二元复合结构表面形貌的制备及减阻性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减小水面舰艇及水下航行体行进时所受摩擦阻力,对于提高航行体航速及航程、降低能量消耗等,具有重要意义。为此,多年来人们就湍流边界层减阻问题进行了大量的理论研究和试验验证,并形成了诸如柔顺壁、高分子聚合物、疏水材料以及表面形貌等多种减阻技术。然而,由于湍流边界层减阻理论的核心是通过改变湍流边界层结构来降低摩擦阻力,因此无法降低占据主要份额的层流状态下的摩擦阻力,工程应用时的实际减阻效果受到限制。
     本文通过对荷叶及鱼鳞表面微观结构的研究,提出了通过一种具有二元复合结构表面形貌的聚合物涂层来实现界面效应减阻的构想,即以微米级凹坑内驻留的微气泡为气核,在形貌效应作用下使近壁面流场空化以促使微气泡生长,进而在固/液界面间构建出气相结构,用气/液剪切代替固/液剪切,这样在降低层流条件下的摩擦阻力的同时,还可以有效抑制湍流的发生和发展,从而大幅度降低壁面摩擦阻力。
     利用自行研制的喷涂实验台,采用高压空气喷涂工艺制备出了具有亚毫米级、微米级二元复合结构的聚合物涂层。对涂料成膜过程进行实验研究和数值模拟的结果表明,溶剂挥发导致涂膜体系中出现温度梯度和表面张力梯度,由此引发的界面流和界面变形是涂层表面形貌形成的根本原因。通过调整涂料组分配比和喷涂工艺参数,以控制涂膜体系的温度梯度和表面张力梯度,可有效地控制涂料成膜过程中的界面流和界面变形,最终实现对涂层表面形貌的控制。
     利用小型平板水洞对聚合物涂层的减阻性能与其表面形貌特征参数之间的关系进行了研究,并提出了形貌优化准则。利用小型高速水洞对形貌优化后的聚合物涂层进行了减阻性能测试,结果表明该聚合物涂层可有效降低摩擦阻力,在14~20m/s的试验速度范围内,涂层减阻率稳定在13%~18%之间,且涂层减阻率随来流速度增加呈现增长趋势。采用计算流体力学方法对表面形貌作用下流场空化并构建出气相结构的过程进行了数值模拟,初步分析了二元复合结构聚合物涂层的减阻机理。将聚合物涂层减阻技术用于正式赛艇比赛中,取得了良好的比赛成绩,验证了该减阻技术用于工程实际的可行性和有效性。
The researches on skin friction drag reduction have attracted significant attentions due to the practical values in engineering applications such as increasing vehicle speed, decreasing energy consumption and so on. So far, enormous theoretical and experimental investigations on turbulent drag reduction have been carried out and many drag reduction technologies have been developed, for example compliant surface, polymer, hydrophobic surface, and micro-structued surface like riblets. However, the technologies based on turbulent drag reduction theory can only reduce skin friction drag of turbulent flow, and can not reduce that of laminar flow dominating in many flow conditions, which has hampered the implementation of turbulent drag reduction technologies in the industry.
     In the paper, a novel drag reduction technology was proposed by designing a lotus and fish scale like surface with submilli-microscale binary structure. On the designed surface, gas phase is supposed to be generated due to vortex cavitation and developed in low pressure condition provided by surface topography. With the generated gas phase at solid-liquid interface, the shear force at the solid-liquid interface will be replaced by gas-liquid interfacial shear, not only reducing skin friction of laminar flow, but also restraining the growth of turbulence flow. As a result, the skin friction will be reduced effectively.
     The designed surface was fabricated with a simple spray-painting technique. By using a self-developed spray-painting apparatus, a mixture including resins, solvents, and micro particles was coated on a substrate. The polymer coating with designed binary structure surface formed spontaneously after the solidification of wet coating film.
     Experiments were performed and computational fluid dynamic methods were conducted to investigate the formation mechanism of binary structure surface. And according to the results, Benard convection and interfacial deformation driven by the gradients of temperature and surface tension due to solvents evaporation played a determinant role in the formation process of surface topography of polymer coating. By controlling the gradients of temperature and surface tension in the wet coating film, the interfacial deformation and surface topography of polymer coating were controlled.
     Experimental reseaches on the optimization of surface characteristic parameters were carried out so as to maximize the drag reduction property of polymer coating. Coating samples with optimized surface were tested in a minisized high-speed water tunnel, and a relative drag reduction rate was calculated. The experimental results showed that, the fabricated coating with designed binary structured surface had a steady drag reduction rate of 13%~18% at the flow speed of 14~20m/s, and the drag reduction efficiency became more remarkable with the incrment of flow speed.
     To further investigate the drag reduction property of designed surface, comparison experiments between coated rowing shell and smooth rowing shell were performed in a deep towing tank, and the test results re-proved the validity of fabricated polymer coating in reducing skin friction drag.
     Finally, by means of computational fluid dynamic methods, the processes of vortex cavitation caused by surface topography were numerically simulated. Based on the simulation, the effect mechanism of binary structured surface on drag reduction was analyzed.
引文
[1]蒋维清.船舶原理.北京:人民交通出版社, 1992.
    [2]石秀华.水中兵器概论(鱼雷部分).西安:西北工业大学出版社, 1995.
    [3]陈学生,陈在礼,陈维山.湍流减阻研究的进展与现状.高技术通讯, 2000, (12): 91-95.
    [4] Choi K S. European drag-reduction research - recent developments and current status. Fluid Dynamics Research, 2000, 26(5): 325-335.
    [5] White C M, Somandepalli V S R, Mungal M G. The turbulence structure of drag-reduced boundary layer flow. Experiments in Fluids, 2004, 36: 62-69.
    [6] Yasuo Kawaguchi, Takehiko Segawa, Feng Z P, Li P W. Experimental study on drag-reducing channel flow with surfactant additives-spatial structure of turbulence investigated by PIV system. International Journal of Heat and Fluid Flow, 2002, 23: 700-709.
    [7] Kramer M O. Boundary layer stabilization by distributed damping. Aeronautical Sciences, 1957, 24: 459-460.
    [8] Carpenter P W, Garrad A D. The hydrodynamic stability of flow over kramer-type compliant Surface, Part 1: Tollmien-schlichting instability. Fluid Mechanics, 1985, 115:465-510.
    [9] Lucey A D, Carpenter P W. A numerical simulation of the interaction of a compliant wall and inviscid flow. Fluid Mechanics, 1992, 234: 121-146.
    [10] Kulik V M, Semenov B N. The measurement of dynamic properties of viscoelastic materials for turbulent drag reduction: Emerging techniques in drag reduction. Mechanical Engineering Publications London, 1996: 207-216.
    [11] Choi K S, Yang X, Clayton B R, et a1. Turbulent drag reduction using compliant surface. Proceedings of the Royal Society, 1997, 453: 2229-2240.
    [12]张庆利,李京伯.用主动柔顺壁运动控制边界层转捩.空气动力学学报, 1999, 17(3): 333-338.
    [13]张效慈,张军,王宝柱,等.柔性表皮减阻性能试验和减阻机理探索.船舶力学, 2004, 8(4): 16-21.
    [14] Toms B A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proc. 1st Intern Rheol. Congr, Holland: Scheve ningen, 1948, 2: 135-141.
    [15] Lumley J L. Drag reduction by additives. Ann. Rev. Fluid Mech., 1969, 1: 367-384.
    [16] Rabin Y, Zielinska B J A. Scale-dependent enhancement and damping of vorticity disturbance by polymers in elongational flow. Phy. Rev. Lett., 1989, 63: 512.
    [17] Keyes D E, Abernathy F H. A model for the dynamics of polymers in laminar shear flows. J. Fluid Mech., 1987, 185: 503-522.
    [18] Hemmings J A G, White A. Drag reduction by additives: Review and Bibliography. BHRAFluid Engineering, 1976.
    [19] Bewersdorff H W, Frings B, Lindner P. The conformation of drag reducing micelles from small angle neutron scattering experiments. Rheol. Acta., 1986, 25: 642-646.
    [20] Berman N S. Velocity fluctuations in non-homogeneous drag reduction. Chemical Engineering Communications, 1986, 42: 37-51.
    [21] MaComb W D, Rabie L H. Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. AICHE J., 1982, 28(4): 547-557.
    [22] Virk P S, Merrill E W, Mickley H S, et al. The Toms phenomenon: turbulent pipe flow of dilute polymer solutions. J. Fluid Mech., 1967, 30(2): 305-328.
    [23] Donohue G L. Tiederman W G, Reischman M M. Flow visualization of the near-wall region in a drag reducing channel flow. J. Fluid Mech., 1972, 56(3): 559-575.
    [24] Gordons R J. Mechanism for turbulent drag reduction in dilute polymer solutions. Nature, 1970, 227: 599-600.
    [25] Watanabe K, Udagawa H. Drag reduction of polymer solutions in a pipe with a highly water-repellent wall. American Society of Mechanical Engineers, Fluids Engineering Division FED Rheology and Fluid Mechanics of Nonlinear Materials (The ASME International Mechanical Engineering Congress and Exposition), 1999, 249.
    [26] Watanabe K, Yanuar, Ohkido K, Mizunuma H. Drag reduction in flow through square and rectangular ducts with highly water repellent walls. Proceedings of the ASME Fluids Engineering Division Summer Meeting on Turbulence Modification and Drag Reduction, 1996, 237(2): 115~119.
    [27] Watanabe K, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. Journal of Fluid Mechanics, 1999, 381:225-238.
    [28]田军,徐锦芬.低表面能涂层的减阻试验研究.水动力学研究与进展(A), 1997, 12(1): 27-32.
    [29]田军.平板上低表面能涂层的水筒减阻研究.科学通报, 1996, 41(18): 1667-1669.
    [30] Sun M, Ebner C. Molecular dynamics study of flow at a fluid-wall interface. Phys. Rev. Lett., 1992, 69: 3491-3494.
    [31] Barrat J L, Bocquet L. Large slip effect at a Non-wetting fluid-solid interface. Phys. Rev. Lett., 1999, 82:4671-4674.
    [32] Nagayama G, Cheng P.Effects of interface wettability on microscale flow by molecular dynamics simulation. Int. J. Heat Mass Transfer, 2004, 47(3): 501-513.
    [33]柯贵喜,潘光,黄桥高,等.水下减阻技术研究综述.力学进展, 2009, 39(5): 546-554.
    [34] Walsh M J. Turbulent boundary layer drag reduction using riblets. AIAA, 1982, 82: 0169.
    [35] Walsh M J. Riblets as a viscous drag reduction technique. AIAA Journal, 1983, 21(4): 485-486.
    [36] Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 1997, 338: 59-87.
    [37] Bacher E V, Smith C R. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications. AIAA, 1985, 285: 0548.
    [38] Gallagher J A, Thomas A S W. Turbulent boundary layer characteristics over stream-wise grooves. AIAA, 1984, 284: 2185.
    [39]石秀华,宋保维.条纹薄膜减小湍流阻力的试验研究.水动力学研究与进展,1996, 11(5): 546-553.
    [40]傅慧萍,石秀华.条纹薄膜减阻特性的数值分析.西北工业大学学报,1999, 17(1): 19-24.
    [41]胡海豹,宋保维,潘光.回转体表面条纹沟槽减阻水洞实验研究,力学季刊, 2006, 27(2): 267-272.
    [42]李育斌,乔志德,王志歧.运七飞机外表面沟纹膜减阻的实验研究.流体力学实验与测量, 1995, 9(3): 21-26.
    [43] Cabal A, Szumbarski J, Floryan J M. Stability of flow in a wavy channel. J. Fluid Mech., 2002, 457: 191-212.
    [44] Belcher S E, Hunt J C R. Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 1998, 30: 507-538.
    [45] Asai M, Floryan J M. Experiments on the linear instability of flow in a wavy channel. European Journal of Mechanics B/Fluids, 2006, 25: 971-986.
    [46] Floryan J M. Two-dimensional instability of flow in a rough channel. Phys. Fluids, 2005, 17: 044101.
    [47] Riahi D N. Boundary wave-vortex interaction in channel with a wavy wall at high Reynolds numbers. Fluid Dynamics Research, 1999, 25: 129-145.
    [48] Yong-Sun Wie, Mujeeb R, Malik. Effect of surface waviness on boundary-layer transition in two-dimensional flow. Computers & Fluids, 1998, 27(2): 157-181.
    [49] El-Samni O A, Chun H H, Yoon H S. Drag reduction of turbulent flow over thin rectangular riblets. International Journal of Engineering Science, 2007, 45: 436-454.
    [50] Du Y Q, Symeonidis V, Karniadakis G E. Drag reduction in wall-bounded turbulence via a transverse traveling wave. J. Fluid Mech., 2002, 457: 1-34.
    [51]潘光,宋保维,沙辉,等.随行波表面水下减阻降噪技术和机理研究综述.鱼雷技术, 2001, 9(4): 1-5.
    [52]潘光,郭晓娟,胡海豹.半圆形随行波表面流场数值仿真及减阻机理分析.系统仿真学报, 2006, 18(11): 3073-3094.
    [53]黄微波,王宝柱,卢敏,等.随行波仿生减阻材料几何形状的模拟数值计算.船舶力学, 2005, 9(1): 14-17.
    [54]张效慈.潜器的随行波减阻降噪贴敷层.船舶力学, 2001, 5(2): 1-4.
    [55]周刚.随行波减阻研究与小型高速水洞研制[博士学位论文].北京:清华大学. 2008.
    [56]任露泉,张成春,田丽梅.仿生非光滑用于旋成体减阻的试验研究.吉林大学学报(工学版), 2007, 35(4): 431-436.
    [57]张成春,任露泉,刘庆平,等.旋成体仿生凹坑表面减阻试验.空气动力学学报, 2008, 26(1): 79-84.
    [58] Ren L Q, LI J Q, Chen B C. Unsmoothed surface on reducing resistance by bionics. Chinese science bulletin, 1995, 40(13): 1077-1080.
    [59]宋燚,陈强,许能喜,等.仿生非光滑旋成体风洞测力试验.北京空气动力研究所试验报告980112040030,北京:北京空气动力研究所, 2004.
    [60]杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的实验研究.航空学报, 1997, 18(4): 455-457.
    [61] Matthias S, Stanislav G. Biological micro- and nanotribology: Nature’s solutions. Berlin: Springer-Verlag Berlin Heidelberg, 2004, 68-71.
    [62] Ball P. Engineering: Shark skin and other solutions. Nature, 1999, 400: 507-508.
    [63] Bechert D W, Bruse M, Hage W, et al. Biological surface and their technological application laboratory and flight experiments on drag reduction and separation control. AIAA, 1997, 1-34.
    [64] Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wall riblets. Exp. Fluids, 2002, 33: 346-350.
    [65] Gebeshuber C, Stachelberger H, Drack M. Diatom bionanotribology-biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J. Nanosci. Nanotech, 2005, 5: 1-9.
    [66] Dunischev Y, Evseev A R, Sobolev V S, et al. Study of gas saturated turbulent streams using a laser-doppler velocimeter. J. Appl. Mech. Tech. Phys., 1975, 16 (1): 114-118.
    [67] Madavan N K, Deutsch S, Merkle C L. The effects of porous material on microbubbles skin friction. AD-A 143401, 1983.
    [68] Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles. Phys. Fluids, 1984, 27(2): 356-363.
    [69] Kerkle C L, Deutsch S, Pal S, et al. Microbubbles drag reduction. AD-A 198618, 1989.
    [70] Madavan N K, Deutsch S, Merkle C L. Numerical investigation into the mechanisms of microbubbles drag reduction. J. Fluids Engineering, 1985, 107: 370-377.
    [71] Madavan N K, Deutsch S, Merkle C L. Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech., 1985, 15(6): 237-256.
    [72] Clark H, Deutsch S. Microbubble skin friction reduction on an axisymmetric body under the influence of applied axial pressure gradients. Phys. Fluids A, 1988, 3(12): 2948-2954.
    [73]董文才,郭日修.气幕减阻研究进展.船舶力学, 1998, 2(5): 22-27.
    [74]吴乘胜,何术龙.微气泡流的数值模拟及减阻机理分析.船舶力学, 2005, 9(5): 30-37.
    [75]黄衍顺,王震,王吉强.通过微气泡控制湍流边界层减阻的研究与进展.船舶工程, 2003, 25(1):1-5.
    [76]钱东,高军保.国外超空泡武器技术.鱼雷技术, 2002, 10(1): 3-7.
    [77]王改娣.超空泡鱼雷技术特点分析.鱼雷技术, 2007, 15(5): 1-4.
    [78]赵卫.超空泡高速鱼雷技术综合分析[硕士学位论文].黑龙江:哈尔滨工程大学, 2005.
    [79]王鹏,王树宗.应用在鱼雷上的超空泡技术分析.舰船科学技术, 2005, 27(2): 77-80.
    [80] Savchenko Y N. Supercavitation-problems and perspectives. Fourth International Symposium on Cavitation. Pasabena: California Institute of Technology, 2001.
    [81]周杰,王树宗.超空泡鱼雷推进系统相关问题设计初探.鱼雷技术, 2006, 14(5): 27-30.
    [82]郑邯勇.铝水推进系统的现状与发展前景.船舶科学技术. 2003, 25(5): 24-25.
    [83]向耿,杨海.美国超空泡鱼雷专利技术新动向.鱼雷技术, 2006, 14(1): 47-53.
    [84]①Glansdorff P, Prigogine I. Non-equilibrium stability theory. Physica, 1970, 46(3): 344-366.
    [85]康承华.非平衡热力学、耗散结构和辨证法.福州大学学报, 1982, (1): 79-86.
    [86]孙绵山,曾先才,陈创飞.耗散结构理论与流体稳定性.力学进展, 1983, 13(2): 202-215.
    [87] Benard H. Les tourbillions cellulaires dans une nappe liquide. Rev. Gen. Sci. Pures Appl., 1900, 11: 1261-1271, 1309-1328.
    [88] Schechter R S, Velarde M G, Platten J K. The two-component Benard problem. Advances in Chem. Phys., 1974, 26: 265-301.
    [89]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社, 1986.
    [90]梁玉娟.热力学中的平衡与非平衡、对称与对称破缺.河池学院学报, 2008, 28(2): 39-42.
    [91] Rayleigh L. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag., 1916, 32(6): 529-546.
    [92] Block M J. Surface tension as the cause of Benard cells and surface deformation in a liquid film. Nature, 1956, 178: 650.
    [93] Pearson J R A. On convection cells induced by surface tension. J. Fluid Mech., 1958, 4: 489-500.
    [94] Nield D A. Surface tension and buoyancy effects in cellular convection. J. Fluid Mech., 1964, 19: 341-352.
    [95] Szekely J. Fluid flow phenomena in metals processing. Academic Press, New York, 1979.
    [96] Hondros E D, McLean M, Mills K C. Marangoni and interfacial phenomena in materials processing. Originating from contributions to a discussion of the Royal Society of London, The University Press, Cambridge, 1998.
    [97] Ostrach S. Low-gravity fluid flows. Annu. Rev. Fluid Mech., 1982, 14: 313-345.
    [98] Walter H U. Fluid sciences and materials science in space. Springer-Verlag, Berlin, 1987.
    [99] Ratke L, Walter H, Feuerbacher B. Material and fluid under low gravity. Springer-Verlag, Berlin, 1989.
    [100] Fuhrich T, Berger P, Hugel H. Marangoni effect in laser deep penetration welding of steel. J. Laser Appl., 2001, 13: 178-186.
    [101] Dowden J. Interaction of the keyhole and weld pool in laser keyhole welding. J. Laser Appl., 2002, 14: 204-209.
    [102] Maruyama N, Koito T, Nishida J, et al. Mesoscopic patterns of molecular aggregates on solidsubstrates. Thin Solid Films, 1998, 327-329: 854-856.
    [103] Pitois O, Francois B. Formation of ordered micro-porous membranes. Eur. Phys. J. B, 1999, 8: 225-231.
    [104] Srinivasao M, Collings D, Philips A, et al. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292: 79-83.
    [105] Maillard M, Motte L, Ngo A T, et al. Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phys. Chem. B, 2000, 104(11): 871-877.
    [106] Truskett V, Stebe K J. Influence of surfactants on an evaporating drop: Fluorescence images and particle deposition patterns. Langmuir, 2003, 19: 8271-8279.
    [107] Gray D D, Giorgin A. The validity of the boussinesq approximation for liquids and gasses. Int. J. Heat Mass Transfer, 1976, 19: 545-551.
    [108] Behringer R P. Rayleigh-Benard convection and turbulence in liquid helium. Rev. Mod. Phys., 1985, 57(3): 657-687.
    [109] Malkus W V R. The heat transport and spectrum of thermal turbulence. Proc. R. Soc., London, 1954, A225: 196-212.
    [110] Townsend A A. Temperature fluctuation over a heated surface. J. Fluid Mech., 1959, 5:209-241.
    [111]杨卫卫,何雅玲,徐超,等.二维方腔非稳态自然对流数值模拟研究.工程热物理学报, 2004, 25(2): 81-283.
    [112]何泓,肖金生.封闭长方体内Benard花纹的三维数值模拟.武汉交通科技大学学报, 2000, 24(5): 559-561.
    [113]吕维花,李昱,罗争峰.复杂方腔内自然对流换热数值模拟分析.能源技术, 2006, 27(2): 47-51.
    [114]王水生,张学学,江世臣.倾斜环形空腔内自然对流的实验研究和数值模拟.华北电力大学学报, 2005, 32(6): 21-25.
    [115]董葳,范绪箕.水平六角蜂窝腔内三维自然对流的数值计算.上海交通大学学报, 2004, 38(10): 1631-1634.
    [116]王健敏,何杰.最大偏心圆环空间自然对流传热的数值分析.计算力学学报, 2003, 20(5): 616-620.
    [117] Ortiz E S, Sawistowski H. Interfacial stability of binary liquid-liquid systems. Chem. Eng. Sci., 1973, 28:2051-2061.
    [118]①Palmer H J. The hydrodynamic stability of rapidly evaporative liquid at induced pressure. J. Fluid Mech., 1976, 75: 478-511.
    [119] Dupeyrat M, Nakeche E, Vignes-Adler M. Chemically driven interfacial instabilities. Eds. Pub. Co., 1984, 233-245.
    [120] Bekki S, Vignes-Adler M, Nakeche E, et al. Solutal Marangoni effect ?: Pure interfacial transfer. Journal of Colloid and Interface Science, 1990, 140(2): 492-506.
    [121] Bekki S, Vignes-Adler M, Nakeche E. Solutal Marangoni effectП: Dissolution. Journal ofColloid and Interface Science, 1992, 152(2): 314-324.
    [122] Sorenson T S, Hennenberg M, Sanfeld A. Deformational instability of a plane interface with perpendicular linear and exponential concentration gradients. Journal of Colloid and Interface Science, 1977, 61 (1): 62-76.
    [123] Hennenberg M, Sanfeld A, Bish P M. Adsorption-desorption barrier, diffusional exchanges and surface instabilities of longitudinal waves for aperiodic regimes. AIChE J., 1981, 27(6): 1002-1008.
    [124] Chu X L, Chen L Y. Commun. Stability of two-component Benard fluid with surface adsorption accumulation. Theor. Phys., 1986, 6(3): 237-257.
    [125] Kozhoukharova Z D, Slavtchev S G. Influence of the surface deformability on marangoni instability in a liquid layer with surface chemical reaction: I. Stationary convection. Journal of Colloid and Interface Science, 1992, 148(1): 42-55.
    [126] McTaggart C L. Convection driven by concentration and temperature-dependent surface tension. J. Fluid Mech., 1983, 134: 301-310.
    [127]刘荣,刘秋生.蒸发两层流系统的对流不稳定性分析.工程热物理学报, 2006, 27(3): 429-432.
    [128] Souchea M, Clarke N. Interfacial instability in bilayer films due to solvent evaporation. Eur. Phys. J. E, 2009, 28: 47-55.
    [129] Sharma A, Ruckenstein E. The role of lipid abnormalities, aqueous and mucus deficiencies in the tear film breakup, and implications for tear substitutes and contact lens tolerance. Journal of Colloid and Interface Science, 1986, 111(1): 8-34.
    [130] Lyford P A , Pratt H R C, Griesen F, et al. The marangoni effect and enhanced oil recovery. The Canadian Journal of Chemical Engineering, 1998, 76: 167-182.
    [131] Ozen O, Johnson D, Narayanan R. Observations on interfacial convection in multiple layers without and with evaporation. Lect. Notes Phys., 2003, 628: 59-77.
    [132] Sarma G S R. Interaction of surface-tension and buoyancy mechanisms in horizontal liquid layers. J. Thermophys. Heat Transfer, 1987, 1(2): 129-135.
    [133] Yiantsios S G, Higgins B G. Rayleigh-Taylor instability in thin viscous films. Phys. Fluids A, 1989, 1: 1484-1501.
    [134] Yiantsios S G, Higgins B G. Rupture of thin films: nonlinear stability analysis. J. Colloid Interface Sci., 1991, 147: 341-350.
    [135] Oron A, Rosenau P. Formation of patterns induced by thermocapillarity and gravity. J. Phys. (France), 1992, II2, 131-146.
    [136] Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films. Reviews of Modern Physics, 1997, 69(3): 931-980.
    [137] Bankoff S G, Davis S H. Stability of thin films. Phys. Chem. Hydrodynamics, 1987, 9: 5-7.
    [138] Burelbach J P, Bankoff S G, Davis S H. Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech., 1988, 195: 463-494.
    [139] Deissler R J, Oron A. Stable localized patterns in thin liquid films. Phys. Rev. Lett., 1992, 68: 2948-2951.
    [140] Zhao X Y, Cai Q, Shi G X, et al. Formation of ordered microporous films with water as templates from poly (D, L-lactic-co-glycolic acid) solution. J. Appl. Polym. Sci., 2003, 90(7): 1846-1850.
    [141] Wang C Y, Liu Q X, Shao X Q, et al. One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta, 2007, 71: 178-185.
    [142] Wang C Y, Shao X Q, Liu Q X, et al. One step fabrication and characterization of platinum nanopore electrode ensembles formed via amphiphilic block copolymer self-assembly. Electrochimica Acta, 2006, 52(2): 704-709.
    [143] Srinivasarao M, Ollings D, Philips A, et al. Three dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292: 79-83.
    [144] Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 2000, 16: 5754-5760.
    [145] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 2002, 18(15): 5818-5822.
    [146] Oner D, McCarthy T J. Ultrahyhydrophobic surface: effects of topography length scales on wettability. Langmuir, 2000, 16: 7777-7782.
    [147] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surface. Annals of Botany, 1997, 79: 667-677.
    [148] Barthlott W, Neinhuis C. Purity of the scared Lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1-8.
    [149]杨晓东,尚广瑞,李雨田.荷叶表面的二元复合结构及其疏水性.吉林工程技术师范学院学报(自然科学版), 2006, 22(3): 1-5.
    [150] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artifical. Adv. Mater., 2002, 14(24): 1857-1860.
    [151] Cassie A B D, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40: 546-551.
    [152] Videler J J. Body surface adaptations to boundary-layer dynamics. Symp. Soc. Exp. Biol., 1995, 49: 1-20.
    [153] Videler J. Extreme drag reducing adaptations in the Swordfish Xiphias gladius. Comparative Biochemistry and Physiology A, 2007, 146(4): 140.
    [154] Aleyev Y G. Nekton, The Hague: Dr W. Junk, 1977, 435.
    [155] Ovchinnikov V V. Swordfishes and billfishes in the Atlantic Ocean: Ecology and functional morphology. Atlantic Science Research Institute of Fisheries and Oceanography Report, Kalingrad, USSR, 1971. Translated from Russian by the Israel Program for Scientific Translation, Jerusalem.
    [156]黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社, 1991.
    [157]柯乃普,戴利,哈密脱著,水利水电科学研究院译.空化与空蚀.北京:水利出版社, 1981.
    [158]倪玉德.常温交联固化氟碳涂料的研制和涂装.第四届氟树脂及氟涂料技术研讨会论文集, 2003, 80-83.
    [159]李同信.有机氟涂料特性的理论分析.全面腐蚀控制, 1999, 13(4): 38-40, 43.
    [160]倪玉德. FEVE氟碳树脂与氟碳涂料.北京:化学工业出版社, 2006.
    [161]夏正斌,涂伟萍.新型氟硅单体在涂料中的应用.涂层新材料, 2003, 1: 1-2.
    [162]廖兴明.颜料——涂料的重要组成部分.涂料涂装与电镀, 2006, 4(2): 11-16.
    [163]石明泉,张天乐.铝粉浆颜料制备工艺简介.天津化工, 2007, 21(2): 38-40
    [164]朱骥良,吴申年.颜料工艺学.北京:化学工业出版社, 1989, 301-302.
    [165]洪啸吟,冯汉保.涂料化学.北京:科技出版社, 2005.
    [166]冯立明,牛玉超,张殿平,等.涂装工艺与设备.北京:化学工业出版社, 2004.
    [167]刘引烽.涂料界面原理与应用.北京:化学工业出版社, 2007, 25.
    [168]卢焕章.石油化工基础数据手册.北京:化学工业出版社, 1982.
    [169]章熙民,任泽霈.传热学.北京:中国建筑工业出版社, 200.
    [170]李万平.计算流体力学.湖北:华中科技大学出版社, 2004.
    [171]陶文铨.数值传热学.西安:西安交通大学出版社, 2001.
    [172]江帆,黄鹏. Fluent高级应用与实例分析.北京:清华大学出版社, 2008.
    [173]马沛生.有机化合物实验物性数据手册.北京:化学工业出版社, 2006.
    [174] Hansen C M. The free volume interpretation of plasticizing effectiveness and diffusion in high polymers. Official Digest, 1965, 37: 57-77.
    [175] Chesunov V M, Vasenin R M. Kinetics of evaporation of a solvent in formation of films from polymer solutions. Polymer Science (USSR). 1967, 9(10):2067-2071.
    [176] Sletmoe G M. The calculation of mixed hydrocarbon-oxigenated solvent evaporation. Journal of paint technology, 1970, 42(543): 246-259.