大型铝合金支架的电磁充型间接挤压铸造成形工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压铸造是一种结合铸造与锻造技术特点于一体的材料精确成形技术,其特点是,液态金属在高压下结晶成形,得到的铸件缩孔减少、组织致密、力学性能优良,并可实现“近净成形”。电磁泵可以用来传输液态金属并可将其应用于铸造工艺。将电磁泵传输与充型技术运用于挤压铸造成形工艺,优点如下:电磁力作用下传输液态金属,传输较为平稳,传输过程中有效减少了氧化膜和卷气的生成;液态金属的流速和流量精确连续可调;液态金属流经磁场,铸件组织和性能得到改善等。本文介绍了一种电磁充型间接挤压铸造成形工艺,将电磁传输充型与挤压铸造技术结合起来,针对某大型复杂铝合金支架,进行了该支架电磁充型间接挤压铸造成形工艺的研究。
     运用FLOW-3D软件对液态金属在T形管道中流动并传输至压室的过程进行了数值模拟。对数值模拟结果进行了液态金属传输流动行为的分析,重点讨论了传输过程中氧化膜和卷气产生的原因。研究表明:随着传输管道转角处过渡圆弧半径的增大,所产生的氧化膜与卷气逐渐减少;在数值模拟结果分析基础上,优化设计了电磁传输系统中传输管道的结构,并对其进行了数值模拟验证。验证结果表明:所优化设计的传输管道结构能有效减少氧化膜和卷气的生成。
     运用JSCAST铸造模拟软件对铝合金支架进行了间接挤压铸造充型过程的数值模拟,确定了如下工艺参数:铝液的初始温度750℃,压射速度0.04m/s,模具预热温度280℃,型芯预热温度300℃。对数值模拟结果进行分析,预测了铸件的最后充型位置以及金属液提前凝固位置。然后,对支架进行了凝固过程的数值模拟,对铸件边缘至料饼方向的6个记录点凝固时的实时温度进行了比较分析,结果表明:所确定的工艺参数较为合理。铸件在凝固过程中,铸件各部位的凝固顺序为:边缘→中心→料饼依次凝固,凝固顺序十分合理。通过对充型和凝固过程的数值模拟结果分析,确定了溢流槽和排气槽的位置,设计了支架挤压铸造模具并完成了模具的外协制造。
     采用ZL101铝合金对支架进行了电磁充型间接挤压铸造的试制,在试制过程中验证了电磁传输系统传输铝液和传输管道中的铝液自动回流的可靠性。试制后得到的支架铸件表面光洁,未出现欠铸、冷隔等铸造缺陷。试制结果表明:所设计的传输管道的结构、支架挤压铸造模具设计和电磁充型间接挤压铸造成形工艺参数合理。
Squeeze casting is a precision fabrication technology, which combined casting and forging processes. The casting solidification is promoted under high pressure within a reusable die, therefore, squeeze casting has many advantages such as porosity reduction, fine grain size microstructure, improvement of mechanical properties and near net shape castings. Electromagnetic pump can be used for casting process to transfer molten metal. This technology integrated in squeeze casting process has many advantages as the following: the molten metal flows smoothly with electromagnetic pressure and in a closed channel, therefore, oxidation and gas entrainment were reduced effectively; the velocity and volume of the molten metal can be controlled accurately and continuously; the casting microstructure and property are improved after molten metal passing through the magnetic field, and so on. The Aluminum alloy supporting frame referred to this paper has large scale, complex structure and requirement of high mechanical properties, and the electromagnetic transfer system was used for the indirect squeeze casting process of the frame.
     The T-junction channel used for the electromagnetic transfer system was designed, then liquid metal flows from the channel to the shot sleeve was simulated with software FLOW-3D. The simulation results were investigated, and the molten metal’s flowing behavior was discussed and then the generation of surface defect and air entrainment was analyzed. The results have shown that the larger of the fillet radius, the fewer of the surface defect and entrapped air. According to the numerical results, the transfer channel structure for the electromagnetic transfer system was designed. It was shown that few oxide defect and air entrainment was generated during the molten metal flowed from the furnace to the sleeve under the design.
     The molding filling process of the supporting frame was simulated with software JSCAST with initial molten aluminum temperature of 750℃, injection velocity of 0.04m/s, dies temperature of 280℃and cores Temperature of 300℃. The location of the last filling and pre-solidification were predicted. The solidification process after the filling was simulated, and the temperature evolution of 6 points in sequence of from the casting edge to the biscuit in the casting were recorded. The results showed that the casting solidification is in order of the edge to the central part and then to the biscuit. This is very helpful for the transfer of the squeeze pressure from the punch. The numerical results have shown that the selected parameters are reasonable. According to the results, vents and overflows were designed and then the dies were produced with H13 steel.
     The vertical indirect squeeze casting process of the ZL101 Al alloy supporting frame with electromagnetic transfer system was trial-produced. It was found that the electromagnetic transfer system can transfer the molten alloy reliably and the alloy was automatically flowed from the transfer channel to the furnace during the casting solidification process. The castings were trial-produced successfully. It was found that surface of the castings is good and defects such as misrun or cold lap were not found. All these results indicate the feasibility of the designed electromagnetic transfer system, the designed die structure, and the parameters of the indirect squeeze casting process.
引文
[1]上海交通大学锻压教研室.液态模锻[M].北京:国防工业出版社,1981
    [2]齐丕骧.挤压铸造[M].北京:国防工业出版社, 1984
    [3]罗守靖,陈炳光,齐丕骧,等.液态模锻与挤压铸造技术[M].北京:化学工业出版社,2007
    [4] Smith L. Electro-technology developments for the foundry sector[C]. 61st World Foundry Congress, Beijing, 1995
    [5]王家宝,诸葛跃,李文杰,等. 6082合金法兰盘挤压铸造工艺及模具设计[J].铸造技术,2009, 30(12): 1578-1579
    [6]邢书明,张密兰,邢文斌.挤压铸造液压阀体[J].铸造,2008, 57(2): 137-139
    [7]李敏华,罗继相,黄国庆,等.压缩机活塞挤压铸造成形技术研究[C]. 2005年中国压铸、挤压铸造、半固态加工学术年会专刊
    [8]齐丕骧.国内外挤压铸造技术发展概况[J].特种铸造及有色合金,2002(2): 20-23
    [9]齐丕骧,童文俊.中国挤压铸造技术的发展[C].第三届中国国际压铸会议论文集.沈阳:东北大学出版社,2002
    [10] Ghomashchi M.R., Vikhrov A. Squeeze casting: an overview[J]. Journal of Materials Processing Technology, 2000, 101: 1-9
    [11]罗继相.铝合金挤压铸造技术的研究与应用[J].铸造,2002, 51(4): 464
    [12]中国机械工程学会铸造分会编.特种铸造[M].北京:机械工业出版社, 1993
    [13] Morton J.R., Barlow M.J. Squeeze casting: from a theory to profit and a future[J]. The Foundryman, 1994, 1: 23-24
    [14] Lynch R.F. Squeeze cast of aluminum[J]. AFS Transactions, 1975, 122: 569-576
    [15] Boschetto A., Costanza G., Quadrini F., et al. Cooling rate inference in aluminum alloy squeeze casting[J]. Materials Letters, 2007, 61: 2969-2972
    [16] Hajjari E., Divandari M. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy[J]. Materials and Design, 2008, 29: 1685-1689
    [17]洪慎章,曾振鹏.铝合金接头挤压铸造工艺[J].特种铸造及有色合金, 2002, 3: 47-49
    [18] Yong M.S., Clegg A.J. Process optimization for a squeeze cast magnesium alloy[J]. Journal of Materials Processing Technology, 2004, 145: 134-141
    [19] Choua S.N., Huanga J.L., Li D.F., et al. The mechanical properties of Al2O3/aluminumalloy A356 composite manufactured by squeeze casting[J]. Journal of Alloys and Compounds, 2006, 419:98-102
    [20]齐丕骧.面向21世纪的挤压铸造技术[J].特种铸造及有色合金, 1998(4): 32-36
    [21]齐丕骧.挤压铸造技术的最新进展[J].特种铸造及有色合金, 2007,27(9): 688-693
    [22]陈位铭,金胜灿.计算机数值模拟技术在铸造工艺优化中的应用[J].热加工工艺, 2006(35): 73-76
    [23] Hwang W.S. Fluid flow modeling for computer-aided design castings[J]. Journal of Metals, 1983(8): 22-29
    [24] Hwang W.S. Computer simulation for the filling of casting[J]. Journal of Metals, 1983(10): 22-29
    [25] Huang W.S. Computer Simulation for the Filling of Casting[J]. AFS. 1987(4): 425-430
    [26]熊守美.铸造过程模拟仿真技术[M].北京:机械工业出版社, 2004: 39-41
    [27]柳百成.铸件凝固过程的宏观及微观模拟仿真研究进展[J].中国工程科学,2000(2): 29-37
    [28] Flemings M. Advanced casting technologies in Japan and Europe[EB/OL]. American Foundrymen’s Society, Inc, http://itri.loyola,edu/casting/toc.htm,1997-03/1998-05-28. 8-11
    [29] Estrin L. A deeper look at casting solidification software[J]. Modern Casting, 1994, 84(7): 20-24
    [30] Midea T.C., Schmidt D. 1999 casting simulation software survey[J]. Modern Casting, 1999, 89(5): 47-51
    [31]朱金东,大中逸雄.直接差分法による流れの3次元コソヒュ4タシミュレ4ショソ[J].铸造工学, 1996(168): 668
    [32] Wang W., Shen H.F., Liu B.C. Effect of electromagnetic field on fluid flow in continuous casting mold[C]. Proc. of MCSP622004. Taiwan: Kaohsiung, 2004
    [33] Kimatsuka A, et al. Mold filling simulation of high pressure die casting for predicting gas porosity[C]. Modeling of Casting, Welding and Advanced Solidification Processes, 2003:335-342
    [34] Backer G, et al. Simulation of flow-induced gas entrapment and its effect on porosity in aluminum die castings[J]. NADCA 2001 Transactions, 1-6
    [35]赵海东, Ohnaka I.铝合金铸件充型过程及氧化膜卷入的数值模拟[J].中国有色金属学报, 2005,15(8):1200-1207
    [36] Jolly M R, Lai N W, Griffis W D, et al. Modelling of the potential for oxide filmentrainment in light metal alloy castings[C], Modeling of Casting, Welding and Advanced Solidification Processes, 2003:415-422
    [37] Yang X, Huang X, Dai X, et al. Numerical modeling of entrainment of oxide defects in filling of aluminium alloy castings[J]. International Journal of Cast Metals Research 2004(6):321-332
    [38]马静,邢书明,陈维视.液态模锻的计算机模拟及其工艺研究[J].河北冶金, 1998(6): 15-18
    [39]刘金生,白彦华,李晨曦. ZA合金挤压铸造凝固过程温度场、应力场数值模拟[J].沈阳工业大学学报, 2004, 26(5): 506-509
    [40] Ohnaka I. Modeling of fluid and solidification in casting[C]. Modeling of Casting, Welding and Advanced Solidification Processes, Proceedings of International Conference, Palm, coast, Fl, USA, The Minerals, Metals& Materials Society, 1993: 337-345
    [41] Garber L.W. Filling of the cold chamber during slow-shot travel[J]. Die Casting Engineer, 1981, 25(4) : 36-38
    [42]袁烺,熊守美,柳百成.压室液态金属流动耦合温度场三维数值模拟[J].特种铸造及有色合金, 2005, 25(10): 590-592
    [43]王罡,袁烺,熊守美,等.压室慢压射过程流场模拟[J].铸造, 2004, 53(11): 911-912
    [44]袁有录.压室内金属液流动形态的二维数值模拟[J].特种铸造及有色合金, 2007, 27(6): 436-438
    [45] Campbell J. Castings[M]. 2nd ed. Oxford: Butterworth Heinemann, 2003: 52-150
    [46] Dai X., Yang X., Campbell J., et al. Influence of oxide film defect s generated in filling on mechanical strength of aluminum alloy castings[J]. Materials Science and Technology, 2004, 20(4): 505-513
    [47] Fox S., Campbell J. Visualization of oxide film defects during solidification of aluminum alloys[J]. Scripta Materials, 2000, 43(10): 881-886
    [48] Liu L., Samuel A.M., Samuel F.H., et al. Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys[J]. Journal of Materials Science, 2003, 38(6): 1255-1267
    [49]董选普,黄乃瑜,吴树森.一种铝合金精确成形工艺—Cosworth Process[J].特种铸造及有色合金, 1999(5): 45-47
    [50] New Die-Casting Systems“LEOMACS”for Efficient Production of Castings of the Highest Quality, Toshiba Machine Co. Ltd., Catalog DX0046-CEC-01
    [51]中科院力学研究所、上海电器科学研究所电磁泵小组编.液态金属电磁泵[M].北京:科学出版社,1979: 11-13
    [52]蒙新明.铝合金挤压铸造用电磁泵定量浇注技术研究[D].太原:中北大学,2005
    [53]徐宏,侯击波,田庆海,等.铝合金挤压铸造电磁定量浇注技术[J].铸造, 2007, 56(7): 735-738
    [54]杨晶,蒋微明,党惊知.电磁充型低压铸造对铝合金铸件性能的影响[J].特种铸造及有色合金, 2006, 26(6): 344-347
    [55] Campbell J., Wilkins P.S.A. New development in light alloy founding[J]. The British Foundrymen, 1983(5): 233-266
    [56]杨晶,李传大,刘云,等.铝合金挤压铸造用电磁泵定量浇注技术[J].特种铸造及有色合金, 2005, 25(4): 226-227
    [57] Campbell J. Entrainment defects[J]. Materials Science and Technology, 2006, 2(22): 127-145
    [58] Weiler J.P., Wood J.P., Klassen, et al. Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy[J]. Materials Science and Engineering A, 2005(395): 315-322
    [59] Mayer H., Papakyriacou M., Zettl B., et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J]. International Journal of Fatigue, 2003(25): 245-256
    [60] FLOW-3D User’s Manual Version 9.3. Flow Science Inc. 2008: 1-5
    [61] Barkhudarov M.R. Advanced simulation of the flow and heat transfer process in simultaneous engineering[J]. Flow Science Inc.2001: 1-14
    [62] Zhu J. D., Ohnaka I. Three dimensional computer simulation on mold filling of casting by direct finite difference method[J]. Journal of Japan Foundry Engineering, 1996, 68: 668-676
    [63]柳百成,荆涛,黄天佑,等.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社, 2001: 59-62
    [64]孙小波,安阁英.用直接差分法实现铸件凝固进程三维数值模拟及软件研究[J].铸造, 1996(8): 23-26
    [65]杨裕国.压铸工艺与模具设计[M].北京:机械工业出版社, 1999: 559-620
    [66]赵海东,罗宗强,陈维平,等.一种挤压铸造用可溶盐芯及其制作方法[P]. 200510037097.4
    [67]张卫文,李元元,朱权利,等.一种高强韧挤压铸造铝合金材料[P]. 200510037105.5
    [68]陆树荪.有色铸造合金及其熔炼[M].北京:国防工业出版社, 1983
    [69]铸造有色合金及其熔炼编写组.铸造有色合金及其熔炼[M].北京:国防工业出版社,1980: 29-30
    [70]徐宏,侯华,杨晶,等.铝合金电磁低压铸造CAD/CAE技术[J].兵工学报, 2006, 27(3): 510-512
    [71] Garber L.W. Theoretical analysis and experimental observation of air entrapment during cold chamber filling[J]. Die Casting Engineering, 1982, 26(3): 14-22
    [72]罗继相.我国挤压铸造技术的回顾及展望[J].铸造,2003(1): 1-6
    [73]罗继相.挤压铸造技术的发展及应用[J].中国铸造装备与技术, 1999(2): 3-6
    [74]齐丕骧,齐霖.挤压铸件优质化技术进展[J].特种铸造及有色合金, 2004(2): 12-15
    [75]唐多光,徐张翼,沈有良.铝合金挤压铸造若干技术问题的讨论[J].特种铸造及有色合金, 2002(6): 28-29
    [76]罗继相,赵利华,谢少庆,等.挤压铸造实用技术研究[J].特种铸造及有色合金, 2005, 25(3): 150-152
    [77]罗继相.挤压铸造在汽车、摩托车制造业中的应用[J].特种铸造及有色合金, 1998, 60: 30-32.
    [78] Yamamoto N. et al. Effects of Squeeze Casting Process on Mechanical Properties of Aluminum Die Casting Alloy[J]. AFS Transactions, 1992(87): 539-54
    [79]贾良荣,熊守美,冯伟明,等.压力铸造充型过程流动与传热数值模拟的研究[J].清华大学学报, 2001, 41(2): 8-11
    [80] Youn S.W., Kang C.G., Seo P.K. Thermal fluid/solidification analysis of automobile part by horizontal squeeze casting process and experimental evaluation[J]. Journal of Materials Processing Technology, 2004, 146: 29-30
    [81]陈金城.慢压射技术的理论开发和技术要点[J].特种铸造及有色合金, 1998(5) : 30-33
    [82]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社, 2004
    [83] Wang G., Xiong S.M., Liu B.C., et al. Study on parallel computation technique for mold filling simulation of die casting process by optimizing the computational parameters[J]. INT J CAST METAL RES, 2002, 15(3): 143-147
    [84]侯击波,程军,霍立兴,等.大型复杂铝铸件低压铸造用电磁泵技术研究[J].兵工学报, 2004, 25(3): 322-325