太湖流域典型入湖河流的健康评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,人类对河流资源的过度开发和利用,使河流生态系统的退化日益严重。主要表现为营养物质的过度富集、河流生境的破坏、河滨植被的退化及水生生物的减少等方面。河流生态系统的退化已经成为世界各国河流生态系统面临的主要问题,河流生态系统的健康评价及生态恢复逐渐受到国际社会的广泛关注和重视。
     太湖流域地处长江中下游地区,为平原河网地区,河网密集,水系交错复杂;社会经济发达,人口密度高,河流生态系统已受到人类活动的强烈影响;水体富营养化已经成为太湖水环境的主要问题,而入湖河流是湖体污染物质来源的主要通道。近年来国家对太湖流域的河流开展了大规模的河道整治与修复工程,但是多采用传统工程治理,忽略了河流生态系统的自然特征,导致整治效果难以长期维持。因此本文借鉴国内外河流健康评价体系的研究,结合太湖流域平原河网地区的特点,构建了适用于太湖入湖河流的河流健康评价体系,并对西太湖区域的三条入湖河流进行健康评价;以期为区域的河流整治恢复、可持续发展及河流管理提供科学的理论依据及实践意义。论文的主要研究内容及结果如下:
     (1)论述了健康、生态系统健康及河流生态系统健康的定义和内涵,辨析了河流健康的基本概念及明确河流生态系统的整体性、复杂性、连续性的特征。一个健康的河流生态系统即能维持自身的生态系统稳定、健康并能自我调控;又能为人类提供合理的服务功能。
     (2)根据河流健康评价的国内外研究现状与进展,总结了美国、澳大利亚、英国及南非等国家的健康评价体系的具体方法,比较了预测模型法和多指标评价法的优点和缺点。通过对河流健康评价指标体系的评价原则、评价指标、评价标准及权重的确定,结合太湖流域入湖河流污染现状,建立了适用于研究区域的河流健康评价体系。
     该评价体系分为3个层次,分别是目标层、指标层和要素层。其中最高级的目标层是河流健康综合指数(RHI),用来反映河流整体的健康状态;指标层包括河岸带状况、河流形态、水质理化指标和河流生物4个部分,分别反映河流生态系统健康的四个方面;要素层是由指标层下选择若干指标要素构成;包括河岸倾斜程度、结构完整性、河岸稳定性、河流护岸形式、DO、COD、TP、NH3-N、浮游植物香农指数和丰富度指数、浮游动物香农指数和丰富度指数12个指标。最终将健康状态分为四个等级:健康(30     (3)于2010年1月和6月对太湖流域入湖河流乌溪港、武进港和梁溪河的21个监测断面进行野外调查及资料收集,并用本文基于研究区域构建的河流健康评价体系进行健康评价,6月份的评价结果显示三条河流的河流健康指数(RHI)在12.50-30.63之间,对比河流健康评价标准,亚健康状态的监测断面为14个,占61.9%;乌溪港的RHI值(19.38-30.63)>武进港(12.50-30.00)>梁溪河(13.13-24.38);河岸带状态和河流形态的分值较高,水质理化指标和水生生物指标的得分相对较低,说明研究区域的河流水质和水生生物方面受人为干扰较大,而河岸带及河流形态方面较接近自然状态。因此在河流生态修复及河流管理中,应优先考虑水质和水生生物两个方面的恢复。
     (4)对不同区位的乌溪港、武进港和梁溪河的河流健康评价结果比较(6月份),表明西太湖区域的河岸带及河流形态等景观指标都趋于一致(p>0.05),而水质和生物等指标则有一定程度的差异,DO、COD、浮游植物和浮游动物的香农指数都呈现出极显著差异(p<0.01),TP、NH3-N和浮游植物丰富度为显著差异(p<0.05);对乌溪港、武进港和梁溪河的不同时间(1月和6月)的河流健康评价结果进行分析,结果显示不同时间下,只有水质及生物表征指标存在差异(p<0.05),河岸带状况及河流形态两个部分无显著差异(p>0.05)。两个不同角度的分析说明本文的健康评价体系在不同区位和不同时间上都有较好的适用性。
     (5)将未作为河流健康表征指标的底栖动物的相关指标与乌溪港、武进港和梁溪河三条入湖河流的健康评价结果进行分析。结果表明,底栖动物生物量、均匀度、香农指数和丰富度与RHI的相关性不高,西太湖地区河流受人为干扰过于严重,导致了底栖动物对环境的响应能力降低;底栖动物与河流健康状况没有很好的一致性,从河流健康评价方面来看,西太湖地区的入湖河流更适合多指标综合评价,其更能全面综合的评价河流健康状况。
With the rapid development of social economy, over-exploitation and using of river resources, the river ecological environment has been damaged seriously. The main manifestation was enrichment of nutrient, destruction of the river habitat, degradation of riparian vegetation and decreased of aquatic organisms. River degradation has becoming the primary problem faced by the river ecosystem of countries over the world, more attention has been paid to river restoration and sustainable river management.
     Taihu basin located in the middle-lower reaches of the Yangtze River, which was an economically developed area and plain river network region, with dense and complicated water system, high population density, the river ecosystem was affected intensely by human being. Water eutrophication was the main environment problem in Taihu Lake, and the influent rivers were the main channels of environment pollutant.
     River restoration has been carried out with rivers of Taihu basin, however the traditional regulation engineer ignored natural characters of river ecosystem, results were not significantly. Based on the river health assessment methods development by other countries and the reviewing the river assessment practices, combined the characteristics of the river of Taihu basin, an indicator system for river health assessment was established, applied in the three river of western Taihu, the results would contribute to appliance of river restoration and sustained development, and provided theoretical basis of river management. Main content and conclusions as follows:
     (1) Based on the discrimination of the terms "health","ecosystem health","river ecosystem health", and the characteristics of river system, integrity, complexity, continuity. A health river ecosystem should have the maintenance of itself stability, self-regulation, and also could provide rational service for human.
     (2) According to the river health assessment of the domestic and international research, including American, Australia, Britain and South Africa, compared the advantages and disadvantages of Predictive Model and Comprehensive assessment method. Accounting for the features of Taihu region in plain river network, based on the confirm of the assessment index, assessment principle, index assessment criterion and index weight, an indicator system for river health assessment which provides scores for4sub-indices was established. Four components of steam condition were presented in this thesis:physical form, streamside zone, water quality and aquatic life. The river health index (RHI) was the final result, according to the value of indexes, health condition is divided into four levels:health (30     (3) On January and July,2010, samples were collected at21sites of Wuxi, Wu-jin and Liangxi River. Result showed that, RHI of all sites were between12.50-30.63. According to the assessment criterion,14sites were sub-health condition, about61.9percent. The value of RHI Wuxi (19.38-30.63)> Wujin (12.50-30.00)>Liangxi (13.13-24.38), scores of physical form and streamside zone were higher than water quality and aquatic life. These result showed that water quality and aquatic life in this region affected by human activities seriously, physical form and streamside zone were closer to natural state. Therefore, it is significant to research the water quality and aquatic life to improve river ecological restoration and river management.
     (4) Compared river health assessment with different locations, result showed that there was no significant difference with physical form and streamside zone indexes, and there was there was significant difference with water quality index and aquatic life indexes (DCh COD and the Shannon index of phytoplankton, zooplankton, p<0.01)(TP、NH3-N and phytoplankton richness index, p<0.05).Compared river health assessment with different times in three rivers, result showed that there was no significant difference with physical form and streamside zone indexes (p>0.05), and water quality and aquatic life indexes have significant difference (p<0.05).
     These two different angle research showed that the river health assessment system of this paper was applicable widely in different locations and times.
     (5) Correlation between Benthic fauna indicators and River health condition showed that, there was no there was significant difference between them, rivers from western Taihu Lake were disturbanced seriously by human being, response ability of benthic fauna was decreased. There was no good relationship between benthic fauna indicators and River health condition, based on the river health assessment, rivers from western Taihu Lake were adapted with multi-variable assessment better.
引文
1. Bain MB, Harig AL, Loucks DP, et al. Aquatic ecosystem protection and restoration:advances in methods for assessment and evaluation. Environmental Science and Policy,2000,3 (1): 89-98.
    2. Barbour MT, Gerritsen J, Synder BD, et al. Rapid bioassessment protocols for use in streams and wadeable rivers. USEPA, Washington,1999.
    3. Bash JS, Ryan CM. Stream restoration and enhancement projects:is anyone monitoring? Environmental Management,2002,29 (6):877-885.
    4. Boon PJ, Holmes N, Maitland PS, et al. A system for evaluating rivers for conservation (SERCON):development, structure and function. Freshwater quality:defining the indefinable, 1997,299-326.
    5. Boulton AJ. An overview of river health assessment: philosophies, practice, problems and prognosis. Freshwater Biology,1999,41 (2):469-479.
    6. Brinkhurst RO, Jamieson BG. Aquatic oligochaeta of the world. Oliver and Boyd,1971.
    7. Brookes A. River channel restoration:theory and practice. Changing river channels,1995, 369-388.
    8. Brookes AF, Shields D. River channel restoration:guiding principles for sustainable projects. Recherche,1996,67:02.
    9. Brown S, Suren AM. Urban stream habitat assessment: Data entry. NIWA Client Report No CHC97,1997,14.
    10. Buffle J, Leppard GG. Characterization of aquatic colloids and macromolecules,2 Key role of physical structures on analytical results. Environmental science & technology,1995,29 (9): 2176-2184.
    11. Chandler JR. A biological approach to water quality management. Water Pollution Control, 1970,69 (2):415-422.
    12. Chen Y, Fan C, Teubner K, et al. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: an 8-year investigation. Hydrobiologia,2003,506 (1): 273-279.
    13. Chessman BC. New sensitivity grades for Australian river macroinvertebrates. Marine and Freshwater Research,2003,54 (2):95-103.
    14. Chutter FM. An empirical biotic index of the quality of water in South African streams and rivers. Water Research,1972,6 (1):19-30.
    15. Coysh JL, Nichols SJ, Simpson JC, et al. Australian River Assessment System (AusRivAS) national river health program predictive model manual. Cooperative Research Centre for Freshwater Ecology,2000,15.
    16. De Panw N, Gabriels W, Goethals P. River monitoring and assessment methods based on macroinvertebrates. In:Biologieal monitoring of rivers. Applications and Perspectives.2006, 978.
    17. Coysh JL, Nichols SJ, Simpson JC, et al. Australian River Assessment System (AusRivAS) national river health program predictive model manual. Cooperative Research Centre for Freshwater Ecology,2000,15.
    18. Ekness P, Randhir T. Effects of Riparian Areas, Stream Order, and Land Use Disturbance on Watershed-Scale Habitat Potential:An Ecohydrologic Approach to Policy 1. JAWRA Journal of the American Water Resources Association,2007,43 (6):1468-1482.
    19. Fairweather, PG. State of environment indicators of river health':exploring the metaphor. Freshwater Biology,1999,41 (2):211-220.
    20. Finlayson BL, Brizga SO. River management: The Australiasian experience, Chichester: John Wiley and Sons.2000
    21. Forsberg C, Ryding SO. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Archiv fur Hydrobiologie,1980,89 (1/2):189-207.
    22. Frimpong EA, Sutton TM, Engel BA, et al. Spatial-scale effects on relative importance of physical habitat predictors of stream health. Environmental management,2005,36 (6):899-917.
    23. Harrison C. Ecosystem health-New goals for environmental management:R. Costanza, BG. Norton and BD. Ecological Engineering,1993,4(2):378-379.
    24. Hilsenhoff WL. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society,1988,65-68.
    25. Johnson L, Gage S. Landscape approaches to the analysis of aquatic ecosystems. Freshwater Biology,1997,37(1):113-132.
    26. Jungwirth M, Muhar S, Schmutz, S. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology,2002,47 (4):867-887.
    27. Karr JR. Assessment of biotic integrity using fish communities. Fisheries,1981,6 (6):21-27.
    28. Karr JR. Biological integrity:a long-neglected aspect of water resource management. Ecological applications,1991,1 (1):66-84.
    29. Karr JR. Measuring biological integrity: lessons from streams. Ecological integrity and the management of ecosystems,1993,83-104.
    30. Karr JR. Defining and measuring river health. Freshwater Biology,1999,41 (2):221-234.
    31. Karr JR, Chu EW. Sustaining living rivers. Hydrobiologia,2000,422:1-14.
    32. Ladson AR, White LJ, Doolan JA, et al. Development and testing of an Index of Stream Condition for waterway management in Australia. Freshwater Biology,1999,41 (2):453-468.
    33. McKone PD. Streams and their corridors-functions and values. Journal of Management in Engineering,2000,5:28-29.
    34. Meyer JL. Stream health: incorporating the human dimension to advance stream ecology." Journal of the North American Benthological Society,1997,439-447.
    35. Mitsch W J, Jorgensen SE. Ecological engineering:an introduction to ecotechnology.1989.
    36. Mooney C, Farrier D. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River(NSW). Water Science & Technology,2002,45 (11):161-168.
    37. Naiman RJ. The freshwater imperative:a research agenda, Island Pr.1995.
    38. Naiman RJ, Bilby RE. River ecology and management: lessons from the Pacific coastal ecoregion, Springer Verlag.2001.
    39. Norris RH, Hawkins CP. Monitoring river health. Hydrobiologia,2000,435 (1):5-17.
    40. Northcote TG. Fish in the structure and function of freshwater ecosystems:a" top-down" view." Canadian journal of fisheries and aquatic sciences,1988,45 (2):361-379.
    41. Parsons M, Norris R, Thoms M, et al. Australian River Assessment System:Review of Physical River Assessment Methods:a Biological Perspective, Environment Australia.2002.
    42. Petersen Jr, RC. The RCE:a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshwater biology,1992,27 (2):295-306.
    43. Platt RH, Rowntree RA, Muick PC, et al. The ecological city:preserving and restoring urban biodiversity, Univ of Massachusetts Pr.1994.
    44. Raven PJ, Holmes N, Naura M, et al. Using river habitat survey for environmental assessment and catchment planning in the UK. Hydrobiologia,2000,422:359-367.
    45. Roux DJ. Strategies used to guide the design and implementation of a national river monitoring programme in South Africa." Environmental monitoring and assessment,2001,69 (2):131-158.
    46. Schofield NJ, Davies PE. Measuring the health of our rivers. Water Melbourne then artarmon, 1996,23:39-43.
    47. Simeonov V, Stratis JA, Samara C, et al. Assessment of the surface water quality in Northern Greece. Water research,2003,37(17):4119-4124.
    48. Takahasi Y, Uitto JI. Evolution of river management in Japan:from focus on economic benefits to a comprehensive view. Global Environmental Change Part A,2004,14:63-70.
    49. Verdonschot PFM. Integrated ecological assessment methods as a basis for sustainable catchment management. Hydrobiologia,2000,422:389-412.
    50. Vitousek PM, Mooney HA, Lubchenco J, et al. Human domination of Earth's ecosystems. Science,1997,277 (5325):494-499.
    51. White LJ, Ladson AR. An Index of Stream Condition:Catchment Managers' Manual. Department of Natural Resources and Environment, Melbourne April.1999.
    52. Wright JF, Furse MT, Moss D. River classification using invertebrates: RIVPACS application. Aquatic Conservation:Marine and Freshwater Ecosystems,1998,8:617-631.
    53.安树青.湿地生态工程,湿地资源利用与保护的优化模式,化学工业出版社,北京.2003.
    54.鲍建平,许兆明.太湖浮游植物初级生产力及鱼产力估算.淡水渔业,1984,(5):1-5.
    55.蔡庆华,唐涛,刘健康.河流生态学研究中的几个热点问题.应用生态学报,2003,14(9):1573-1577.
    56.曹文明,周刚,盛建明.太湖河蚬资源现状及演变.南京林业大学学报:自然科学版.2009:125-128.
    57.曹艳霞,张杰,蔡德所等.应用底栖无脊椎动物完整性指数评价漓江水系健康状况.水资源保护,2010,26(2):13-17,23.
    58.车越,杨凯,吴阿娜等.上海城市水源战略与水源地保护:格局,问题与展望.自然资源学报,2005,20(5):651-659..
    59.陈荷生.太湖生态修复治理工程.长江流域资源与环境,2001,10(2):173-178..
    60.陈荷生,宋祥甫,邹国燕.太湖流域水环境综合整治与生态修复.水利水电科技进展,2008,28(3):76-79.
    61.陈吉泉.河岸植被特征及其在生态系统和景观中的作用.应用生态学报,1996,7(4):439-448.
    62.陈立侨,刘影,杨在福等.太湖生态系统的演变与可持续发展.华东师范大学学报(自然科学版),2003,(4):99-106.
    63.陈婷.平原河网地区城市河流生境评价研究-以上海为实例.华东师范大学.硕士论文,2007.
    64.程建新.新形势下渔政管理方法及途径的探讨.现代渔业信息,1995,10(1):9-10.
    65.崔伟中.日本河流生态工程措施及其借鉴.人民珠江,2003,(5):1-4.
    66.邓红兵,王青春,王庆礼等.河岸植被缓冲带与河岸带管理.应用生态学报,2001,12(6):951-954.
    67.邓志强,刘建军.与功能及环境相协调的河流治理方法.第四届全国海事技术研讨会.上海.1998.
    68.董哲仁.国外河流健康评估技术.水利水电技术,2005,36(011):15-19.
    69.董哲仁.河流健康的内涵.中国水利,2005,(4):15-18.
    70.董哲仁.河流健康评估的原则和方法.中国水利,2005,(10):17-19.
    71.范成新,陈荷生.太湖富营养化现状,趋势及其综合整治对策.上海环境科学,1997,16(8):4-7.
    72.范成新,黄漪平,鲍建平.太湖营养元素的变化与浮游生物的演变.中国科学院南京地理与湖泊研究所集刊.北京:科学出版社,1992,9:37-47.
    73.方子云.国民经济的可持续发展与水电开发.水电站设计,2000,16(003):1-6.
    74.丰华丽,王超,李剑超.生态学观点在流域可持续管理中的应用.水利水电快报,2001,22(14):21-23.
    75.高超,朱继业,戴科伟等.快速城市化进程中的太湖水环境保护:困境与出路.地理科学,2003,23(006):746-750.
    76.耿雷华,刘恒,钟华平等.健康河流的评价指标和评价标准.水利学报,2006,37(3):253-258.
    77.谷孝鸿,王晓蓉,胡维平.东太湖渔业发展对水环境的影响及其生态对策.上海环境科学,2003,22(10):702-704.
    78.顾良伟.太湖人工放流的初步探讨.水产学报,1986,10(002):223-228.
    79.国家环境保护总局.地表水环境质量标准.中国环保产业,2002,(6):8-9.
    80.郭坤荣.大汶河生态健康评价研究,山东师范大学.硕士论文.2007.
    81.郭培章,宋群.中外流域综合治理开发案例分析,中国计划出版社.2001.
    82.何俊,谷孝鸿,白秀玲.太湖渔业产量和结构变化及其对水环境的影响.海洋湖沼通报,2009,(2):143-150.
    83.胡春宏,陈建国,郭庆超等.论维持黄河健康生命的关键技术与调控措施.中国水利水电科学研究院学报,2005,3(1):1-5.
    84.胡志新,胡维平,谷孝鸿等.太湖湖泊生态系统健康评价.湖泊科学,2005,17(3):256-262.
    85.胡志新,胡维平,张发兵等.太湖梅梁湾生态系统健康状况周年变化的评价研究.生态学杂志,2005,24(7):763-767.
    86.黄漪平.太湖水环境及其污染控制,科学出版社,北京.2001.
    87.黄玉瑶.内陆水域污染生态学:原理与应用,科学出版社,北京.2001.
    88.金相灿.中国湖泊环境,海洋出版社,北京.1995.
    89.李国英.黄河治理的终极目标是“维持黄河健康生命”.人民黄河,2004,26(1):1-2.
    90.李旭文,季耿善,杨静.太湖藻类的卫星遥感监测.湖泊科学,1995,7(1):65-68.
    91.李益敏,彭永岸,王玉朝等.滇池污染特征及治理对策.云南地理环境研究,2003,15(4):32-38.
    92.林泽新.太湖流域水环境变化及缘由分析.湖泊科学,2002,14(2):111-116.
    93.刘恩生,刘正文,陈伟民等.太湖鱼类产量、组成的变动规律及与环境的关系.湖泊科学,2005,17(3):251-255.
    94.刘广纯.河流水质生物监测理论与实践,东北大学出版社,沈阳.2008.
    95.刘恒,涂敏.对国外河流健康问题的初步认识.中国水利,2005,(4):19-22.
    96.刘兆德,虞孝感,王志宪.太湖流域水环境污染现状与治理的新建议.自然资源学报,2003,18(4):467-474..
    97.罗缙,逢勇,林颖等.太湖流域主要入湖河道污染物通量研究.河海大学学报:自然科学版,2005,33(2):131-135.
    98.马毅妹,刘俊良,徐伟朴等.水环境健康及其管理.中国给水排水,2004,20(1):29-30.
    99.孟伟,张远,郑丙辉等.生态系统健康理论在流域水环境管理中应用研究的意义,难点和 关键技术——代“流域水环境管理战略研究”专栏序言.环境科学学报,2007,27(6):906-910.
    100.裴雪姣,牛翠娟,高欣等.应用鱼类完整性评价体系评价辽河流域健康.生态学报,2010,30(21):5736-5746..
    101.钱奎梅,陈宇炜,宋晓兰.太湖浮游植物优势种长期演化与富营养化进程的关系.生态科学,2008,27(2):65-70.
    102.秦伯强,吴庆农,高俊峰等.太湖地区的水资源与水环境.自然资源学,2002,17(2):221-228.
    103.山本昌宏.河川环境行政の课题と展望.水环境学会志,1998,21(8):10-13.
    104.宋庆辉,杨志峰.对我国城市河流综合管理的思考.水科学进展,2002,13(3):377-382.
    105.宋智刚,王伟,姜志强等.应用F-IBI对太子河流域水生态健康评价的初步研究.大连水产学院学报,2011,25(6):480-487.
    106.唐涛,蔡庆华,刘建康.河流生态系统健康及其评价.应用生态学报,2002,13(9):1191-1194.
    107.王备新,杨莲芳,胡本进等.应用底栖动物完整性指数B-IBI评价溪流健康.生态学报,2005,25(6):1481-1490.
    108.王备新,杨莲芳,刘正文.生物完整性指数与水生态系统健康评价.生态学杂志,2006,25(6):707-710.
    109.王国祥,李正魁.健康水生态系统的退化及其修复-理论,技术应用.湖泊科学,2001,3:193-195.
    110.王华.河流生态系统恢复评价方法及指标体系研究——以黄浦江、苏州河为例,华东师范大学.硕士论文.2006.
    111.王玲,吴道喜.从莱茵河管理看西方河流管理理念的转变.水利水电快报,2001,22(18):27-28.
    112.王龙,邵东国,郑江丽等.健康长江评价指标体系与标准研究.中国水利,2007,(12):12-15.
    113.王鹏.河流健康评价及修复研究,合肥工业大学.硕士论文.2007.
    114.王薇,李传奇.景观生态学在河流生态修复中的应用.中国水土保持,2003,6:36-37.
    115.王银东,熊邦喜,陈才保等.环境因子对底栖动物生命活动的影响.浙江海洋学院学报:自然科学版,2005,24(003):253-257.
    116.吴阿娜.河流健康状况评价及其在河流管理中的应用,华东师范大学.硕士论文.2005
    117.吴阿娜.河流健康评价:理论、方法与实践,华东师范大学.博士论文.2008.
    118.吴阿娜,车越,徐启新等.上海地区河流健康评价方法探讨.生态与农村环境学报,2007,23(4):90-94.
    119.吴阿娜,杨凯,车越.河流健康状况的表征及其评价.水科学进展,2005,16(4):602-608.
    120.向碧为,黄国如,冯杰.基于AHP法的东江流域水基系统健康模糊综合评价.水电能源科学,2011,29(10):1-4.
    121.肖风劲,欧阳华.生态系统健康及其评价指标和方法.自然资源学报,2002,17(2):10370-10373.
    122.谢子书,魏艳秀.关于城市水系生态修复问题的讨论.水科学与工程技术,2006,(6):31-33.
    123.徐祖信.河流污染治理规划理论与实践,中国环境科学出版社,北京.2003.
    124.许木启,黄玉瑶.受损水域生态系统恢复与重建研究.生态学报,1998,18(5):547-558.
    125.阎水玉,王祥荣.生态系统服务研究进展.生态学杂志,2002,21(5):61-68.
    126.燕姝雯.太湖流域出入湖河流水污染特征研究.中国环境科学研究院.硕士论文.2011
    127.杨健强.滇池污染的治理和生态保护.水利学报,2001,5:17-21.
    128.杨清心.太湖水华成因及控制途径初探.湖泊科学,1996,8(1):67-74.
    129.杨清心.东太湖水生植被的生态功能及调节机制.湖泊科学,1998,10(1):67-72.
    130.杨涛,惠秀娟,许云峰.用于流域管理的河流水生态系统健康评价初探.环境保护科学,2009,35(5):52-54.
    131.杨文慧,严忠民,吴建华.河流健康评价的研究进展.河海大学学报:自然科学版,2005,33(6):607-611.
    132.袁静秀,黄漪平.环太湖河道污染物负荷量的初步研究.海洋与湖沼,1993,24(5):485-493.
    133.张大伟,李杨帆,孙翔等.入太湖河流武进港的区域景观格局与河流水质相关性分析.环境科学,2010,31(8):1775-1783.
    134.张晶,董哲仁,孙东亚等.基于主导生态功能分区的河流健康评价全指标体系.水利学报,2010,41(8):883-892.
    135.张圣照,千金良.东太湖水生植被及其沼泽化趋势.植物资源与环境,1999,8(002):1-6.
    136.张硕辅.基于健康理论的洞庭湖生态系统评价、预测和重建技术研究.湖南大学.博士论文.2007.
    137.张远,张楠,孟伟等.辽河流域河流生态系统健康的多要素评价.科技导报,2008,26(17):36-41.
    138.赵军,杨凯.上海城市内河生态系统服务的条件价值评估.环境科学研究,2004,17(2):49-52.
    139.赵倩.基于流域功能区划的河流综合治理研究.大连理工大学.硕士论文,2009.
    140.赵彦伟,杨志峰.城市河流生态系统健康评价初探.水科学进展,2005,16(3):349-355.
    141.赵彦伟,杨志峰.河流健康:概念、评价方法与方向.地理科学,2005,25(1):119-124.
    142.周燕,朱晓东,尹荣尧等.太湖流域水环境长效管理研究.环境保护科学,2010,36(3):84-85,95.
    143.朱松泉.2002-2003年太湖鱼类学调查.湖泊科学,2004,16(2):120-124.