抗爆洞室不同部位预应力锚索受力特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究集中装药爆炸条件下抗爆洞室不同部位的3种结构形式(自由式、全长粘结式和半全长粘结式)预应力锚索受力特征,在“岩土工程抗爆结构模型试验装置”上进行了锚固洞室抗爆性能的地质力学模型试验。运用有限差分显式软件分析了预应力锚索抗爆加固效果,对抗爆洞室不同部位预应力锚索受力特征进行了深入地分析,针对预应力锚索加固设计参数进行了数值试验。最后给出了洞室锚固体动态响应解析解,并提出相应工程建议。主要工作内容如下:1.基于模型相似理论基本原理,以及抗爆结构锚固洞室模型试验研究内容、试验简化假设条件,确定了模拟岩体、锚索与注浆体材料力学参数以及模型洞室尺寸,简要说明了试验装置组成与功能指标,概述了模型岩体和模拟锚索的制作、安装工艺以及相关模型试验技术,着重从压力传感器、加速度传感器、相对位移传感器、锚索张力传感器、锚索体轴向变形测试方面说明了动力测试系统中传感器技术。从洞室拱部脱落面积统计、洞室破坏录像等观察角度更全面、更形象地描述锚固洞室抗常规武器加固效果。2.通过3组抗爆结构模型试验,分析了爆炸荷载作用下洞室围岩介质压力、洞室顶底相对位移、洞壁表面应变和顶底板加速度的时程曲线,研究了预应力锚索加固洞室的抗爆性能,拟合出自由场压应力峰值衰减公式以及地冲击波传播速度。记录了不同试验方案下的拱顶及边墙部位上预应力锚索索端张力及内锚固段轴应变时程,着重分析了顶爆条件下预应力锚索的动力响应和破坏机理。3.采用有限差分软件FLAC3D分别建立了自由式预应力锚索加固洞室的分析模型,探讨了爆腔-围岩-结构相互作用模型数值分析方法,并对比模型试验成果进行计算可靠性分析。结果表明:在动力分析模块模型中预留球形爆腔并施加初始法向应力方式可以模拟炸药爆炸效果;霍克-布朗模型可以用在动力模块分析素混凝土动力响应问题,且较符合实际;通过施加静态边界条件较符合抗爆结构洞室小型模型分析;单元网格长度选择最高频率对应的波长的1/10,尽量保证网格划分充分均匀;重力作用实现是按重力加速度以动力荷载方式加入到计算模型中的;采用瑞利阻尼可以考察爆炸波传播影响过程。4.利用数值试验研究了洞室不同部位上自由式锚索、全长粘结式锚索和半全长粘结式预应力锚索的受力特征。针对粘结式锚索加固参数(内锚固长度、注浆体与锚索弹性模量、锚索间距和布置方式)进行了多组数值试验,获得了半粘结式预应力锚索设计参数的合理值范围,为工程设计提供参考。5.简述了应力脉冲在两种介质传播以及自由分界面时反射与折射的基本概念。依据行波能量吸收方法推导出了锚杆受爆炸波冲击时所需张力增量计算公式。系统分析了模型试验中预应力锚索内锚固段上所受的“拖曳”作用,认为产生原因主要是爆炸成坑作用时产生抵抗岩体抛掷的惯性力引起的。
To study force characteristics of pre-stressed anchor (freestyle, full-length bond-type and semi-full bond-type) in the antiknock chamber effected by concentrated explosive charge, the geo-mechanical model for researching antiknock properties of the anchor chamber in the "Test device of geotechnical engineering antiknock structure model" is tested. The numerical analysis model was established by the use of explicit finite difference algorithm for learning of the antiknock reinforced effect of prestressed cable, and the stress characteristic of prestressed cable in different site of antiknock chamber is analyzed. And the reinforced design factor is analyzed for the semi-full bond-type cable. Finally, the analytical solution of the dynamic response of anchorage chamber is shown to make appropriate project proposal. Main tasks are as follows:1. According to the similarity theory, the research contents and the assumptions of the antiknock model test, the mechanical parameters of rock mass, cables as well as grouting material, and the size of chamber model were determined. The equipment composition and the function index of "Test device of geotechnical engineering antiknock structure model" is described briefly. After blocking, the production of the simulated cable, the installation process and the associated model test technique were overviewed. The sensor technology in testing system was illustrated mainly from the aspects of the pressure sensors, acceleration sensors, the relative displacement sensors, cable tension sensor, and anchor body axial deformation tests. For describing the reinforcing effect of anti-conventional weapons anchored chamber more completely and vividly, the research was done from several observing angles such as the statistics of the shedding area of the anchorage, the failure video of the chamber and so on.2. Through 3 groups of antiknock structural model test, the wave curve of the wall-rock pressure of the anchorage chamber, the relative displacement from top to bottom, the surface strain of the tunnel wall, and the acceleration of roof and floor is gain to analysis. And then, the antiknock performance of the prestressed anchorage chamber was studied. And, the peak attenuation low of the free-field stress and the propagation velocity of wave were fitted. By analyzing the time history of the axis strain and the tension of the cable end in the vault and the side wall in different experiment plans, the dynamic response and the failure mechanism of the prestressed cable under the condition of the top explosion were researched.3. Useing the finite difference software FLAC~(3D) to building the analysis of freestyle prestressed cable reinforcement chamber model, the explosion cavity-rock-structure interaction model for numerical analysis methods were discussed, and the calculating reliability were contrasted to the model test results. The results show that:to reserve spherical explosion chamber and impose the initial normal stress method could realize the effect of explosive detonation in the dynamic analysis module; Hawk-Brown model can be used for dynamic response analysis of plain concrete; imposing the static boundary conditions could treat with a small model analysis such as antiknock structural model test; the element mesh is the highest frequency corresponds to the 1/10 length of the wavelength to ensure the full uniform mesh; the gravity acceleration is adopted to achieve dynamic load added to the calculation model; using of Rayleigh damping could realize the process of blast wave propagation effects.4. The anti-knock ability of chamber supported by freestyle anchor, full-length bond-type anchor and semi-full-length bond-type prestressed anchorage cable are examined by numerical analysis. Some sets of numerical experiment for the bond-type anchor reinforcement parameters including internal anchorage length, elastic modulus of anchor grouting, anchor spacing and layout were done, to obtain the reasonable value range design parameters of bonding prestressed anchorage cable, and refer to engineering design.5. The basic conception about the dissemination in two kinds of media and the reflection and refraction on the free sub-interface of stress pulse were described. Based on the basis of traveling wave energy absorption method, the formula of allow tension increment of anchorage cable under condition of the blast wave shock is derived. The "drag" role of prestressed anchor interior bond section in the model test is analyzed systematically, which is caused by resistance of rock thrown during exploding into a pit.
引文
[1] 金丰年,刘黎,张丽萍,李波,范华林.深钻地武器的发展及其侵彻[J].解放军理工大学学报(自然科学版),2002,3(2):34-40.
    [2] 钱七虎,等防护结构计算原理[M].南京:中国人民解放军工程兵工程学院.1981.
    [3] 金丰年,刘黎,张丽萍,李波,范华林.深钻地武器的发展及其侵彻[J].解放军理工大学学报(自然科学版),2002,2.
    [4] 邓国强,周早生,郑全平.钻地弹爆炸聚集效应研究现状及展望[J].解放军理工大学学报(自然科学版),2002,(03).
    [5] 朱兆祥.材料和结构失稳现象研究的历史和现状[M]//材料和结构的不失稳性.北京:科学出版社,1993
    [6] 邓国强,周早生,郑全平.钻地弹爆炸聚集效应研究现状及展望[J].解放军理工大学学报(自然科学版),2002,3(3):45-49.
    [7] 李晓军,张殿巨,李清现.常规武器破坏效应与工程防护技术[R].洛阳:总参工程兵科研三所,2001.
    [8] 王少龙,汪德武.钻地武器对地下工事的毁伤与主动防护措施[J].飞航导弹,2006,(4):26-28.
    [9] 邬建华,夏志成,龚华栋.防护工程综合防护效能评价[J].解放军理工大学学报(自然科学版),2003,4(2):52-55.
    [10] P. A.Cundall. Rational Design of Tunnel Supports:Computer Model for Rock Mass Behavior Using Interactive Graphics for the Input and Output of GeometricalData[R].1974, Missouri River Division, CE,Omaha, Nebr.
    [11]何唐甫.国外战略导弹多弹头核武器爆炸效应及其防护动态[A].见:中国土木工程学会防护工程学会第二届理事会第四次学术年会论文集[C].黄山,1994:353-360.
    [12]何唐甫.21世纪初的国外防护工程技术[A].见:中国土木工程学会防护工程学会第六次年会[C].昆明,1998:82-87.
    [13]孙钧.地下抗爆结构有限数值分析的若干课题[J].岩石力学与工程学报,1983,2(1):121-129
    [14]钱七虎,王明洋.高等防护结构计算理论[M].南京:江苏科学技术出版社,2009
    [15]史春芳,徐赵东.工程结构抗爆技术的研究现状[J].西安建筑科技大学学报(自然科学版),2007.39(5):616-620.
    [16]张殿臣,李清献.高技术武器与防护工程[J].防护工程,1999,1:105-111.
    [17]朱如玉,王承树.某观察坑道在爆炸荷载作用下的破坏情况的宏观调查分析[J].爆炸与冲击,1982,2(2):17-26.
    [18]王承树.爆炸荷载作用下喷锚支护破坏形态[J],岩石力学与工程学报,1989,8(1)73-91.
    [19]王光勇.提高锚固洞室抗爆能力技术措施研究[博士学位论文][D].合肥:中国科学技术大学,2009.5
    [20]高水莉.防护工程国外研究进展[R].洛阳:总参工程兵科研三所,1989.
    [21]吴志刚,梁敏莲.浅谈屈服式锚杆及其应用[J].安徽建筑. 2007,1:56-57.
    [22] B.STILLBORG. Experimental investigation of steel cables for rock reinforcement in bard rock[D]. Laea:Laea University,1984.
    [23] R.K.THORPE, F.E.HEUZE. Dynamic response of rock reinforcement in a cavity under internal blast loading:an add-on test to the pre-mill yard event[R]. [S.1.]:[s.n.],1985.
    [24] OTUONYE. Response of grouted roof bolts to blasting loading[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1988,25(5):345-349.
    [25] F.O.OTUONYE. Influence of shock waves on the response of full contact rock bolts[C] //Proceedings of the 9th Symposium on Explosives and Blasting Research. California:San Diego,1993:261-270.
    [26] G.S.LITTLEJOHN, A.A.RODGER, D.C.HOLLAND. Monitoring the influence of blasting on the performance of rock bolts at Pemnaerbach tunnel[C]//Proceedings of the 1st International Conference on Foundations and Tunnels. Edinburgh:[s.n.],1987:99-106.
    [27] G.S.LITTLEJOHN, A.A.RODGER. Dynamic response of rock bolt systems[C] //Proceedings of 2nd International Conference on Foundations and Tunnels. London:[s.n], 1989:57-64.
    [28] D.C.HOLLAND, D.K.V.MOTHERSILE. The influence of close proximity blasting on the performance of resin bonded rock bolts[D]. Brodford:University of Bradford,1989.
    [29] A.A.ROGDER, D.C.HOLLAND, G.S.LITTLEJOHN. The behaviors of resin bonded rock bolts and other anchorages subjected to close proximity blasting[C]//Proceedings of the 8th International Congress on Rock Mechanics. Tokyo:[s.n.],1995:665-670.
    [30] D.D.TANNANT, R.K.BRUMMER, X.YI. Rock bolt behaviors under dynamic loading: field test and modeling[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32(6):537-550.
    [31] S.GISLE, M.ARNE. The influence of blasting on grouted rockbolts[J]. Tunneling and underground Space Technolog5,1995,13(1):65-70.
    [32]李晓军.美军加筋上掩体的抗爆试验[R].洛阳:61489部队资料室内部馆藏报告(防护工程科技信息),1991.
    [33]王年桥.防护结构试验基础[M].中国人民解放军工程兵工程学院,1982.
    [34] B.L.Kutter, L.M.O'Leary, P.Y. Thompson (1985)."Centrifugal modeling of the effect of blast loading on tunnels." Addendum to Proc.2nd symp. On the Interaction of Non-Nuclear Munitions with Struct., U.S. Air Force, Panama City Beach, Flal., Apr.1-6.
    [35]陈进.用离心机作结构模型试验的若干问题探讨[J].长江科学院院报,1991,8(3):59-65.
    [36]大型离心机模型试验在爆炸和冲击荷载研究中的应用[R].中国水利水电科学研究院,2007.2
    [37] James A.Mahoney. Simulation devices for use in studies of protective constructionfM]. Technical report NO. AFWL-TR-65-224,1966,4.
    [38] Rober K Tener. The application of similitude to protective construction research[M]. Army Engieer Waterways Experiment Station,1964,7.
    [39] T.F.Zahrah, D.H.Merkle, H E Auld. Gravity effect in small-scale structural modeling[S]. 1988.AD-A209252.
    [40]阿兰.布莱克,罗伯特.卡麦伦.地下结构模型的动载响应[J].防护工程,1988,4:89-93.
    [41] Charles E Joachim, George S. Rubin de la Borbolla. Brick model tests of shallow
    underground magazines[M]. Department of the Army Waterways Experiment Station Corps of Engineers,1992,3
    [42] A.IVANOVIC, R.D.NEILSON, A.A.RONGER. Influence of prestress on the dynamic response of ground anchorages[J], Journal of Geotechnical and Geoenvironmental Engineering,2002,128(3):237-219.
    [43] P.J.ZHAO,T.S.LOK Simplified spall-resistance design for combined rock bolts and steel fiber reinforced shotcrete support system subjected to shock load[C]//Proceedings of the 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Changsha:[s.n.], 2003:465-478.
    [44] H.HAGEDORN. Dynamic rock bolt test and UDEC simulation for a large carver under shock load[C]//Proceedings of International UDEC/3DEC Symposium on Numerical Modeling of Discrete Materials in Geotechnecal Engineering, Civil Engineering, and Earth Sciences. Bochum:[s.n.],2004:191-197.
    [45] 周德培.锚索预应力损失的影响因素及对策[C]∥中国岩石力学与工程学学会第八次学术大会论文集.[s.l.]:[s.n.],2004:610-613.
    [46]杨苏杭,沈俊.预应力锚索对洞室抗爆加固效应的三维动力分析[J]防护工程,2006.28(1):20-24.
    [47]易长平.爆破振动对地下洞室的影响研究[博士学位论文][D].武汉:武汉大学,2005.
    [48]易长平,卢文波.爆破振动对砂浆锚杆的影响[J].岩土力学,2006,27(8):1312-1316.
    [49] MOTHERSlLLE D K V. The influence of close proximity blasting on the performance of resin bonded bolts[D]. Bradford university of Bradford,1989.
    [50] XU H. The dynamic and static behavior of resin bonded rock bolts in tunneling[D]. Bradford:University of Bradford,1993.
    [51] P.K. Rajmeny, U.K. Singhb. B.K.P Sinha. Predicting rock failure around boreholes and drives adjacent to stopes in Indian mines in high stress regions[J].International Journal of Rock Mechanics & Mining Sciences.2002,39(2):151-164.
    [52] P.K.Singh. Blast vibration damage to underground coal mines from adjacent open-pit blasting[J]. International Journal of Rock Mechanics & Mining Sciences.2002.39(8): 959-973.
    [53] S.GISLE, M.ARNE. The influence of blasting on grouted rockbolts[J]. Tunneling and Underground Space Technology,1995.13(1):65-70.
    [54] A.ANDERS. Laboratory testing of a new type of energy absorbing rock bolt[J]. Tunneling and Underground Space Technology.2005.20(4):291-300.
    [55] A.ANDERS. Dynamic testing of steel for a new type of energy absorbing rock bolt[J]. Journal of Constructional Steel Research,2006,62(5):501-512.
    [56] A.ANDERS. Testing and modeling of an energy absorbing rock bolt[C]//Structures and Materials. [S.1.]:[s.n.].2000:417-424.
    [57]曾宪明,肖峰.黄土坑道喷锚网支护的抗爆性能与破坏形态Ⅰ[J].工程防护,1990,12(3):20-27.
    [58]肖峰.曾宪明.黄土坑道喷锚网支护的抗爆性性能分布形态Ⅱ[J].工程防护,19913(4):37-45.
    [59] CONWAY J P. HOGE K G. Laboratory studies of yielding rock bolts[R]. Washington: Bureau of Mines,1975.
    [60] ORTLEPP W D. Grouted rock as rockburst support:a simple design approach and an effective test procedure[J]. Journal of The South African Institute of Mining and Metallurgy, 1994,94(2):47-63.
    [61] W.D.ORTLEPP, T.R.STACEY. Performance of tunnel support under large deformation static and dynamic loading[J].Tunneling & Underground SpaceTechnology,1998,13(1): 15-21.
    [62]李国豪.工程结构抗爆动力学[M].上海:上海科技出版社,1989.
    [63]沈俊.预应力锚索加固机理与设计计算方法研究[D].合肥:中国科学技术大学,2005.2.
    [64]李世民,韩省亮,曾宪明,林大路,肖玲.锚固类结构抗爆性能研究进展[J].2008,27(增2):3553
    [65]李之光.相似与模拟(理论及应用)[M].北京:国防工业出版社,1982.
    [66]何唐甫.美国钻地武器研究发展及钻地计算分析[[J].防护工程,1998,4:15-25.
    [67]龚召熊,陈进.岩石力学模型试验及其在三峡工程中的应用与发展[M].北京:中国水利水电出版社,1996.
    [68]陈安敏,沈俊,顾欣.自由式锚索和全长粘结式锚索加固效果比较模型试验研究[J].岩石力学与工程学报,2005,24(15):2689-2696.
    [69]沈俊,顾金才,陈安敏,徐景茂,明治清,张向阳.岩士工程抗爆结构模型试验装置研制及应用[J].地下空间与工程学报,2008:3(6):1077-1081
    [70]荣耀,许锡宾.锚杆对应力波传播影响的有限元分析[J].地下空间与工程学报,2006,2(1):115-119.
    [71] Itasca Consultinig Group,Inc.,. Fast Lagrangian analysis of Continue in 3 Dimensions,Version 3.0, User's mannual. USA:Itasca Consultinig Group,Inc.,2005.
    [72]刘波,韩彦辉FLAC原理、实例与实用指南[M].北京:人民交通出版社,2005.
    [73]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2009.
    [74]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [75]陈朗,龙新平,冯长根,蒋小华.含铝炸药爆轰[M].北京:国防工业出版社,2004:121-132
    [76] ANSYS Inc. ANSYS Theory Release 9.0.2006
    [77]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005.
    [78]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [79]亨利奇J.爆炸动力学及其应用[M].熊建国,等译.北京:科学出版社,1987:234-240.
    [80] Foundmentals of Protective Design for Shear of the Conventional Weapons,TM5-855-1[R]. Washington,D.C.:Waterway Experimental Station, Department of the Army, November1986(常规武器防护设计原理[M].方秦,等译.中国人民解放军工程兵工程学院,1997
    [81] Hoek, E., C. Carranza-Torres and B. Corkum. "Hoek-Brown Failure Criterion-2002 Edition," in Proceedings of NARMS-TAC 2002,5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference-Toronto, Canada-July 7 to 10,2002. Vol.1., pp.267-271. R. Hammah, W. Bawden, J. Curran and M. Telesnicki, Eds. Toronto:University of Toronto Press,2002.17.
    [82] Lysmer, J., T. Udaka, C. F. Tsai and H. B. Seed. "FLUSH-AComputer Program for Approximate 3D Analysis of Soil-Structure Interaction Problems," University of California, Berkeley, Earthquake Engineering Research Center, Report No. EERC, pp.75-30,1975.
    [83] Kunar, R. R., P. J. Beresford and P. A. Cundall. "A Tested Soil-Structure Model for Surface Structures," in Proceedings of the Symposium on Soil-Structure Interaction (Roorkee University, India, January,1977), Meerut, India:Sarita Prakashan.1977(1):137-144.
    [84] White, W., S. Valliappan and I. K. Lee. "Unified Boundary for Finite Dynamic Models," J. Eng.Mech,103,949-964,1977.
    [85] Lysmer, J., and G.Waas. "ShearWaves in Plane Infinite Structures," ASCE J. Eng. Mech., 98(EMl),85-105,1972.
    [86] Wolf, J. P. Dynamic Soil-Structure Interaction. New Jersey:Prentice-Hall,1985.
    [87] Roesset, J. M., and M. M. Ettouney. "Transmitting Boundaries:A Comparison," Int. J. Num. Analy. Methods Geomech.,1,151-176,1977.
    [88] Lysmer, J., and R. L. Kuhlemeyer. "Finite Dynamic Model for Infinite Media," J. Eng. Mech.,95(EM4),859-877,1969.
    [89]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [90]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997
    [91]李杰,李国强.地震工程学导论[M].北京:地震出版社,1992
    [92] M.L.Wilkins. Use of Artificial Viscosity in Multidimensional Fluid Dynamic Calculations[J]. Journal of Computational Physics,1980,36:281-303.
    [93]张云,刘开运.近区爆破对锚固设施的影响研究[J].水力发电,1996,8:23-26,69
    [94]李宁,张西前,于冲.爆破应力波对边坡预应力锚索的动力响应[J].岩石力学与工程学报,2007,26(增1):2593-2600
    [95]杨松林.锚杆抗拔机理及其在节理岩体中的加固作用[D].武汉大学博士学位论文,2001
    [96]黄广炎,冯顺山,王云峰.装药约束对腔室爆炸冲击波传播特性影响的数值分析[J].系统仿真学报,2009,21(1):58-62.
    [97]王成字,付晓磊,宁建国.柱形装药爆炸破坏混凝土的数值模拟分析[J].计算力学学报,2007,24(3):318-322.
    [98]赵德辉,田大战,张伟成.武器爆炸作用下地下洞库坑道动力响应数值模拟分析[J].空军上程大学学报(自然科学版),2007,8(5):52-55.
    [99]夏祥.爆炸作用下岩体损伤特性及安全阀值研究[D].武汉:中国科学院武汉岩土力学研究所,2006,5.
    [100]顾金才,陈安敏,徐景茂,赵红玲,张向阳,顾雷雨,明治清.在爆炸荷载条件下锚固洞室破坏形态对比试验研究[J].岩石力学与工程学报,2008,27(7):1316-1321.
    [101]杨自友.爆炸波作用下锚杆间距对围岩加固效果影响的模型试验研究[J].岩石力学与工程学报,2008,27(4)757-764
    [102]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(增):297-182.
    [103]张发明,刘宁,赵纬炳,陈祖煜.岩质边坡预应力锚索加固的优化设计方法[J].岩土力学,2002,23(2):187-190.
    [104]U.S. Naval Facilities Engineering Command Structures to Resist the Effects of Accidental Explosions(TM5-1300)[S]. Alexandria, VA:[s.sn.],1991
    [105]R.E.Goodman, J.Dubois. Static and Dynamic Analysis of Rock Bolt Support[R]. Jan 1971, U. S.Army Engineer District, Omaha, CE, Omaha, Nebr.
    [106]G.J.Bureau. R.E.Goodman, F.E.Heuze. Model Studies of Rock Bolted Tunnels in Brittle and Plastic Ground[R]. Nov 1972, U. S. Army Engineer District, Omaha, CE, Omaha, Nebr.