkenberger DC, Williams RH, Socolow RH. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy Policy 2007;35(3):1474-1492.
    [80]Personal Communication with ABAC UK LTD. In,2010.
    [81]Karalis AJ, Sosnowicz EJ, Stys ZS. Air Storage Requirements for a 220 Mwe CAES Plant as a Function of Turbomachinery Selection and Operation. Power Apparatus and Systems, IEEE Transactions on 1985;PAS-104(4):803-808.
    [82]http://company.ingersollrand.com. In.
    [83]左承基,钱叶剑,安达,欧阳明高,杨福源.气动发动机的实验研究.机械工程学报2007;43(4):93-97.
    [84]Jensen J. Energy Storage. London:Newnes-Butterworths,1980.
    [85]Giramonti AJ, Lessard RD, Blecher WA, Smith EB. Conceptual design of compressed air energy storage electric power systems. Applied Energy 1978;4(4):231-249.
    [86]http://www.boconline.co.uk. In,2010.
    [87]Nielsen L, Leithner R. Dynamic Simulation of an Innovative Compressed Air Energy Storage Plant-Detailed Modelling of the Storage Cavern. WSEAS TRANSACTIONS on POWER SYSTEMS 2009;4(8):253-263.
    [88]Fort JA. Thermodynamic analysis of five compressed-air energy-storage cycles. Richland, Washington: Pacific Northwest Laboratory; 1983 March 1983. Report No.:PNL-4639; Other: ON: DE83009470.
    [89]Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system:A review. Renewable and Sustainable Energy Reviews 2009;13(9):2225-2244.
    [90]Hasnain SM. Review on sustainable thermal energy storage technologies, Part II:cool thermal storage. Energy Conversion and Management 1998;39(11):1139-1153.
    [91]Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 2010;14(2):615-628.
    [92]Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009;13(2):318-345.
    [93]Hasnain SM. Review on sustainable thermal energy storage technologies, Part I:heat storage materials and techniques. Energy Conversion and Management 1998;39(11):1127-1138.
    [94]Krishnan S, Garimella SV. Analysis of a phase change energy storage system for pulsed power dissipation. Components and Packaging Technologies, IEEE Transactions on 2004;27(1):191-199.
    [95]Somasundaram S, Drost MK, Brown DR, Antoniak ZI. Integrating thermal energy storage in power plants. In,1993:84.
    [96]Natural Gas Combined-cycle Gas Turbine Power Plants: Northwest Power Planning Council; 2002.
    [97]Denholm P, Kulcinski GL. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems. Energy Conversion and Management 2004;45(13-14):2153-2172.
    [98]http://www.electricitystorage.org/ESA/technologies/. In.
    [99]Schoenung SM, Eyer JM, Iannucci JJ, Horgan SA. ENERGY STORAGE FOR A COMPETITIVE POWER MARKET. In,1996:347-370.
    [100]Pickard WF, Hansing NJ, Shen AQ. Can large-scale advanced-adiabatic compressed air energy storage be justified economically in an age of sustainable energy? In, AIP,2009:033102.
    [101]郝小礼,张国强,邹声华,刘何清.微型燃气轮机的模型与仿真(1):模型.In:2006全国暖通空调制冷学术年会.合肥,2006.
    [102]Aghbalou F, Badia F, Illa J. Exergetic optimization of solar collector and thermal energy storage system. International Journal of Heat and Mass Transfer 2006;49(7-8):1255-1263.
    [103]Odeh SD. Unified model of solar thermal electric generation systems. Renewable Energy 2003;28(5):755-767.
    [104]Jiang J, Prausnitz JM. Equation of state for thermodynamic properties of chain fluids near-to and far-from the vapor-liquid critical region. The Journal of Chemical Physics 1999;111:5964-5974.
    [105]Lemmon EW, Huber ML, McLinden MO. NIST Reference Fluid Thermodynamic and Transport Properties-REFPEOP, User's Guide. In. Boulder, Colorado, Physical and Chemical Properties Division, National Institute of Standards and Technology,2007:97.
    [106]Eldrid R, Kaufman L, Marks P. The 7FB:The Eext Evolution of the F Gas Turbine. New York: GE Power Systems; 2001 04/2001. Report No.:GER-4194.
    [107]GE-Energy. Steam Turbine Products. Atlanta, GA:GE; 2005 08/2005. Report No.:GEA 13482B.
    [108]Albert P. Steam Turbine Thermal Evaluation and Assessment. New York: GE; 2000 10/2000. Report No.:GER-4190.
    [109]EnergyNexusGroup. Technology Characterization:Steam Turbines. Arlington, Virginia:Energy Nexus Group; 2002 03/2002.
    [110]http://www.energy.siemens.com/hq/en/power-generation/steam-turbines/. In,2011.
    [111]Reichling JP, Kulacki FA. Utility scale hybrid wind-solar thermal electrical generation: A case study for Minnesota. Energy 2008;33(4):626-638.
    [112]Weisser D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 2007;32(9):1543-1559.
    [113]Pehnt M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy 2006;31(1):55-71.
    [114]Meier PJ, Wilson PPH, Kulcinski GL, Denholm PL. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives. Energy Policy 2005;33(9):1099-1108.
    [115]Chicco G, Mancarella P. Distributed multi-generation: A comprehensive view. Renewable and Sustainable Energy Reviews 2009;13(3):535-551.
    [116]Alanne K, Saari A. Distributed energy generation and sustainable development. Renewable and Sustainable Energy Reviews 2006;10(6):539-558.
    [117]http://www.abac.co.uk/.In,2010.
    [118]Personal Communication with Technician from Watlow. In.
    [119]刘昊.空气发动机的探索性研究.杭州:浙江大学;2004.
    [120]凌贺飞,舒水明.液氮发动机的膨胀过程与参数分析研究.流体机械2002;30(5):21-24.
    [121]俞小莉,元广杰,沈瑜铭,刘震涛,苏石川.气动发动机工作循环理论分析.机械工程学报2002;38(9):118-122.
    [122]Knowlen C, Mattick AT, Bruckner AP, Hertzberg A. High-efficiency energy-conversion systems for liquid-nitrogen automobiles. In: SAE, SAE International,1998.
    [123]Huang KD, Quang KV, Tseng K-T. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD. Energy Conversion and Management 2009;50(5):1271-1278.
    [124]MacLean HL, Lave LB. Evaluating automobile fuel/propulsion system technologies. Progress in Energy and Combustion Science 2003;29(1):1-69.
    [125]Yan X, Crookes RJ. Energy demand and emissions from road transportation vehicles in China. Progress in Energy and Combustion Science 2010;36(6):651-676.
    [126]Ferdowsi M. Plug-in Hybrid Vehicles-A Vision for the Future. In:Vehicle Power and Propulsion Conference,2007 VPPC 2007 IEEE; 2007 9-12 Sept.2007; 2007. p.457-462.
    [127]Poulton ML. Fuel Efficient Car Technology. Southampton:Computational Mechanics Publications, 1997.
    [128]Taymaz I. An experimental study of energy balance in low heat rejection diesel engine. Energy 2006;31(2-3):364-371.
    [129]Chen H, Ding Y. An Overview of Air Liquefaction and Separation Process. Leeds:University of Leeds; 2007.
    [130]Khartchenko NV. Advanced Energy Systems. Bristol: Taylor & Francis Publisher,1998.