Er~(3+)及Er~(3+)/Yb~(3+)掺杂钽铌酸钾锂晶体生长和光谱性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,利用稀土离子掺杂材料上转换性能实现短波长蓝绿激光输出在高密度光学存储、彩色显示、光电子,光刻等领域有广泛应用前景和巨大发展潜力,设计研发稀土掺杂晶体材料便成为实现短波长激光输出的关键问题。因为具有大非线性光学系数、宽非临界相位匹配范围和高抗光伤阈值等优点,钨青铜型钽铌酸钾锂单晶(K_(1-y)Li_yTa_(1-x)Nb_xO_3,KLTN)是一种优良的蓝光二次谐波产生(SHG)晶体。通过研究稀土离子掺杂KLTN单晶的上转换荧光性能来分析其作为激光晶体的可行性具有实际研究价值。本论文对Er~(3+)及Er~(3+)/Yb~(3+)掺杂四方钨青铜型KLTN单晶的生长、基本物理性质、晶体吸收性能和光致发光性能做系统的实验和理论研究。
     采用逐步冷却法摸索适合进行Er~(3+)掺杂KLTN单晶生长的组分配比和生长温度,利用提拉法并通过改进晶体生长工艺生长出Er~(3+):KLTN和Er~(3+)/Yb~(3+):KLTN单晶。详细地描述晶体生长过程和各种工艺参数对晶体生长的影响。研究Er~(3+):KLTN单晶的基本物理性质,利用电感耦合等离子体发光光谱分析(ICP)和能量色散谱分析(EDS)测试晶体组分;利用X射线衍射技术分析晶体结构;利用差热分析法测试晶体的居里温度;利用椭偏法测试晶体的折射率,并利用赛尔迈耶尔方程拟合Er~(3+):KLTN晶体的折射率色散关系。
     使用分光光度计测试晶体的紫外-可见-近红外吸收光谱,描述晶体样品Er~(3+)吸收规律,并确定晶体紫外吸收边。根据吸收光谱结合Judd-Ofelt理论计算晶体JO强度Ω_t (t=2, 4, 6),并由此计算Er~(3+)在晶体中的自发辐射系数、能级辐射寿命和荧光分支比等多项光谱参量。
     系统地研究800 nm和980 nm波长激光激发Er~(3+):KLTN单晶上转换荧光性能。Er~(3+)掺杂浓度升高能够提高上转换发射强度,并且红光发光强度随Er~(3+)掺杂浓度升高而明显增强。通过功率曲线确定上转换为双光子过程。通过发光强度衰减曲线确定绿光发射由激发态吸收(ESA)和能量转移上转换(ETU)过程完成;800 nm激发红光发射由交叉驰豫(CR)过程完成,980 nm激发红光发射由ESA和ETU过程完成,给出详细上转换跃迁机制。结合980 nm激发Er~(3+)上转换发光机理建立微分速率方程模型,推导上转换发光强度随着泵浦功率和掺杂浓度的变化关系。通过比较400 nm和800 nm波长激光泵浦下Er~(3+)/Yb~(3+):KLTN单晶上转换发光强度的不同,发现由Er~(3+)到Yb~(3+)有一个高效能量背向传递过程起减弱548 nm绿光发射同时增强红光发射的作用。
     利用固相反应法制备Er~(3+)掺杂和Er~(3+)/Yb~(3+)共掺KLTN陶瓷,研究其发光性能,分析荧光光谱随着Er~(3+)和Yb~(3+)掺杂浓度增加而产生的变化。建立速率方程推导并解释上转换发光强度随Yb~(3+)浓度变化规律。根据陶瓷和晶体的荧光光谱的不同研究稀土离子在四方钨青铜型KLTN晶格中的占位情况。
     综上所述,本文系统研究了Er~(3+)和Er~(3+)/Yb~(3+)掺杂KLTN单晶和陶瓷生长、基本物性表征和光谱性能。研究结果表明Er~(3+)和Er~(3+)/Yb~(3+)掺杂KLTN单晶具有优良的吸收光谱性能和绿光上转换发光性能,在绿光上转换激光晶体方面有一定的潜在应用。
In recent years, the short wavelength blue and green solid state laser based on frequency upconversion (UC) rare-earth-ions-doping materials has attracted so much attention due to its wide applications and potential in the field of high density optical storage, color displays, photoelectron, and photoengraving, etc. The development of rare-earth doping single crystal materials has consequently become the foremost issue. The tungsten bronze-type potassium lithium tantalate niobate crystal is an excellent blue second harmonic generation crystal because of its broad non-critical phase-matching range, large nonlinear coefficients and photorefractive resistance threshold, etc. Therefore, it is of practical significance to grow the RE ions doped KLTN single crystal, and investigate its feasibility as laser crystal based on the upconversion luminescent properties.In the present dissertation, we have systematically studied the growth, basic physical properties, absorption, and photoluminescence in rare-earth (RE) doped KLTN crystals.
     By step-cooling method, we explored the compatible raw materials concentration ratio and growth temperature for Er doped KLTN crystal. Furthermore, we improved the crystal growth crafts and used the Czochralski method to grow the Er:KLTN and Er/Yb:KLTN crystals. The details of growth process and effects of growth craft were described in this thesis. The constituents of KLTN crystal were determined by means of the inductive coupled plasma emission spectrum (ICP) and energy dispersive spectrum analysis (EDS). The crystal structure was determined by the X-ray diffraction technique. The Curie temperature of crystal was measured by the differential thermal analysis (DTA) technique. Furthermore, the refractive indices of crystal were measured using the ellipsometry method, and the refractive indices dispersion was fitted using the Sellmeier equation.
     The ultraviolet-visible-near infrared optical absorption spectra were measured using the spectrophotometer. The absorption rule of crystal was described, and the ultraviolet absorption edges were determined. The Judd-Ofelt (JO) intensity parametersΩ_t (t=1, 2, 3) of crystal were calculated using the absorption spectra and JO theory. Moreover, the spontaneous emission probability, excited state radiative lifetimes, and fluorescence branching ratio of the Er~(3+) in the crystal were calculated.
     UC luminescence properties under 800 nm and 980 nm laser excitation were investigated systematically in Er~(3+):KLTN single crystals. The UC luminescence would be enhanced by the Er~(3+) concentration increase; moreover, the red emissions were enhanced more obviously than the green emissions. The UC processes were two-photon processes determined by pump energy dependence of the Er~(3+) UC luminescence intensities. The decay profiles of luminescence intensity investigations indicated that the green emissions were accomplished by ESA and ETU processes; the red emissions were accomplished by CR processes under 800 nm excitation, and ESA and ETU processes under 980 nm excitation, respectively. Furthermore, the UC mechanisms were provided. The UC emission rate equation model under 980 nm excitation was built and deduced to prove the change of pump power dependence. By comparing the fluorescence emission intensities of Er~(3+)/Yb~(3+):KLTN single crystal under 400 nm and 800 nm excitations, a effective energy back transfer process from Er~(3+) to Yb~(3+) played the role in enhancing the red emission and weakening the 548 nm green emission.
     The Er~(3+) doped and Er~(3+)/Yb~(3+) codoped KLTN ceramics were prepared by solid state synthesized method, and their fluorescence properties were investigated. The variations of the fluorescence spectra of KLTN ceramics with different Er~(3+) and Yb~(3+) concentrations were analyzed. The rate equation model was built and deduced to prove that the UC emission intensity changed with the increase of Yb~(3+) concentration. Furthermore, the arrangements of RE ions in tungsten bronze-type KLTN crystal lattice were investigated by the difference of the Er~(3+) fluorescence spectra in ceramics and crystal.
     In conclusion, the growth, physical properties, and spectroscopic properties of Er~(3+) doped and Er~(3+)/Yb~(3+) codoped KLTN crystals are studied in the paper. The resultes show that Er~(3+) and Er~(3+)/Yb~(3+) codoped KLTN crystals have excellent absorption and green upconversion propterties, they maybe have potential applications as a green upconversion laser crystal.
引文
[1] Downing E, Hesselink L, Ralston J, et al. A Three-Color, Solid-State, Three-Dimensional Display[J]. Science, 1996, 30:1185-1189.
    [2] Egger P and Hulliger J. Optical Materials for Short Wavelength Generation[J]. Coordin. Chem. Rev., 1999, 183:101-115.
    [3] Franken P A, Hill A E, Peters C W, et al. Generation of Optical Harmonics[J]. Phys. Rev. Lett., 1961, 7:118-119.
    [4] Giordmaine J A. Mixing of Light Beams in Crystals[J]. Phys. Rev. Lett., 1962, 8:19-20.
    [5]张玉龙,唐磊.人工晶体——生长技术、性能与应用[M].北京:化学工业出版社, 2005.
    [6] Nakamura S and Fasol G. The Blue Laser Diode: GaN Based Light Emitters and Lasers[J]. Science, 1997, 277:46-47.
    [7] Zhou H J, Wissinger M, Fallert J, et al. Ordered, Uniform-sized ZnO Nanolaser Arrays[J]. Appl. Phys. Lett., 2007, 91:181112.
    [8] Taniyasu Y, Kasu M, and Makimoto T. An Aluminium Nitride Light-emitting Diode with a Wavelength of 210 Nanometres[J]. Nature, 2006, 441:325-328.
    [9] Lu T C, Kao C C, Kuo H C, et al. CW Lasing of Current Injection Blue GaN-based Vertical Cavity Surface Emitting Laser[J]. Appl. Phys. Lett., 2008, 92:141102.
    [10] Auzel F. Upconversion and Anti-Stokes Processes with f and d ions in Solids[J]. Chem. Rev., 2004, 104:139-173.
    [11] Bolembergen N. Solid State Infrared Quantum Counters[J]. Phys. Rev. Lett., 1959, 2:84-85.
    [12] Porter J F. Fluorescence Excitation by the Absorption of Two Consecutive Photons[J]. Phys. Rev. Lett., 1961, 7:414-415.
    [13] Auzel F. C. R. Acad. Sci. (Paris) 1966, 262:1016.
    [14] Johnson L F and Guggenheim H J. Infrared-pumped Visible Laser[J]. Appl. Phys. Lett., 1971, 19: 44-47.
    [15] Antipenko B M, Voronin S P, and Privalova T A. Anti-Stokes Conversion of Neodymium Laser Radiation by Cooperative Process[J]. Sov. Phys. Tech. Phys., 1987, 32:208-209.
    [16] Fukuda T, Hirano H, and Koide. Growth and Properties of Ferroelectric K3Li2(TaxNb1-x)5O15[J]. J. Crys. Growth, 1970, 6:293-296.
    [17]张思远,毕宪章.稀土光谱理论[M].长春:吉林科学技术出版社, 1991.
    [18] Dieke G H. Spectra and Energy Levels of Rare Earth Ions in Crystals[M]. New York: Wiley-Interscience. 1968.
    [19] Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon Polymerization Initiators for Three-dimensional Optical Data Storage and Microfabrication[J]. Nature, 1999, 398:51-54.
    [20] Chen G Y, Liu Y, Zhang Z G, et al. Four-photon Upconversion Induced by Infrared Diode Laser Excitation in Rare-earth-ion-doped Y2O3 Nanocrystals[J]. Chem. Phys. Lett., 2007, 448:127-131.
    [21] Du S, Jiang L, Zhang W, et al. Sensitivity of Laser-induced Upconversion Fluorescence Dynamics to Exciting Wavelength in Er~(3+)-doped YAG[J]. Appl. Phys. B, 2011, doi:10.1007//s00340-011-4419-1.
    [22] Du S, Xu J X, Dong X R, et al. Sensitivity of Upconversion Mechanisms to Excitation Laser Wavelength in Er~(3+)-doped YAG[J]. J. Lumin., 2010, 130:872-876.
    [23] Dwivedi Y, Thakur S N, and Bai S B. Study of Frequency Upconverson in Yb~(3+)/Eu~(3+) by Cooperative Energy Transfer in Oxyfluoroborate Glass Matrix[J]. Appl. Phys. B, 2011, 89: 45-51.
    [24] Montoya E, BausáL E, Schaudel B, et al. Yb~(3+) Distribution in LiNbO3:(MgO) Studied by Cooperative Luminescence[J]. J. Chem. Phys., 2001, 114: 3200-3207.
    [25] Chivian J S, Case W E, and Eden D D. The Photon Avalanche: A New Phenomenon in Pr~(3+)-based Infrared Quantum Counters[J]. Appl. Phys. Lett., 1979, 35: 124-125.
    [26] Kaiser W and Garrett C G B. Two-photon Excitation in CaF3:Eu~(3+)[J]. Phys. Rev. Lett., 1961, 7: 229-231.
    [27] Joubert M F. Photon Avalanche Upconversion in Rare Earth Laser Materials[J]. Opt. Mater., 1999, 11:181-203.
    [28] Huang L H, Yamashita T, Jose R, et al. Intense Ultraviolet Emission from Tb~(3+) and Yb~(3+) Codoped Glass Ceramic Containing CaF2 Nanocrystals[J]. Appl. Phys. Lett., 2007, 90: 131116.
    [29] Qiao X S, Fan X P, Xue Z, et al. Upconversion Luminescence of Yb~(3+)/Tb~(3+)/Er~(3+)-doped Fluorosilicate Glass Ceramics Containing SrF2 Nanocrystals[J]. J. Aollys Compd., 2011, 509:4714-4721.
    [30] Hofmeister R. Growth and Applications of Photorefractive Potassium Lithium Tantalate Niobate (KLTN) [D]. California Institute of Technology. 1993.
    [31] Reisman A, Triebwasser S, and Holtzberg F. Phase Diagram of the SystemKNbO3-KTaO3 by the Methods of Differential Thermal and Tesistance Analysis[J]. J. Amer. Chem. Soc., 1955, 77:4228-4230.
    [32] Scheel H J and Sommerauer J. Crystal Growth and Characterization of“Striation-free”KTa1-xNbxO3 (x=0.26) Solid Solutions[J]. J. Cryst. Growth, 1983, 62:291-298.
    [33] Guan Q C, Wang J Y, Lian Y W, et al. Influence of Iron Doping on the Photorefractive Properties of KTa1-xNbxO3 Crystals[J]. Appl. Phys. Lett., 1993, 63: 2186-2188.
    [34] Guan Q C, Yang Z H, Wang J Y, et al. The Influence of Domain State on Thermal-mechanical Properties of KTN Crystal[J]. J. Cryst. Growth, 1992, 125:568-570.
    [35] Sasaura M, Imai T, Kohda H, et al. TSSG Pulling and LPE Growth of KTa1-xNbxO3 for Optical Waveguides[J]. J. Cryst. Growth, 2005, 275:e2099-e2103.
    [36] Wang X P, Wang J Y, Yu Y G, et al. Growth of Cubic KTa1-xNbxO3 Crystal by Czochralski Method[J]. J. Crys. Growth, 2006, 293:398-403.
    [37] Ilangovan R, Ravi G, Subramanian C, et al. Growth and Characterization of Potassium Tantalate Niobate Single Crystals by the Step-cooling technique[J]. J. Crys. Growth, 2002, 237-239:694-699.
    [38] Mann M, Jackson S, and Kolis J. Hydrothermal Crystal Growth of the Potassium Niobate and Potassium Tantalate Family of Crystals[J]. J. Solid State Chem., 2010, 183: 2675-2680.
    [39] Fukuda T. Structural and Dielectric Studies of Ferroelectric K3Li2(TaxNb1-x)5O15[J]. Jpn. J. Appl. Phys., 1970, 9(6):599-606.
    [40] Hofmerster R, Yariv A, and Agranat A. Growth and Characterization of the Perovskite K1-yLiyTa1-xNbxO3:Cu[J]. J. Cryst. Growth, 1993, 131:486-494.
    [41] Tong X L, Zhang M, Yariv A, et al. Copper, Hydrogen, and Titanium Incorporation in Patassium Lithium Tantalate Niobate Single Crystals[J]. Appl. Phys. Lett., 1997, 70:1688-1690.
    [42] Podlojenov S, Burianek M, and Mühlberg M. Czochralski Growth and Constitutional Studies on Single Crystals of Potassium Lithium Niobate (KLN) [J]. Cryst. Res. Technol., 2003, 38(12): 1015-1022.
    [43] Chani V I, Nagata K, Kawaguchi T, et al. Segregation and Uniformity of K3Li2(Ta, Nb)5O15 Fiber Crystals Grown by Micro-pulling-down Method[J]. J. Crys. Growth, 1998, 194:374-378.
    [44] Tian H, Zhou Z X, Gong D W, et al. Photorefractive Properties of Paraelectric Potassium Lithium Tantalate Niobate Crystal Doped with Ion[J]. Opt.Commun., 2008, 281: 1720-1724.
    [45] Tian H, Zhou Z X, Wang H F, et al. Optical Properties of Cubic K0.95Li0.05Ta0.61Nb0.39O3 single Crystal[J]. Opt. Mater., 2008, 31:106-109.
    [46] Tian H, Zhou Z X, Gong D W, et al. Enhanced Photorefractive Properties of Paraelectric Potassium-lithium-tantalate-niobate by Manganese Doping[J]. J. Phys. D: Appl. Phys., 2008, 41:095105.
    [47] Tian H, Zhou Z X, Zhang M H, et al. Kerr Property of Cubic K0.95Li0.05Ta0.60Nb0.40O3 Single Crystal[J]. Optics Commun., 2008, 281: 5420-5422.
    [48] Agranat A J, Hofmeister R, and Yariv A. Characterization of a New Photorefractive Material: K1-yLyT1-xNx[J]. Opt. Lett., 1992, 17: 713-715.
    [49] Tong X L, Hofmeister R, Zhang M, et al. Fixing of Volume Holograms in Ferroelectric K1-yLiyTa1-xNbxO3[J]. Opt. Lett., 1996, 21: 1860-1862.
    [50] Agranat A J, Razvag M, Balberg M, et al. Holographic Gratings by Spatial Modulation of Curie-Weiss Temperature in Photorefractive K1-xLixTa1-yNbyO3:Cu,V[J]. Phys. Rev. B, 1997, 55:12818-112821.
    [51] Pesach B, Refaeli E, and Agranat A J. Investigation of the Holographic Storage Capacity of Paraelectric K1-xLixTa1-yNbyO3:Cu,V[J]. Opt. Lett., 1998, 23:642-644.
    [52] Balberg M, Razvag M, Refaeli E, et al. Electric-field Multiplexing of Volume Holograms in Paraelectric Crystals[J]. Appl. Opt., 1998, 37: 841-647.
    [53] Agranat A J. Electroholographic Wavelength Selective Switches in WDM Networks[M]. Electroholography. 2001.
    [54] Furukawa Y, Makio S, Miyai T, et al. Growth and Characterization of K3Li2(TaxNb1-x)5O15 Crystals for Blue Second-harmonic-generation Applications[J]. Appl. Phys. Lett., 1996, 68(6):774-746.
    [55] Saito Y, Takao H, Tani T, et al. Lear-free Piezoceramics[J]. Nature, 2004, 432:84-87.
    [56] Yang Z P, Chang Y F, and Wei L L. Phase Transitional Behavior and Electrical Properties of Lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 Piezoelectric Ceramics[J]. Appl. Phys. Lett., 2007, 90:042911.
    [57] Zhou Z X, Li J, Tian H, et al. Piezoelectric Properties of the Lead-free K0.95Li0.05Ta0.61Nb0.39O3 Single Crystal[J]. J. Phys. D: Appl. Phys., 2009, 42:125405.
    [58] Auzel F. Materials and Devices Using Double-pumped Phosphors with Energy Transfer[J]. Pro. IEEE, 1973, 61:758-786.
    [59] Pollnau M, Gamelin D R, Lüthi S R, et al. Power Dependence of UpconversionLuminescence in Lanthanide and Transition-metal-ion Systems[J]. Phys. Rev. B, 2000, 61:3337-3346.
    [60] Gamelin D R and Güdel H U. Upconversion Processes in Transition Metal and Rare Earth Metal Systems[J]. Top. Curr. Chem., 2001, 214:1-56.
    [61] Chen D Q, Wang Y S, Zheng K L, et al. Bright Upconversion White Light Emission in Transparent Glass Ceramic Embedding Tm~(3+)/Er~(3+)/Yb~(3+):β-YF3 Nanocrytals[J]. Appl. Phys. Lett., 2007, 91:251903.
    [62] Hou X R, Zhou S M, Jia T T, et al. White Light Emission in Tm~(3+)/Er~(3+)/Yb~(3+)-doped Y2O3 Transparent Ceramic[J]. J. Alloy Compd., 2011, 509: 2793-2796.
    [63] Cao C Y, Qin W P, Zhang J S, et al. Ultraviolet Upconversion Emissions of Gd~(3+)[J]. Opt. Lett., 2008, 33:857-859.
    [64] Qiao X S, Fan X P, Xue Z, et al. Upconversion Luminescence of Yb~(3+)/Tb~(3+)/Er~(3+)-doped Fluorosilicate Glass Ceramics Containing SrF2 Nanocrystals[J]. J. Alloy Compd., 2011, 509: 4714-4721.
    [65] Chen G Y, Liu Y, Zhang Y G, et al. Bright White Upconversion Luminescence in Rare-earth-ion-doped Y2O3 Nanocrystals[J]. Appl. Phys. Lett., 2007, 91:133103.
    [66] Chen G Y, Somesfalean G, Zhang Z G, et al. Ultraviolet Upconversion Fluorescence in Rare-earth-ion Doped Y2O3 Induced by Infrared Diode Laser Excitation[J]. Opt. Lett., 2007, 32:87-89
    [67] Li A H, Zheng Z R, LüQ, et al. Two-photon-excited Luminescence in a Tb~(3+)-doped Lithium Niobate Crystal Pumped by a Near-infrared Femtosecond Laser[J]. Opt. Lett., 2008, 33:1014-1016.
    [68] Sun L, Li A H, Guo F Y, et al. Enhanced 1.5μm Emission and Simultaneously Suppressed Green Upconversion Emission in Er:LiNbO3 Crystals Heavily Codoped with MgO[J]. Appl. Phys. Lett., 2007, 91:071914.
    [69] Gouveia-Neto A S, Bueno L A, Nascimento R F, et al. White Light Generation by Frequency Upconversion in Tm~(3+)/Ho~(3+)/Yb~(3+)-codoped Fluorolead Germanate Glass[J]. Appl. Phys. Lett., 2007, 91:091114.
    [70] Lu S Z, Yang Q H, Zhang B, et al. Upconversion and Infrared Luminescence in Er~(3+)/Yb~(3+) Codoped Y2O3 and (Y0.9La0.1)2O3 Transparent Ceramics[J]. Opt. Mater., 2011, 33:746-749.
    [71] Ryba-Romanowski W, Golab S, Dominiak-Dzik G, et al. Conversion of Infrared Radiation Into Red Emission in YVO4:Yb, Ho[J]. Appl. Phys. Lett., 2001, 79:3026-3028.
    [72] Wang G N, Dai S X, Zhang J J, et al. Upconversion Emissions inYb~(3+)-Tm~(3+)-doped Tellurite Glasses Excited at 976 nm[J]. J. Mater. Sci., 2007, 42: 747-751.
    [73] Naccache R, Vetrone F, Speghini A, et al. Cross-relaxation and Upconversion Processes in Pr~(3+) Singly Doped and Pr~(3+)/Yb~(3+) Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/activator Relationship[J]. J. Phys. Chem. C, 2008, 112:7750-7756.
    [74] Lahoz F, Shepherd D P, Wilkinson J S, et al. Efficient Blue Upconversion Emission due to Confined Radiative Energy Transfer in Tm~(3+)-Nd~(3+) Co-doped Ta2O5 Waveguides under Infrared-laser Excitation[J]. Opt. Coummun., 2008, 281:3691-3694.
    [75] Kumar K and Rai S B. UV/visible Upconversion and Energy Transfer between Nd~(3+) and Pr~(3+) ions in Co-doped Tellurites Glass[J]. Solid State Commun., 2007, 142: 58-62.
    [76] Li A H, LüQ, Zheng Z R, et al. Enhanced Green Upconversion Emission of Er~(3+) through Energy Transfer by Dy~(3+) under 800 nm Femtosecond-laser Excitation[J]. Opt. Lett., 2008, 33:693-695.
    [77] Giri N K, Singh A K, Rai D K, et al. Role of Yb~(3+) and Tm~(3+) Ions in Upconversion Emission of Tb~(3+) under 798 and 980 nm Laser Excitations in Tb~(3+)-Tm~(3+)-Yb~(3+) Doped Tellurite Glass[J]. Opt. Commun., 2008, 281: 3547-3552.
    [78] Li A H, Zheng Z R, LüQ, et al. Sensitized Holmium Upconversion Emission in LiNbO3 Triply Doped with Ho~(3+), Yb~(3+), and Nd~(3+)[J]. J. Appl. Phys., 2008, 104:063526.
    [79] Felipe A, Librantz H, Gomes L, et al. Population Inversion of 1G4 Excited State of Tm~(3+) Investigated by Means of Numerical Solutions of the Rate Equations System in Yb:Tm:Nd:LiYF4 Crystal[J]. J. Appl. Phys., 2009, 105:113503.
    [80] Gouveia-Neto A S, Costa E B, Bueno L A, et al. Ytterbium-induced Energy-transfer Upconversion Enhancement in Nd~(3+)-Pr~(3+)-codoped PbGeO3-PbF2-CdF2 Glass Excited at 810 nm[J]. J. Lumin., 2006, 116:52-58.
    [81] Bai Y F, Yang K, Wang Y X, et al. Enhancement of the Upconversion Photoluminescence Intensity in Li+ and Er~(3+) Codoped Y2O3 Nanocrystals[J]. Opt. Commun., 2008, 2930-2932.
    [82] Chen G Y, Liu H C, Somesfalean G, et al. Enhancement of Upconversion Radiation in Y2O3:Er~(3+) Nanocrystals by Codoping with Li+ Ions[J]. Appl. Phys. Lett., 2008, 92: 113114.
    [83] Chen G Y, Liu H C, Liang H J, et al. Enhanced Multiphoton Ultraviolet and Blue Upconversion emission in Y2O3:Er~(3+) Nanocrystals by Codoping with Li+Ions[J]. Solid State Commun., 2008, 148:96-100.
    [84] Liang H J, Zheng Y D, Chen G Y, et al. Enhancement of Upconversion Luminescence of Y2O3:Er~(3+) Nanocrystals by Codoping Li+-Zn2+[J]. J. Alloys Compd., 2011, 509:409-413.
    [85] Xu H L and Jiang Z K. Ultraviolet and Violet Upconversion Luminescence in Er~(3+)-doped Yttrium Aluminum Granet Crystals[J]. Phys. Rev. B, 2002, 66:035103.
    [86] Yan X, Guo L, Zhang L, et al. LD Side-Pumped 41W High Beam Quality Acousto-Optical Q-switched Single-Rod Nd:YAG Laser[J]. Solid State and Liquied Lasers, 2011, 21:323-326.
    [87] Tsuboi T, Murayama H, and Shimamura K. Low Temperature Luminescence of Tm~(3+) Ions in LiYF4 Crystal[J]. J. Alloys Compd., 2006, 408:776-779.
    [88] Bollig C, Jacobs C, Esser M J D, et al. Power and Energy Scaling of a Diode-end-pumped Nd:YLF Laser through Gain Optimization[J]. Opt. Express, 2010, 18:13993-14003.
    [89] Zhang K, Zhao C C, Zhong H M, et al. Influence of Ce~(3+) on the Luminescence Properties of Er~(3+)/Yb~(3+)/YVO4 Crystals[J]. Opt. Mater., 2011, 33:788-790.
    [90] Li G, Yao B Q, Meng P B, et al. Diode-pumped Efficient Laser Operation and Spectroscopy of Tm,Ho:YVO4[J]. Opt. Mater., 2011, 33:937-941.
    [91] Li Y F, Yao B Q, and Wang Y Z. Diode-pumped CW Tm:GdVO4 Laser at 1.9μm[J]. Chinese Opt. Lett., 2006, 4:175-176.
    [92] Szachowicz M, Tascu S, Joubert M F, et al. Realization and Infrared to green Upconversion Luminescence in Er~(3+):YAlO3 Ion-implanted Optical Waveguides[J]. Opt. Mater., 2006, 28:162-166.
    [93] Yao B Q, Li L J, Zheng L L, et al. Diode-pumped Continuous Wave and Q-switched Operation of a C-cut Tm,Ho:YAlO3 Laser[J]. Opt. Express, 2008, 16:5075-5081.
    [94] Yao B Q, Duan X M, Zheng L L, et al. Continuous-wave and Q-switched Operation of a Resonantly Pumped Ho:YAlO3 Laser[J]. Opt. Express 2008, 16:14668-14674.
    [95] Troshin A E, Yasukevich V E, Kuleshov N V, et al. Spectroscopy and Laser Properties of Tm~(3+):KY(WO4)2 Crystal[J]. Appl. Phys. B, 2007, 86: 287-292.
    [96] Huang J H, Gong X H, Chen Y J, et al. Polarized Spectral Properties of Er~(3+) Ions in NaGd(WO4)2 Crystal[J]. Appl. Phys. B, 2007, 89:73-80.
    [97] Huang X Y and Wang G F. Conversion of Infrared Radiation into Visible Emission in NaY(WO4)2:Yb~(3+),Ho~(3+) Crystal[J]. J. Lumin., 2010, 130:1702-1707.
    [98] Han X, Fusari F, Serrano M D, et al. Continuous-wave Laser Operation of Tm and Ho Co-doped NaY(WO4)2 and NaLu(WO4)2 Crystals[J]. Opt. Express, 2010, 18:5413-5419.
    [99] Ju J J, Kwon T Y, Yun S I, et al. Mechanisms of Upconverted Fluorescence in an Er~(3+) Doped LiNbO3 Single Crystal[J]. Appl. Phys. Lett., 1996, 69:1358-1360.
    [100]Ju J J, Lee M H, Cha M, et al. Energy Transfer in Clusters Sites of Er~(3+) Ions in LiNbO3 Crystals[J]. J. Opt. Soc. Am. B, 2003, 20:1990-1995.
    [101]Gill D M, McCaughan L, and Wright J C. Spectroscopic Site Determination in Erbium-doped Lithium Niobate[J]. Phys. Rev. B, 1996, 53:2334-2344.
    [102]Li A H, Zheng Z R, LüQ, et al. Two-photon-excited Luminescence from a Eu~(3+)-doped Lithium Niobate Crystals Pumped by a near-infrared Femtosecond Laser[J]. J. Appl. Phys., 2010, 108:063511.
    [103]Zhang D L, Wu C, Yang Q Z, et al. Transient Characteristics of Green Upconversion Emission of Er~(3+) in MgO:LiNbO3 Crystal: Mg Threshold Concentration Effect[J]. Appl. Phys. B, 2009, 95:335-340.
    [104]Fan T Y, Cordova-Plaza A, M. Digonnet J F, et al. Nd:Mg:LiNbO3 Spectroscopy and Laser Devices[J]. J. Opt. Soc. Am. B, 1986, 3:140-148.
    [105]Capmany J, Jaque D, García J A S, et al. Continuous Wave Laser Radiation and Self-frequency-doubling in ZnO Doped LiNbO3:Nd~(3+)[J]. Opt. Commun., 1999, 161:253-256.
    [106]Ramírez M O, Jaque D, García J A S, et al. 74% Slope Efficiency from a Diode-pumped Yb~(3+): LiNbO3:MgO Laser Crystal[J]. Appl. Phys. B, 2003, 77:621-623.
    [107]Fujimura M, Tsuchimoto H, and Suhara T. Yb:LiNbO3 Annealed/Proton-Exchanged Waveguide Lasers Pumped by InGaAs Laser Diode at 980 nm Wavelength[J]. Jpn. J. Appl. Phys., 2007, 46:5447-5449.
    [108]Chu S Y, Wen C H, Tyan S L, et al. Polarization Tuning the Stokes Photoluminescence Spectra of Erbium Doped KNbO3 Ceramics[J]. J. Appl. Phys., 2004, 96:2552.
    [109]Wen C H, Chu S Y, and Wen C K. The Post-Annealing Effects on the Stokes Photoluminescence Spectra of Erbium-Doped KNbO3 Polycrystalline[J]. J. Cryst. Growth, 2004, 269:479-483.
    [110]Wen C H, Chu S Y, Tyan S L, et al. The Stokes Photoluminescence Spectra of Erbium-Doped KNbO3 Polycrystalline[J]. J. Cryst. Growth, 2004, 262:225-230.
    [111]Wen C H, Chu S Y, Shin Y Y, et al. Red, Green and Blue Photoluminescence ofErbium Doped Potassium Tantalate Niobate Polycrystalline[J]. J. Alloy. Compd., 2008, 459:107-112.
    [112]Triebwasser S. Study of Ferroelectric Transitions of Solid-Solution Single Crystals of KNbO3-KTaO3[J]. Phys. Rev., 1959, 114(1):63-70.
    [113]严爱军,张亚庭,高学金.过程控制系统[M].北京:北京工业大学出版社, 2010.
    [114]Scheel H J and Fukuda T. Crystal Growth Technology. John Wiley&Sons, Led. 2003.
    [115]Ouwerkerk M. Potassium Lithium Niobate: A Frequency Doubler for (Al, Ga) As Laser[J]. Adv. Mater., 1991, 3:399-401.
    [116]Wan Y B, Guo X G, Chen J. Optical Properties of Nonlinear Potassium Lithium Niobate Crystals[J]. J. Crys. Growth, 2002, 235(1-4):248-403.
    [117]Geusic J E, Levinstein H J, Rubin J J, et al. The Nonlinear Optical Properties of Ba2NaNb5O15[J]. Appl. Phys. Lett., 1967, 11(9):269-271.
    [118]Lenzo P V, Spencer E G, and Ballman A A. Electro-optic Coefficients of Ferroelectric Strontium Barium Niobate[J]. Appl. Phys. Lett., 1967, 11(1):23-24.
    [119]Sakamoto S and Yazaki T. Anomalous Electro-optic Properties of Ferroelectric Strontium Barium Niobate and Their Device Applications[J]. Appl. Phys. Lett., 1973, 22(9):429-431.
    [120]Neurgaonkar R R, Oliver J R, Cory W K, et al. Piezoelectricity in Tungsten Bronze Crystals[J]. Ferroelectrics, 1994, 160: 265-270.
    [121]Wan X M, Xu H P, He T H, et al. Optical Properties of Tetragonal Pb(Mg1/3Nb2/3)0.62Ti0.38O3 Single Crystal[J]. J. Appl. Phys., 2003, 93(8): 4766-4768.
    [122]Marinova V, Shurulinkov S, Daviti M, et al. Refractive Index Measurements of Mixed HgBrxI2-x Single Crystals[J]. Opt. Mater., 2000, 14:9-99.
    [123]Bing Y, Guo R, and Bhalla A S. Optical Properties of Relaxor Ferroelectric Crystal: Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3[J]. Ferroelectrics, 2000, 242: 1-11.
    [124]Studenikin P A, ZagumennyǐA I, Zavartsev Y D, et al. GdVO4 as a New Medium for Solid-state Lasers: Some Optical and Thermal Properties of Crystals Doped with Cd~(3+). Tm~(3+), and Er~(3+) Ions[J]. IEEE J. Quantum Electron, 1995, 25(12): 1162-1165.
    [125]Li Z, Foster C M, Guo D, et al. Growth of High Quanlity Single-domain Single-crystal Films of PbTiO3[J]. Appl. Phys. Lett., 1994, 65(9):1106-1108.
    [126]Aillerie M, Théofanous N, and Fontana M D. Measurement of the Electro-optic Coefficients: Description and Comparison of the ExperimentalTechniques[J]. Appl. Phys. B, 2000, 70: 317-333.
    [127]Schlarb U and Betzler K. Refractive Indices of Lithium Niobate as a Function of Temperature, Wavelength, and Composition: A Generalized Fit[J]. Phys. Rev. B, 1993, 48(21):15613-15620.
    [128]Lomheim T S and DeShazer L G. Optical-absorption Intensities of Trivalent Neodymium in the Uniaxial Crystal Yttrium Orthovanadate[J]. J. Appl. Phys., 1978, 49(11):5517-5522.
    [129]Judd B R. Optical Absorption Intensities of Rare-Earth Ions[J]. Phys. Rev., 1962, 127: 750-761.
    [130]Oflet G S. Intensities of Crystal Spectra of Rare-Earth Ions[J]. J. Chem. Phys., 1962, 37: 511-520.
    [131]Tanabe S, Tamai K, Hirao K, et al. Excited-state Absorption Mechanisms in Red-laser-pumped UV and Blue Upconversions in Tm~(3+)-doped Fluoroaluminate Glass[J]. Phys. Rev. B, 1993, 47(5):2507-2514.
    [132]Ratnakaram Y C, Kumar A V, and Chakradhar R P S. Optical Absorption and Emission Properties of Pr~(3+) and Er~(3+) in Lithium Cesium Mixed Alkali Borate Glasses[J]. J. Lumin., 2006, 118: 227-237.
    [133]Su J, Song F, Tan H, et al. Phonon-assisted Mechanisms and Concentration Dependence of Tm~(3+) Blue Upconversion Luminescence in Codoped NaY(WO4)2 Crystals[J]. J. Phys. D, 2006, 39: 2094-2099.
    [134] Song F, Zhang K, Su J, et al. Three-photon Indirect Sensitization in Green Upconversion Luminescence of Er/Tm codoped NaY(WO4)2 Crystal[J]. Opt. Express, 2006, 14(26): 12586-12589.
    [135]Cao J F, Wang Y, Ma X H, et al. Spectroscopic Properties of Pr~(3+):SrMoO4 Crystal[J]. Journal of Alloys Compd., 2011, 509:185-189.
    [136]Kaminskii A A, Mironov V S, Kornienko A, et al. New Laser Properties and Spectroscopy of Orthorhombic Crystals YAlO3:Er~(3+)[J]. Phys. Stat. Sol. (a), 1995, 151:231-254.
    [137]Weber M J. Probabilities for Radiative and Nonradiative Decay of Er~(3+) in LaF3[J]. Phys. Rev., 1967, 157:262-272.
    [138]Li A, Sun L, Zheng Z, et al. Spectroscopic Properties of Er~(3+) ions in LiNbO3 Crystals Codoped with HfO2[J]. Appl. Phys. B, 2008, 90:29-34.
    [139]Nú?ez L, Lifante G, and CussóF. Polarization Effects on the Line-strength Calculations of Er~(3+)–doped LiNbO3[J]. Appl. Phys. B, 1996, 62: 485-491.
    [140]Jorgensen C K, and Reisfeld R. Judd-Ofelt Parameters and Chemical Bonding[J]. J. Less Common Met., 1983, 93(1):107-112.
    [141]Amaranath G, Baddhudu S, and Bryant F J. Absorption and PhotoluminescenceSpectra of Tm Doped Fluorophosphates Glasses[J]. Spectrochimica Acta., 1992, 48:1515-1522.
    [142]Amin J, Dussardier B, Schweizer T, et al. Spectroscopic Analysis of Er~(3+) Transitions in Lithium Niobate[J]. J. Lumin., 1996, 69:17-26.
    [143]Zhang D L, Hua P R, Xu Y H, et al. Judd-Ofelt Analysis of Spectroscopic Property of Er~(3+) in Congruent and Near-Stoichiometric Zn/Er-codoped LiNbO3 Crystals[J]. J. Appl. Phys., 2007, 101: 053523.
    [144]Li A H, Sun L, Zheng Z R, et al. Spectroscopic Properties of Er~(3+) in Sc:LiNbO3 Crystal[J]. Appl. Phys. A, 2007, 89:1005-1010.
    [145]Sardar D J, Bradley W M, Perez J J, et al. Judd-Ofelt Analysis of the Er~(3+) (4f11) Absorption Intensities in Er~(3+)-doped Garnets[J]. J. Appl. Phys., 2003, 93:2602-2607.
    [146]Sardar D K, RussellⅢC C, Yow R M, et al. Spectroscopic Analysis of the Er~(3+) (4f11) Absorption Intensities in NaBi(WO4)2[J]. J. Appl. Phys., 2004, 95:1180-1184.
    [147]Pujol M C, Rico M, Zaldo C, et al. Crystalline Structure and Optical Spectroscopy of Er~(3+)-doped KGd(WO4)2 Single Crystals[J]. Appl. Phys. B, 1999, 68:187-197.
    [148]Yang F G, Tu C Y, Li J F, et al. Growth and Optical Property of ZnWO4:Er~(3+) Crystal[J]. J. Lumin., 2007, 126: 623-628.
    [149]Jia G H, Tu C Y, Li J F, et al. Spectrosopic Properties of Er~(3+) Transitions in SrWO4 Crystal[J]. J. Appl. Phys., 2005, 98:093525.
    [150]Zhao Y W, Gong X H, Chen Y J, et al. Spectroscopic Properties of Er~(3+) Ions in Li6Y(BO3)3 Crystal[J]. Appl. Phys. B, 2007, 88:51-55.
    [151]You W X, Lin Y F, Chen Y J, et al. Polarized Spectroscopy of Er~(3+) Ions in YAl3(BO3)4 Crystal[J]. Opt. Mater., 2007, 29: 488-493.
    [152]Cantelar E, Quintanilla M, CussóF, et al. Optical Transition Probabilities in Er~(3+)- and Tm~(3+)-doped LiLa9(SiO4)6O2 Crystals[J]. J. Phys.: Condens. Matter, 2010, 22:215901.
    [153]Auzel F, Hubert S, and Meichenin D. Multifrequency Room-temperauture Continuous Diode and Ar+ Laser-pumped Er~(3+) Laser Emission Between 2.66 and 2.85μm[J]. Appl. Phys. Lett., 1989, 54: 681-683.
    [154]Eilers J J, Biner D, Wijngaarden J T, et al. Efficient Visible to Infrared Quantum Cutting Through Downconversion with The Er~(3+)- Yb~(3+) Couple in Cs3Y2Br9[J]. Appl. Phys. Lett., 2010, 96: 151106.
    [155]Chen G Y, Liang H J, Liu H C, et al. Anomalous Power Dependence of Upconversion Emissions in Gd2O3:Er~(3+) Nanocrystals Under Diode LaserExcitation of 970 nm[J]. J. Appl. Phys., 2009, 105:11435.
    [156]Sun L, Yang C H, Li A H, et al. In/Er-codoped LiNbO3 Crystal with Enhanced 1.5μm Emission and Suppressed Upconversion Emission[J]. J. Appl. Phys., 2009, 105:043512.
    [157]Auzel F. Spectral Narrowing of Excitation Spectra in N-photons Up-conversion Processes by Energy Transfers[J]. J. Lumin., 1984, 31-32:759-761.
    [158]Souriau J C, Romero R, Borel C, et al. Room-temperature Diode-pumped Continuous-wave SrY4(SiO4)O: Yb~(3+), Er~(3+) Crystal Laser at 1554 nm[J]. Appl. Phys. Lett., 1994, 64:1189-1191.
    [159]Hehlen M P, Kr?mer K, Güdel H U, et al. Schwartz. Upconversion in Er~(3+)-dimer Systems: Trends within The Series Cs3Er2X9 (X=Cl, Br, I) [J]. Phys. Rev. B, 1994, 49:12475.
    [160]Heumann E, B?r S, Rademaker K, et al. Semiconductor-laser-pumped High-power Upconversion Laser[J]. Appl. Phys. Lett., 2006, 88: 061108.
    [161]Burlot-Loison R, Pollnau M, Kr?mer K, et al. Laser-relevant Spectroscopy and Upconversion Mechanisms of Er~(3+) in Ba2YCl7 Pumped at 800 nm[J]. J. Opt. Soc. Am. B, 2000, 17:2055-2067.
    [162]Zhang H X, Kam C H, Zhou Y, et al. Green Upconversion luminescence in Er~(3+):BaTiO3 Films[J]. Appl. Phys. Lett., 2000, 77:609-611.
    [163]Jia W, Lim K S, Liu H, et al. Up-conversion of Multi-Site Er in LiNbO3 Single-crystal Fibers[J]. J. Lumin., 1996, 66-67:190-197.
    [164]Hehlen M P, Frei G, and Güdel H U. Dynamics of Infrared-to-visible Upconversion in Cs3Lu2Br9:1% Er~(3+)[J]. Phys. Rev. B, 1994, 50:16264.
    [165]Vetrone F, Boyer J C, Capobianco J A, et al. Concentration-dependent Near-infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3: Er~(3+)[J]. Chem. Mater., 2003, 15:2737-2743.
    [166]Lee T H, Simdyankin S I, Su L, et al. Evidence of Formation of Tightly bound Rare-earth Clusters in Chalcogenide Glasses and Their Evolution with Glass Composition[J]. Phys. Rev. B, 2009, 79:180202.
    [167]Li A H, Zheng Z R, Sun L, et al. MgO-codoping Effects on the Spectroscopic Properties of Er~(3+)-doped LiNbO3[J]. J. Appl. Phys., 2008, 104:033511.
    [168]Dierolf V and Koerdt M, Combined Excitation-emission Spectroscopy of Er~(3+) Ions in Stoichiometric LiNbO3: The Site Selectivity of Direct and Up Conversion Excitation Processes[J]. Phys. Rev. B, 2000, 61:8043-8052.
    [169]Suyver J F, Aebischer A, Garcia-Revilla S, et al. Anomalous Power Dependence of Sensitized Upconversion Luminescence[J]. Phys. Rev. B, 2005,71:125123.
    [170]Riedener T and Güdel H U. Upconversion Dynamics of Er~(3+) Doped RbGd2Br7[J]. J. Chem. Phys., 1997, 107:2169-2174.
    [171]Shi W Q, Bass M, and Birnbaum M. Effects of Energy Transfer Among Er~(3+) Ions on the Fluorescence Decay and Lasing Properties of Heavily Doped Er:Y3Al5O12[J]. J. Opt. Soc. Am. B, 1990, 7:1456-1462.
    [172]Garcia-Adeva A J, Balda R, Fernández J, et al. Dynamics of the Infrared-to-visible Upconversion in an Er~(3+)-doped KPb2Br5 Crystal[J]. Phys. Rev. B, 2005, 72:165116.
    [173]Cockroft N J, Jones G D, and Nguyen D C. Dynamics and Spectroscopy of Infrared-to-visible Upconversion in Erbium-doped Cesium Cadmium Bromide (CsCdBr3:Er~(3+))[J]. Phys. Rev. B, 1992, 45:5187-5198.
    [174]Pires A M, Serra O A, Heer S, et al. Low-Temperture Upconversion Spectroscopy of Nanosized Y2O3:Er, Yb Phosphor[J]. J. Appl. Phys., 2005, 98:063529.
    [175]Song H, Sun B J, Wang T, et al. Three-photon Upconversion Luminescence Phenomenon for the Green Levels in Er~(3+)/Yb~(3+) Codoped Cubic Nanocrystalline Yttria[J]. Solid State Commun., 2004, 132:409-413.
    [176]Tsuda M, Soga K, Inoue H, et al. Upconversion Mechanism in Er~(3+)-doped Fluorozirconate Glasses under 800 nm Excitation[J]. J. Appl. Phys., 1999, 85:29-37.
    [177]Chen G Y, Liu H C, Liang H J, et al. Upconversion Emission Enhancement in Yb~(3+)/ Er~(3+)-codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions[J]. J. Phys. Chem. C, 2008, 112:12030-12036.
    [178]Patra A, Saha S, Alencar M A R C, et al. Blue Upconversion Emission of Tm~(3+)-Yb~(3+) in ZrO2 Nanocrystals: Role of Yb~(3+) ions[J]. Chem. Phys. Lett., 2005, 407: 477-481.
    [179]Chen G Y, Zhang Y G, Somesfalean G, et al. Two-color Upconversion in Rare-earth-ion-doped ZrO2 Nanocrystals[J]. Appl. Phys. Lett., 2006, 89:163105.
    [180]Li J, Wu Y S, Pan Y B, et al. Fabrication of Cr4+, Nd~(3+):YAG Transparent ceramics for Self-Q-switched Laser[J]. J. Non-cryst. Solids, 2006, 352:2404-2407.
    [181]Wu B, Zhou S F, Ren J J, et al. Enhanced Luminescence from Transparent Ni2+-doped MgO-Al2O3-SiO2 Glass Ceramics by Ga2O3 Addition[J]. J. Phys. Chem. Solids, 2008, 69:891-894.
    [182]Zhang J W, Li K K, Zhao H, et al. Wavelength Translation Based onPhotoinduced Broadband Absorption in Nd~(3+)-doped Lanthanum Lead Zirconate Titanate Ceramics[J]. Opt. Lett., 2009, 34:1570-1572.
    [183]Suyver J F, Aebischer A, Biner D, et al. Novel Materials Doped with Trivalent Lanthanides and Transition Metal Ions Showing Near-Infrared to Visible Photon Upconversion[J]. Opt. Mater., 2005, 27:1111-1130.
    [184]Chen G Y, Somesfalean G, Liu Y, et al. Upconversion Mechanism for Two-color in Rare-earth-ion-doped ZrO2 Nanocrystals[J]. Phys. Rev. B, 2007, 75:195204.