无铅钽铌酸钾锂晶体的介电和压电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的日益发展,作为人类社会发展基础产业的材料科学必须紧跟时代步伐。近年来压电材料备受关注,特别是目前大规模应用的锆钛酸铅陶瓷,然而为了人类的环境和可持续发展,寻找一种无铅压电铁电材料来替代锆钛酸铅成为了当代相关领域科研人员的当务之急和时代使命。近十年里在国际铁电领域中,无铅压电陶瓷被大量地开发和改性,但距离在应用中取代锆钛酸铅陶瓷还相差甚远,怎样进一步提高无铅材料的性能和稳定性就是大家努力的方向。
     众所周知,由于铁电单晶的高取向性,使其各项性能都远远超出同组分的陶瓷材料,而且铁电单晶的结构比陶瓷简单,便于进行基于晶体取向变化物理机理的研究。而钽铌酸钾晶体作为最早被发现的光折变材料,是一种为大家熟知的固熔体。截止目前,关于钽铌酸钾晶体绝大多数的研究工作都集中在光学性能上,而其系统性的电学性能(介电、热释电、压电和铁电性质)却鲜有报道。而且直到现在,关于钽铌酸钾晶体的研究都集中在富钽区域,而关于富铌区域的研究却很少。
     因此,本论文将有机地结合无铅压电铁电材料的开发背景和钽铌酸钾晶体的研究现状,通过分析钽铌酸钾晶体的合成和组分相图,采用顶部籽晶熔体法生长了一系列大尺寸、高质量、富铌掺锂的钽铌酸钾晶体,即钽铌酸钾锂晶体((K,Li)(Ta_(1-x)Nb_x)O_3,KLTN),继而开展其各项研究工作。对无铅晶体KLTN的组分和结构进行分析和研究。利用能量色散谱分析(EDS)测试晶体的组分;利用X射线衍射技术(XRD)表征晶体结构,并分析了晶格常数的演变规律和掺铁KLTN(Fe: KLTN)晶体的占位情况;
     对无铅晶体KLTN的介电行为进行系统地表征和研究。通过对所有组分晶体沿不同晶向在不同频率和大温区下的介电性能测试,明确KLTN晶体的相变机制、给出其所有相变温度的变化规律,并分析极化过程对介电性能的影响;分析KLTN晶体的弥散相变特性,并给出具体的弥散指数;对KLTN晶体的介电可调谐性能进行研究,分析介电常数和损耗随外加偏置电场的变化行为。
     通过研究无铅晶体KLTN的热释电和铁电性能对其自发极化特性进行分析。通过对无铅晶体KLTN热释电性能的表征,进一步确认其相变规律的同时给出自发极化在全温区的变化行为。利用压电响应力显微镜(PFM)对富铌KLTN晶体的表面形貌和铁电畴进行观察;利用铁电测试仪对富铌KLTN晶体的电滞回线进行表征,得到其矫顽场和剩余极化强度,分析其变化规律和原因。结合热释电和电滞回线的测试结果对KLTN晶体的自发极化特性进行机理分析。
     对无铅晶体KLTN各种振动模式下的压电性能进行系统地研究。制作富铌KLTN晶体横向长度振动模式、厚度振动模式、纵向振动模式以及横向切变模式的压电振子,给出和分析相关的压电、机电耦合和弹性性能参数,并与传统的压电材料进行对比;利用超高频振动计,分析其谐振行为,得到谐振频率下三维微观形貌。对无铅晶体KLTN各项性能的晶向依赖特性进行计算和模拟,绘制其三维分布图。
With the growing development of science and technology, as a basic industryfor the development of human society, material science should keep abreast of thetimes. As large-scale application currently is lead-zirconium-titanate, piezoelectricmaterial is a major concern in recent years; for the environment and sustainabledevelopment, looking for lead-free piezoelectric ferroelectric materials to replace itis contemporary and historical mission of the researchers in the related field. In thepast ten years, there are mass exploitations of lead-free piezoelectric ceramics andtheir modification in the area of international ferroelectric, but replacing thelead-zirconate-titanate ceramics to application is too early; thus, the emphasis focuson how to further improve the performance and stability of lead-free materials.
     Due to its high orientation, the performance of ferroelectric single crystals isfar beyond that of the same composition of ceramics; moreover, the structure offerroelectric single crystal is simpler than that of ceramic, as well as convenient toresearch on orientation-dependent physical mechanism. Potassium tantalum niobatecrystal is a well-known solid solution in photorefractive material, the vast majorityof research is focused on the optical properties; however, systemic electricalproperties (dielectric, pyroelectric, piezoelectric and ferroelectric properties) arerarely reported. And until now, research has focused on the tantalum-rich potassiumtantalum niobate crystal; niobium-rich regions have not been studied.
     Thus, combining the development background of lead-free piezoelectric andferroelectric material and research status of potassium tantalate niobate crystal, andthrough analysis synthesis and compositional phase diagram of potassium tantalumniobate crystal, a series of big sized, high quality, and niobium-rich lithium-dopedof potassium tantalum niobate crystals (potassium lithium tantalum niobate singlecrystals,(K,Li)(Ta1-xNbx)O3, KLTN) have been obtained using top-seeded meltgrowth method), and then carried out their research work. The composition,structure, and thermal expansion performance of niobium-riched KLTN crystals areanalyzed. The compositions are determined using energy dispersive spectrometry(EDS); crystal structures are characterized using x-ray diffraction (XRD), and theevolution of lattice parameters and the replacement of Fe: KLTN crystals are alsoanalyzed.
     Dielectric property of lead-free crystals KLTN is comprehensivelycharacterized. Through dielectric performance of all compositions along differentcrystal orientation in different frequency and large temperature range, phase transition mechanism of niobium-rich KLTN crystals are determined, and all ofphase transition temperatures are obtained; poling process for dielectric property isdiscussed; diffusion characteristics of niobium-rich KLTN crystals are analyzed;dielectric tunability of KLTN crystals is characterized, and the behavior of dielectricconstant and loss under dc bias is determined.
     The Polarization properties of lead-free crystals KLTN are analyzed throughtheir pyroelectric and ferroelectric properties. Pyroelectric properties ofniobium-rich KLTN single crystal are determined; the phase transition points arefurther confirmed; the spontaneous polarizations in the whole temperature range arecomputed, and are compared with the total polarization obtained in themeasurement of thermal expansion. The ferroelectric P-E hysteresis loops ofniobium-rich KLTN crystals are measured, and their coercive field and the remnantspontaneous polarization are determined. Combined pyroelectric property andhysteresis loops, spontaneous polarizations have been theorically analyzed.
     Piezoelectric properties of niobium-rich KLTN single crystals are determined.The piezoelectric vibrators of horizontal length vibration mode, thickness vibrationmode, vertical vibration mode and horizontal shear mode of niobium-rich KLTNsingle crystals are made; piezoelectric constant and electro-mechanical couplingfactor are determined, and also compared with those of traditional piezoelectricmaterials. The vibration behavior of KLTN crystals is analyzed using ultrahighfrequency vibration meter, and the surface profile at resonant frequency is obtained.The surface morphology and ferroelectric domains of niobium-rich KLTN crystalsare observed using piezoelectric response force microscopy (PFM).
引文
[1] Tressler J F, Alkoy S, Dogan A and Newnham R E. Functional Composites forSensors, Actuators and Transducers[J]. Composites Part A,1999,30(4):477-482.
    [2] Jaffe B, Cook W R and Jaffe H L. Piezoelectric Ceramics[M]. New York:Academic.1971.
    [3] Sawaguchi E. Ferroelectricity versus Antiferroelectricity in the Solid Solutionsof PbZrO3and PbTiO3[J]. J. Phys. Soc. Japan,1953,8:615-629.
    [4] Yamamoto T. Ferroelectric Properties of the PbZrO3-PbTiO3System[J]. Japan.J. Appl. Phys.,1996,35:5104-5108.
    [5] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T andNakamura M. Lead-free piezoceramics[J]. Nature,2004,432:84-87.
    [6] Cross L E. Lead-free as Last[J]. Nature,2004,432:24-25.
    [7] Liu W F, Ren X B. Large Piezoelectric Effect in Pb-Free Ceramics[J]. Phys.Rev. Lett.,2009,103:257602.
    [8]赁敦敏,肖定全,朱建国,余萍,鄢洪建.铌酸盐系无铅压电陶瓷的研究与进展[J].功能材料.2003,34(6):61.
    [9] Curie J and Curie P. Développement par Compression de l' Electricité Polairedans les Cristaux Hémiedres a Faces Inclinées[J]. Bulletin de la SociétéMinéralogique de France,1880,3:90-93.
    [10] Randall C A, Kelnberger A, Yang G Y, Eitel R E and Shrout T R. High StrainPiezoelectric Multilayer Actuators-A Material Science and EngineeringChallenge[J]. J. Electroceram.,2005,14:177-191.
    [11] Haertling G H, In: Buchanan RC (ed.), Marcel Dekker (2nded.). Piezoelectricand Electro-optic Ceramics in Ceramic Materials for Electronics[M]. NewYork.1991.
    [12] Uchino K. Ceramic Actuators: Principles and Applications[J]. Mater. Res. Bull.,1993,18:42-48.
    [13] Newnham R E. Functional Composites for Sensors and Actuators: SmartMaterials[M]. PA: The Pennsylvania Academy of Science,1998.
    [14] Sahoo B, Panda P K. Review: Environmental Friendly Lead-free PiezoelectricMaterials[J]. J. Mater. Sci.,2007,42:4270.
    [15] Hill N A, Rabe K M. First-principles Investigation of Ferromagnetism andFerroelectricity in Bismuth Manganite[J]. Phys. Rev. B,1999,59:8759-8769.
    [16] Wang Y G, Zhang H, Zhang Y, Jinyi M, Daohua X. Lead-free PiezoelectricCeramics with Composition of (0.97-x)Na1/2Bi1/2TiO3-0.03NaNbO3-xBaTiO3[J].J. Mater. Sci.,2003,38:987.
    [17] Goering P L. Lead-protein Interactions as a Basis for Lead Toxicity[J].Neurotoxicology,1993,14:45.
    [18] Baldwin D R, Marshall W J. Bioaccumulation of Mercury in Marine Bacteria:A Novel Approach of Mercury Remediation[J]. Ann. Clin. Biochem.,1999,36:267.
    [19] Kety S S. The Lead Citrate Complex Ion and its Role in the Physiology andTherapy of Lead Poisoning[J]. J. Biol. Chem.,1942.142:181-192.
    [20] Gordon J N, Taylor A, Bennette P N. Lead Poisoning: Case Studies[J]. Br. J.Clin. Pharmacol.,2002,53:451.
    [21] Zhang S J, Xia R and Shrout T R. Lead-free Piezoelectric Ceramics vs. PZT[J].J. Electroceram.,2007,19:251.
    [22]高峰,张慧君,刘向春等.铌酸钠钾基无铅压电陶瓷的相结构与压电性能[J].压电与声光.2006,28(1):60.
    [23] Serhiy O L and Richard E E. Progress in Engineering High Strain Lead-freePiezoelectric Ceramics[J]. Sci. Technol. Adv. Mater.,2010,11:044302.
    [24] Panda P K. Review: environmental friendly lead-free piezoelectric materials. J.Mater. Sci.,2009,44:5049–5062.
    [25] Takenaka T, Nagata H. Current Status and Prospects of Lead-free PiezoelectricCeramics[J]. J. Eur. Ceram. Soc.,2005,25:2693.
    [26] Hill N A, Rabe K M. First-principles Investigation of Ferromagnetism andFerroelectricity in Bismuth Manganite[J]. Phys. Rev. B,1999,59:8759.
    [27] Halasyamani P S, Poeppelmeier K R. Noncentrosymmetric Oxides[J]. J. Chem.Mater.,1998,10:2753.
    [28] Serhiy O L and Richard E E. Progress in Engineering High Strain Lead-freePiezoelectric Ceramics[J]. Sci. Technol. Adv. Mater.,2010,11:044302.
    [29] Messing G L. Templated Grain Growth of Textured Piezoelectric Ceramics[J].Crit. Rev. Solid State. Mater. Sci.,2004,29:45.
    [30] Wada S, Yako K, Kakemoto H, Tsurumi T and Kiguchi T. EnhancedPiezoelectric Properties of Barium Titanate Single Crystals with DifferentEngineered-domain Sizes[J]. J. Appl. Phys.,2005,98:014109.
    [31] Park S E and Shrout T R. Ultrahigh Strain and Piezoelectric Behavior inRelaxor Based Ferroelectric Single Crystals[J]. J. Appl. Phys.,1997,82:1804.
    [32] Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T and Kimura T.Domain Wall Engineering in Lead-Free Piezoelectric Grain-Oriented Ceramics[J]. Ferroelectrics,2008,373:11.
    [33] Takenaka T, Nagata H and Hiruma Y. Current Developments and Prospective ofLead-Free Piezoelectric Ceramics[J]. Japan. J. Appl. Phys.,2008,47:3787.
    [34]亓鹏.掺杂改性对铌酸盐无铅压电陶瓷材料性能的影响[D].济南:山东大学博士论文.2008.
    [35]江民红. KNN基无铅压电陶瓷的改性与机理研究[D].长沙:中南大学博士论文.2010.
    [36] Ahtee M and Glazer A M. Lattice Parameters and Tilted Octahedra inSodium-Potassium Niobate Solid Solutions[J]. Acta. Crystallogr. A,1976,32:434.
    [37] Ahtee M and Hewat A W. Structural Phase Transitions in Sodium-PotassiumNiobate Solid Solutions by Neutron Powder Diffraction[J]. Acta. Crystallogr. A,197834:309.
    [38] Shirane G, Newnham R and Pepinsky R. Dielectric Properties and PhaseTransitions of NaNbO3and (Na,K)NbO3[J]. Phys. Rev.,1954,96:581.
    [39] Matsubara M, Yamaguchi T, Kikuta K and Hirano S. Sinterability andPiezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid[J].Japan. J. Appl. Phys.1,2004,43:7159.
    [40] Egerton L and Dillon D M. Piezoelectric and Dielectric Properties of Ceramicsin the System Potassium-Sodium Niobate[J]. J. Am. Ceram. Soc.,1959,42:438.
    [41] Matsubara M, Yamaguchi T, Kikuta K and Hirano S. Sinterability andPiezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid[J].Japan. J. Appl. Phys.1,2004,43:7159.
    [42] Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T and Hirano S.Processing and Piezoelectric Properties of Lead-Free (K,Na)(Nb,Ta)O3Ceramics[J]. J. Am. Ceram. Soc.,2005,88:1190.
    [43] Matsubara M, Yamaguchi T, Kikuta K and Hirano S. Synthesis andCharacterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3Piezoelectric Ceramics Sinteredwith Sintering Aid K5.4Cu1.3Ta10O29[J]. Japan. J. Appl. Phys.1,2005,44:6618.
    [44] Egerton L and Bieling C A. Isostatically Hot-pressed Sodium-PotassiumNiobate Transducer Material for Ultrasonic Devices[J]. Am. Ceram. Soc. Bull.,1968,47:1151.
    [45] Zhang B P, Li J F, Wang K and Zhang H L. Compositional Dependence ofPiezoelectric Properties in NaxK1-xNbO3Lead-Free Ceramics Prepared bySpark Plasma Sintering[J]. J. Am. Ceram. Soc.,2006,89:1605.
    [46] Seo I T, Cho K H, Park H Y. Effect of CuO on the Sintering and PiezoelectricProperties of0.95(Na0.5K0.5)NbO3-0.05SrTiO3Lead-Free PiezoelectricCeramics[J]. J. Am. Ceram. Soc.,2008,91:3955.
    [47] Park H Y, Choi J Y, Choi M K, Cho K H, Nahm S. Effect of CuO on theSintering Temperature and Piezoelectric Properties of (Na0.5K0.5)NbO3Lead-Free Piezoelectric Ceramics[J]. J. Am. Ceram. Soc.,2008,91:2374.
    [48] Bernard J, Bencan A, Rojac T, Holc J, Malic B, Kosec M. Low-TemperatureSintering of K0.5Na0.5NbO3Ceramics[J]. J. Am. Ceram. Soc.,2008,91:2409.
    [49] Zhang B P, Li J F, Wang K, Zhang H. Compositional Dependence ofPiezoelectric Properties in NaxK1-xNbO3Lead-Free Ceramics Prepared bySpark Plasma Sintering[J]. J. Am. Ceram. Soc.,2006,89:1605.
    [50] Kosec M, Kolar D. On Activated Sintering and Electrical Properties ofNaKNbO3[J]. Mater. Res. Bull.,1975,10:335.
    [51] Gao D J, Kwok K W, Lin D M, Chan H L W. Microstructure, ElectricalProperties of CeO2-doped (K0.5Na0.5)NbO3Lead-free Piezoelectric Ceramics[J].J. Mater. Sci.,2009,44:2466.
    [52] Rubio-Marcos F, Ochoa P, Fernandez J F. Sintering and Properties of Lead-free(K,Na,Li)(Nb,Ta,Sb)O3Ceramics[J]. J. Eur. Ceram. Soc.,2007,27:4125.
    [53] Chang Y F, Yang Z P, Hou Y T, Liu Z H, Wang Z L. Effects of Li Content onthe Phase Structure and Electrical Properties of Lead-free (K0.46-x/2Na0.54-x/2Lix)-(Nb0.76Ta0.20Sb0.04)O3Ceramics[J]. Appl. Phys. Lett.,2007,90:232905.
    [54] Lin D M, Kwok K W, Chan H L W. Microstructure, Phase Transition, andElectrical Properties of (K0.5Na0.5)1-xLix(Nb1-yTay)O3Lead-free PiezoelectricCeramics[J]. J. Appl. Phys.,2007,102:034102.
    [55] Dai Y, Zhang X, Zhou G. Phase Transitional Behavior in K0.5Na0.5NbO3-LiTaO3Ceramics[J]. Appl. Phys. Lett.,2007,90:262903.
    [56] Yang Z, Chang Y, Liu B, Wei L. Effects of Composition on Phase Structure,Microstructure and Electrical Properties of (K0.5Na0.5)NbO3-LiSbO3Ceramics[J]. Mater. Sci. Eng. A,2006,432:292.
    [57] Jaeger R E and Egerton L. Hot Pressing of Potassium-Sodium Niobates[J]. J.Am. Ceram. Soc.,1962,45:209.
    [58] Wu J G, Peng T, Wang Y Y, Xiao D Q, Zhu J M, Jin Y, Zhu J G, Yu P, Wu L,Jiang Y H. Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3Lead-Free Piezoelectric Ceramics[J]. J. Am. Ceram.Soc.,2008,91:319.
    [59] Zhang S J, Xia R, Shrout T R, Zang G Z, Wang J F. Piezoelectric Properties inPerovskite0.948(K0.5Na0.5)NbO3-0.052LiSbO3Lead-free Ceramics[J]. J. Appl.Phys.,2006,100:104108.
    [60] Wu J G, Xiao D Q, Wang Y Y, Zhu J G, Wu L, Jiang Y H. Effects of K/Na Ratioon the Phase Structure and Electrical Properties of (KxNa0.96-xLi0.04)-(Nb0.91Ta0.05Sb0.04)O3Lead-free Ceramics[J]. Appl. Phys. Lett.,2007,91:252907.
    [61] Du H L, Luo F, Qu S B, Pei Z B, Zhu D M, Zhou W C. Phase Structure,Microstructure, and Electrical Properties of Bismuth Modified PotassiumSodium Niobium Lead-free Ceramics[J]. J. Appl. Phys.,2007,102:054102.
    [62] Wu J G, Wang Y Y, Xiao D Q, Zhu J G, Pu Z H. Effects of Ag Content on thePhase Structure and Piezoelectric Properties of (K0.44-xNa0.52Li0.04Agx)-(Nb0.91Ta0.05Sb0.04)O3Lead-free Ceramics[J]. Appl. Phys. Lett.,2007,91:132914.
    [63] Malic B, Bernard J, Bencan A, Kosec M. Influence of Zirconia Addition on theMicrostructure of K0.5Na0.5NbO3Ceramics[J]. J. Eur. Ceram. Soc.,2007,28:1191.
    [64] Li H D, Shih W Y, Shih W H. Effect of Antimony Concentration on theCrystalline Structure, Dielectric, and Piezoelectric Properties of(Na0.5K0.5)0.945-Li0.055Nb1-xSbxO3Solid Solutions[J]. J. Am. Ceram. Soc.,2007,90:3070.
    [65] Li H D, Shih W Y, Shih W H. Effect of Antimony Concentration on theCrystalline Structure, Dielectric, and Piezoelectric Properties of(Na0.5K0.5)0.945Li0.055Nb1-xSbxO3Solid Solutions[J]. J. Am. Ceram. Soc.,2007,90:3070.
    [66] Zhao P, Zhang B P. High Piezoelectric d33Coefficient in Li/Ta/Sb-CodopedLead-Free (Na,K)NbO3Ceramics Sintered at Optimal Temperature[J]. J. Am.Ceram. Soc.,2008,91:3824.
    [67] Wu J G, Xiao D Q, Wang Y Y. CaTiO3-Modified (K0.50Na0.50)(Nb0.96Sb0.04)O3Lead-Free Piezoelectric Ceramics[J]. J. Am. Ceram. Soc.,2008,91:3402.
    [68] Wang Y, Wu J, Xiao D, Wu W, Zhang B, Wu L, Zhu J. Microstructure andElectrical Properties of [(K0.50Na0.50)0.95-xLi0.05Agx](Nb0.95Ta0.05)O3Lead-FreeCeramics[J]. J. Am. Ceram. Soc.,2008,91:2772.
    [69] Guo Y, Kakimoto K, Ohsato H. Dielectric and Piezoelectric Properties ofLead-free (Na0.5K0.5)NbO3-SrTiO3Ceramics[J]. Solid State Commun.,2004,129:279.
    [70] Kosec M, Malic B, Bernard J, Holc J, Hrovat M, Bobnar V. New Lead-freeRelaxors Based on the K0.5Na0.5NbO3-SrTiO3Solid Solution[J]. J. Mater. Res.,2004,19:1849.
    [71] Chang Y F, Yang Z P, Chao X L, Zhang R, Li X R. Dielectric and PiezoelectricProperties of Alkaline-Earth Titanate Doped (K0.5Na0.5)NbO3Ceramics[J].Mater. Lett.,2007,61:785.
    [72] Chang Y, Yang Z, Wei L, Liu B. Effects of AETiO3Additions on PhaseStructure, Microstructure and Electrical Properties of (K0.5Na0.5)NbO3Ceramics[J]. Mater. Sci. Eng. A,2006,437:301.
    [73] Lu Y T, Chen X M, Jin D Z, Hu X. Dielectric and Ferroelectric Properties of(1-x)(Na0.5K0.5)NbO3-xBaTiO3Ceramics[J]. Mater. Res. Bull.,2005,40:1847.
    [74] Agranat A, Leyva V, Yariv A. Voltage-controlled Photorefractive Effect inParaelectric KTa1-xNbxO3: Cu, V[J]. Opt. Lett.,1989,14(18):1017-1019.
    [75] Toyota S, Fujiura K. KTN-Crystal-Waveguide-Based Electro-Optic PhaseModulator with High Performance Index[J]. Electr. Lett.,2004,40:13.
    [76] Rytz D, Scheel H J. Crystal Growth fo KTa1-xNxO3(0    [77] Jona F, Shirane G. Ferroelectric Crystals[M]. New York: Dover PublicationsInc.1993.
    [78] Shirane G, Danner H, Pavlovic A and Pepinsky R. Phase Transitions inFerroelectric KNbO3[J]. Phys. Rev.,1954,93:672.
    [79] Nakamura K and Kawamura Y. Orientation Dependence of ElectromechanicalCoupling Factors in KNbO3[J]. IEEE Trans. Ultrason. Ferroelectr. Freq.Control,2000,47:750.
    [80] Zgonik M, Schlesser R, Biaggio I, Voit E, Tscherry J and Gunter P. MaterialsConstants of KNbO3Relevant for Electro-and Acousto-Optics[J]. J. Appl.Phys.,1993,74:1287.
    [81] Nakamura K and Oshiki M. Theoretical Analysis of Horizontal Shear ModePiezoelectric Surface Acoustic Waves in Potassium Niobate[J]. Appl. Phys.Lett.,199771:3203.
    [82] Davis M, Klein N, Damjanovic D, Setter N, Gross A, Wesemann V, Vernay Sand Rytz D. Large and Stable Thickness Coupling Coefficients of [001]C-oriented KNbO3and Li-modified (K,Na)NbO3Single Crystals[J]. Appl. Phys.Lett.,2007,90:062904.
    [83] Nagata H, Matsumoto K, Hirosue T, Hiruma Y and Takenaka T. Fabricationand Electrical Properties of Potassium Niobate Ferroelectric Ceramics[J].Japan. J. Appl. Phys.1,2007,46:7084.
    [84] Li E Z, Kakemoto H, Hoshina T and Tsurumi T. A Shear-Mode UltrasonicMotor Using Potassium Sodium Niobate-Based Ceramics with HighMechanical Quality Factor[J]. Japan. J. Appl. Phys.,2008,47,7702.
    [85] Hikita K, Hiruma Y, Nagata H and Takenaka T. Shear-Mode PiezoelectricProperties of KNbO3-Based Ferroelectric Ceramics[J]. Japan. J. Appl. Phys.,2009,48:07GA05.
    [86] Bozinis D G, Hurrell J P. Optical Modes and Dielectric Properties ofFerroelectric Orthorhombic KNbO3. Phys. Rev. B,1976,13:3109-3111.
    [87] Hulm J K,Matthias B T,Long E A. A Ferromagnetic Curie Point in KTaO3atVery Low Temperature[J]. Phys. Rev.,1950,79(5):885-886.
    [88] Matthias B T. New Ferroelectric Crystals[J]. Phys. Rev.,1949,75:1771.
    [89] Smolenskii G A, Doklady Akad. Ferroelectrics and related materials[J]. Nauk.S.S.S.R.,1950,70:405.
    [90] Matthias B T and Remeika J P. Dielectric Properties of Sodium and PotassiumNiobates[J]. Phys. Rev.,1949,76:1886.
    [91] Xu Y N, Ching W Y, French R H. Selfconsistent Band Structures and OpticalCalculations in Cubic Ferroelectric Perovskites[J]. Ferroelectrics,1990,111:23-26.
    [92] Postnikov A V, Neumann T, Borstel G, Methfessel M. Ferroelectric Structure ofKNbO3and KTaO3from First-principles Calculations[J]. Phys. Rev. B,1993,48:5910.
    [93] Neumann T, Borstel G, Scharfschwerdt C, Neumann M. Electronic Structure ofKNbO3and KTaO3[J]. Phys. Rev. B,1992,46:10623.
    [94]Grass M, Braun J, Postnikov A, Borstel G, ünlü H, Neumann M. Full-PotentialPhotoemission Calculations for KTaO3[J]. Surf. Sci.,1996,352-354:760-764.
    [95] Krasovskii E E, Krasovska O V, Schattke W. Ab Initio Calculation of theOptical and Photoelectron Spectra of KNbO3and KTaO3[J]. J. Electron.Spectrosc. Relat. Phenom.,1997,83:121.
    [96] Singh D J. Stability and Phonons of KTaO3[J]. Phys. Rev. B,1996,53:176-180.
    [97] Triebwasser S. Study of Ferroelectric Transitions of Solid-Solution SingleCrystals of KNbO3-KTaO3[J]. Phys. Rev.1959,114:63-70.
    [98] Hulm J K, Matthias B T, and Long E A. A Ferromagnetic Curie Point in KTaO3at Very Low Temperatures[J]. Phys. Rev.,1950,79:885
    [99] Matthias B T and Remeika J P. Dielectric Properties of Sodium and PotassiumNiobates[J]. Phys. Rev.,1951,82:727.
    [100]Haas W, Johannes R. Linear Electrooptic Effect in Potassium TantalateNiobate Crystals[J]. Appl. Opt.,1967,6:11.
    [101]王旭平. KTN系列晶体的生长极其性能研究[D].济南:山东大学博士论文,2008.
    [102]Rytz D, Scheel H J. Crystal Growth fo KTa1-xNxO3(0    [103]Scheel H J. Theoretical and Technological Solutions of the StriationProblem[J]. J. Cryst. Growth,2006,287:214-223.
    [104]Wang J Y, Guan Q C, Wei J Q, Wang M, Liu Y G. Growth and Characterizationof Cubic KTa1-xNbxO3Crystals[J]. J. Cryst. Growth,1992,116:27-36.
    [105]Wang X P, Wang J Y, Yu Y G, Zhang H J, Boughton R I. Growth of CubicKTa1-xNbxO3Crystal by Czochralski Method[J]. J. Cryst. Growth,2006,293:398-403.
    [106]Koichiro N, Jun M, Masahiro S, Kazuo F. Structure and Electrical Propertiesof (Li, Sr, Sb)-modified K0.5Na0.5NbO3Lead-free Piezoelectric Ceramics[J].Appl. Phys. Lett.2006,89:13115.
    [107]Sasaura M, Imai T, Kohda H, Tohno S, Shimokozono M, Fushimi H, Fjiura K,Toyoda S, Enbutsu K, Tate A, Manabe K, Matsuura T, Kurihara T. TSSGPulling and LPE Growth of KTaxNb1-xO3for Optical Waveguides[J]. J. Cryst.Growth,2005,275:e2099-e2103.
    [108]Hulliger J, Gutmann, Wagli P. Growth of Monocrystalline Thin Films ofPotassium-Tantalate-Niobate (KTN) by Liquid-Phase Epitaxy[J]. Thin SolidFilms,1989,175:201-206.
    [109]Perry C H, Hayes R R, Tornberg N E, edited by Goosman M, Elkomoss S G,Ringeisen J. Molecular Spectroscopy of Dense Phases[M]. Amsterdam:Elsevier.1976.
    [110]H chli U T, Weibel H E, Boatner L A. Quantum Limit of Ferroelectric PhaseTransitions in KTa1-xNbxO3[J]. Phys. Rev. Lett.,1977,39:1158.
    [111]D. Rytz, A. Chatelain, U. T. H chli. Elastic Properties in QuantumFerroelectric KTa1-xNbxO3[J]. Phys. Rev. B,1983,27:11.
    [112]Smakula P H and Claspy P C. Trans. Metall. Soc. AIME,1967,239:421.
    [113]Chen F S, Geusic J E, Kurtz S K and Skinner J G. Light Modulation and BeamDeflection with Potassium Tantalate-Niobate Crystals[J]. J. Appl. Phys.,1966,37:388.
    [114]Anistratov A T. Bull. Acad. Sci. USSR Phys. Ser.,1969,33:1014.
    [115]Dugan A F and Doyle W M. Field-dependent Dielectric Properties ofKTaxNb1-xO3[J]. IEEE Trans. Electron Devices,1969,16:522.
    [116]Stafsudd O M and Pines M Y. Characteristics of KTN PyroelectricDetectors[J]. J. Opt. Soc. Am.,1972,62:1153.
    [117]Krishan I, Srivastava K K, Lal K. Ferroelectric Properties of KTa0.65Nb0.35O3Single Crystals[J]. J. Phys. C: Solid State Phys.,1975,8:71-79.
    [118]Courdille J M, Dumas J, Ziolkiewicz S, and Joffrin J. Soft ModeCharacteristics in the KTN Ferroelectric Transition[J]. J. Phys.(Paris),1977,38,1519.
    [119]Toulouse J, Wang X M, Knauss L A, Boatner L A. Dielectric Nonlinearity andSpontaneous Polarization of KTa1-xNbxO3in the Diffuse Transition Range[J].Phys. Rev. B,1991,43(10):8297-8302.
    [120]Samara G A, Boatner L A. Ferroelectric-to-Relaxor Crossover and OxygenVacancy Hopping in the Compositionally Disordered PerovskitesKTa1-xNbxO3:Ca[J]. Phys. Rev. B,2000,61(6):3889-3896.
    [121]Hochli U T, Weibel H E. Quantum Limit of Ferroelectric Phase Transitions inKTa1-xNbxO3[J]. Phys. Rev. Lett.,1977,39(18):1158-1161.
    [122]Schneider T, Beck H, and Stoll E. Quantum Effects in an N-Component VectorModel for Structural Phase Transitions[J]. Phys. Rev. B13,1123(1976).
    [123]R. Oppermann and H. Thomas, Z. Phys.822,387(1975).
    [124]Samara G A. Glasslike Behavior ans Novel Oressure Effects in KTa1-xNbxO3.Phys. Rev. Lett.,1984,53:298.
    [125]Kleemann W and Schafer F J. Diffuse Ferroelectric Phase Transition andLong-Range Order of Dilute KTa1-xNbxO3. Phys. Rev. Lett.,1985,54:2038.
    [126]Gehring P M, Chou H, Shapiro S M, Hriljac J A, Chen D H. Dipole-glassbehavior of lightlt doped KTa1-xNbxO3. Phys. Rev. B,1985,54:8.
    [127]Rytz D, Chatelain A, H chli U T. Elastic Properties in Quantum FerroelectricKTa1-xNbxO3[J]. Phys. Rev. B,1983,27:11.
    [128]Svitelskiy O, Suslov A V. Resonant Ultrasound Spectroscopy of KTa1-xNbxO3Ferroelectric Relaxor Crystals[J]. Phys. Rev. B,2008,78:064113.
    [129]Agranat A, Hofmeister R and Yariv A. Characterization of a NewPhotorefractive Material: Kl-yLiyTa1-xNbxO3[J]. Opt. Lett.,1992,17:713.
    [130]Chani V I, Nagata K and Kawaguchi T. Segregation and Uniformity ofK3Li2(Ta,Nb)5O15Fiber Crystals Grown by Micro-pulling-down Method[J]. J.Cryst. Growth,1998,194:374.
    [131]Tian H, Zhou Z X, Wang H F, Liu D J. Optical Properties of CubicK0.95Li0.05Ta0.61Nb0.39O3Single Crystal[J]. Opt. Mater.,2008,31(1):106-109.
    [132]Li L, Zhou Z X, Tian H, et al. Spectroscopic and Upconersion Properties ofErbium-doped Potassium Lithium Tantalate Niobate Crystals under800nmFemtosecond Laser Excitation[J]. J. Appl. Phys.2010,108:043520.
    [133]Zhou Z X, Li J, Tian H, Wang Z, Li Y, Zhang R. Piezoelectric Properties ofLead-free Crystal K0.95Li0.05Ta0.61Nb0.39O3[J]. J. Phys. D: Appl.Phys.,2009,42:125405.
    [134]Tian H, Li J, Zhou Z X. Piezoelectric Properties of Tetragonal K0.95Li0.05TaxNb1-xO3Lead-free Single Crystals Near Tetragonal-Cubic PhaseTransition Boundary[J]. Phase Transition,2011,85(6):523-529
    [135]Kleemann W, Sch fer F J, Rytz D. Diffuse Ferroelectric Phase Transition andLong-Range Order of Dilute KTa1-xNbxO3[J]. Phys. Rev. Lett.,1985,54:18.
    [136]陈春荣,赵新乐.晶体物理性质与检测[M].北京:北京理工大学出版社.1995.
    [137]李均.无铅单晶KLTN横向长度振动模式压电性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2009.
    [138]Reisman A, Triebwasser S, Holtzberg F. Phase Diagram of the SystemKNbO3-KTaO3by the Methods of Differential Thermal and ResistanceAnalysis[J]. Phys. Rev.,1955,77:4228-4230.
    [139]杨文龙.碱金属钽铌酸盐无铅材料的压电和色散特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2012.
    [140]李磊. Er3+及Er3+/Yb3+掺杂钽铌酸钾锂晶体生长和光谱性能[D].哈尔滨:哈尔滨工业大学博士学位论文.2011.
    [141]田浩.钽铌酸钾锂晶体的生长和电光性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008.
    [142]Perry C H, Hayes R R, Tornberg N E. Molecular Spectroscopy of DensePhases[M]. Amsterdam: Elsevier.1976.
    [143]李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论[M].北京:科学出版社,2002.
    [144]俞文海,刘皖育.晶体物理学[M].合肥:中国科学技术大学出版社,1998.
    [145]蒋民华.晶体物理[M].济南:山东科学技术出版社.1980.
    [146]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社,1984.
    [147]陈纲,廖理几,晶体物理学基础[M].北京:科学出版社.1992.
    [148]Cross L E. Relaxor Ferroelectrics[M]. Springer Series in Mat. Sci.,2008,114:131.
    [149]徐家跃,金敏.新型弛豫铁电晶体—生长、性能及应用[M].北京:化学工业出版社,2007.
    [150]单丹.无铅钙钛矿结构陶瓷电容器介质材料的制备与介电性能的研究[D].天津:天津大学博士论文.2006.
    [151]Uchino K, and Nomura S. Critical Exponents of the Dielectric Constants inDiffused-Phase-Transition Crystals[J]. Ferroelectrics,1982,44:55.
    [152]Fulcher G S. Analysis of Recent Measurements of the Viscosity of Glasses[J].J. Am. Ceram. Soc.,1985,8(6):339-355.
    [153]王天.改性钛酸钡陶瓷机器介电调谐性能[D].杭州:浙江大学硕士论文.2004.
    [154]Yu Z, Ang C, Guo R Y, Bhalla A S. Dielectric Properties and High Tunabilityof Ba(Ti0.7Zr0.3)O3Ceramics under dc Electric Field[J]. Appl. Phys. Lett.,2002,81:1285.
    [155]Maiti T, Guo R Y, Bhalla A S. Enhanced Electric Field Tunable DielectricProperties of BaZrxTi1xO3Relaxor Ferroelectrics[J]. Appl. Phys. Lett.,2007,90:182901.
    [156]Reisman A, Treibwasser S, Holtzberg F. Reactions of the Group VBPentoxides. VIII. Thermal, Density and X-Ray Studies of the SystemsKNbO3-NaNbO3and KTaO3-KNbO3[J]. J. Am. Chem. Soc.,1955,77:4228.
    [157]Li Y, Li J, Zhou Z X, Guo R Y, Bhalla A S. Thermal Expension Properties andLocal Polarization of Potassium Lithium Tantalate Niobate Single Crystals.(To be published)
    [158]徐家跃,金敏.新型弛豫铁电晶体—生长、性能及应用[M].北京:化学工业出版社,2007.
    [159]Fu H X, Cohen R E. Polarizaition Rotation Mechanism for Ultrahigh Electro-mechanical Response in Single-Crystal Piezoelectrics[J]. Nature,2000,403:281-283.
    [160]Whatmore R W, and Watton R. Pyroelectric Ceramics and Thin Films forUncooled Thermal Imaging[J]. Ferroelectrics,2000,236:259-279.
    [161]Whatmore R W. Pyroelectric Ceramics and Devices for Thermal Infra-RedDetection and Imaging[J]. Ferroelectrics,1991,118:241-259.
    [162]Watton R. Pyroelectric Materials: Operation and Performance in ThermalImaging Camera Tubes and Detector Arrays[J]. Ferroelectrics,1976,10:91.
    [163]Liu S T, and Long D. Pyroelectric Detectors and Materials[J]. Proc. IEEE,1978,66:14-26.
    [164]Liu S T, and Long D. Pyroelectric Detectors and Materials[J]. Proc. IEEE,1978,66:14-26.
    [165]赵祥永.弛豫型铁电单晶PMN-PT的介电、压电和热释电性能研究[D].上海:中科院上海硅酸盐所博士学位论文.2004.
    [166]Byer R L, and Roundy C B. Pyroelectric Coefficient Direct MeasurementTechnique and Application to a Nsec Response Time Detector[J].Ferroelectrics,1972,3:333.
    [167]Porter S G. A Brief Guide to Pyroelectric Detectors[J]. Ferroelectrics,1981,33:193.
    [168]Whatmore R W. Pyroelectric Devices and Materials[J]. Rep. Prog. Phys.,1986,49:1335-1386.
    [169]Whatmore R W, Osbond P C, and Shorrocks N M. Ferroelectric Materials forThermal IR Detectors[J]. Ferroelectrics,1987,76:351.
    [170]Shvartsman V V, Kholkin A L. Domain Structure of0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3Studied by Piezoresponse Force Microscopy[J]. Phys. Rev. B,2004,69:014102.
    [171]钟维烈.铁电体物理学[M].北京:科学出版社,2000.
    [172]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社.1984:8,15.
    [173]赫崇君.弛豫铁电单晶PMN-PT的光学与压电性能[D].哈尔滨:哈尔滨工业大学博士学位论文.2007.
    [174]IEEE Standard on Piezoelectricity, IEEE Std.176-1987[M]. New York: TheInstitute of Electrical and Electronics Engineers.1987.
    [175]Nye J F. Physical Properties of Crystals[D]. Oxford: Clarendon Press.1979.
    [176]Bai F, Li J and Viehland D. Domain Hierarchy in Annealed (001)-OrientedPbMg1/3Nb2/3O3-x%PbTiO3Single Crystals[J]. Appl. Phys. Lett.,2004,85:2313-2315.
    [177]Auld B A. Acoustic Fields and Waves in Solid. New York: John Wiley&Sons.1973.
    [178]Du X H, Zheng J, Uchino K. Crystal Orientation Dependence of PiezoelectricProperties in Lead Zirconate Titanate: Theoretical Expectation for ThinFilms[J]. Jpn. J. Appl. Phys.,1997,36:5580.
    [179]Newnham R E. Properties of Materials[M]. Oxford: Clarendon Press.2005.