高金属含量镁基燃料水冲压发动机稳态燃烧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水冲压发动机性能随着水反应金属燃料中金属含量的增加而显著提高。开展高金属含量水反应金属燃料与水反应机理研究、探索水冲压发动机稳态燃烧特性,对提高水冲压发动机性能、实现高金属含量水反应金属燃料水冲压发动机持续稳定工作具有重要的理论和实际意义。
     本文采用实验研究、理论分析和数值模拟相结合的方法,对高金属含量镁基燃料水冲压发动机稳态燃烧机理进行了系统研究。
     提出并建立了水反应金属燃料燃烧机理实验研究方法,采用蒸汽发生器提供高压水蒸气环境,开展水反应金属燃料与水反应机理研究;设计了可进行燃烧现象观察和参数测量的开窗式燃烧器,建成了水冲压发动机燃烧机理研究实验系统,可扩展用于多种燃料在不同环境下的燃烧过程研究。
     采用DSC、TG-DTA等热分析方法,研究了金属镁含量分别为60%和73%的镁基水反应金属燃料(简称60型、73型镁基燃料)的热分解历程。研究发现,两种燃料的热分解过程均由其组分的热分解叠加而成;73型镁基燃料中氧化剂AP的分解峰温相对提前。
     开展了60型镁基燃料在氩气和水蒸气环境下的稳态燃烧实验研究。研究表明,60型镁基燃料燃烧时,燃面温度高于金属镁的熔点,镁液滴在燃面着火并进入气相燃烧;与氩气环境下的自维持燃烧相比,水蒸气环境下稳态燃烧的火焰亮度增加,凝相燃烧产物中的氧化镁含量增加,单质镁含量减少。
     根据60型镁基水反应金属燃料稳态燃烧实验结果,明确了60型镁基燃料稳态燃烧过程,揭示了其稳态燃烧机理,建立了60型镁基燃料稳态燃烧模型。60型镁基燃料稳态燃烧时,燃料中的镁颗粒在燃面熔化成为镁液滴,并在氧化剂和粘合剂热解气体产物的拖拽作用下进入气相;燃料在燃烧区热反馈的作用下进行热分解,氧化剂AP的热分解过程控制着燃速;燃面附近气相火焰由AP预混火焰、AP/HTPB初始扩散火焰、AP/HTPB最终扩散火焰组成;Mg液滴进入气相后,首先与AP氧化性热解产物反应,剩余镁液滴继续与水蒸气反应放热。在发动机工作压强下,燃面获得的热反馈主要来自AP预混火焰、AP/HTPB最终扩散火焰和Mg液滴与AP氧化性热解产物的反应放热,Mg液滴在水蒸气中的燃烧放热对燃面热反馈贡献较小。分析了宏观因素对燃料稳态燃烧特性的影响规律,结果表明,工作压强升高、水蒸气浓度增加和环境温度的升高有利于提高燃料燃面温度和燃速。
     开展了73型镁基燃料在氩气和水蒸气环境下的稳态燃烧实验研究。研究表明,73型镁基燃料燃烧时,燃面温度高于金属镁的熔点,熔化的镁液滴粘附在燃料热解后的碳骨架上,基本上不进入气相。与自维持燃烧相比,水蒸气氛围下稳态燃烧的火焰亮度和火焰高度增加,凝相燃烧产物中镁颗粒破损程度加剧,氧化镁含量增加,单质镁含量减少。
     根据73型镁基水反应金属燃料稳态燃烧实验结果,明确了73型镁基燃料的稳态燃烧过程,揭示了其稳态燃烧机理,建立了73型镁基燃料稳态燃烧模型。73型镁基燃料稳态燃烧时,燃料中的镁颗粒在燃面熔化成为镁液滴,由于燃料中氧化剂和粘合剂含量较低,燃料热解产气量较少,无法将镁液滴带入气相;镁液滴在气相火焰热反馈的作用下,在燃面蒸发,并且其蒸发过程控制着燃速;AP、HTPB热解气体产物及镁液滴蒸发产生的镁蒸气在燃面附近形成AP预混火焰、AP/HTPB/Mg初始扩散火焰、AP/HTPB/Mg最终扩散火焰;氧化剂AP消耗完后,剩余镁蒸气继续与水蒸气反应放热,燃料中金属镁的燃烧放热是燃面热反馈的主要来源。分析了宏观因素对73型镁基燃料燃料稳态燃烧特性的影响规律,结果表明,稳态燃烧燃面温度和燃速随着工作压强、水蒸气浓度和环境温度的升高而增大。
     考虑了燃料与一次进水之间的耦合燃烧对发动机燃烧过程的影响,建立了高金属含量镁基燃料水冲压发动机稳态燃烧与流动数值计算模型,并通过发动机实验数据验证了模型的正确性。系统研究了燃面退移、一次进水水燃比、一次进水角度、一次进水雾化粒径及喷射速度等参数对水冲压发动机稳态燃烧特性的影响,获得了燃面温度和燃速随一次进水参数变化规律,提出了有利于改善水冲压发动机工作性能和维持高金属含量镁基燃料水冲压发动机稳定燃烧的工作方式。
The performance of water ramjet engines increase with the metal content of their hydro-reactive fuels. It is significant to develop a steady-state combustion mechanism of hydro-reactive metal fuels for performance enhancement and combustion sustainment of high-metal magnesium-based fuel water ramjet engines.
     Approaches of experimental study, theoretical analysis and numerical simulation were applied for research on the steady-state combustion mechanism of high-metal magnesium-based fuel water ramjet engines.
     An experimental method for combustion mechanism research was developed. An experimental system was built and a combustor with functions of observation and measurement was designed.
     Magnesium-based hydro-reactive fuels of Type 60 and Type 73, in which magnesium contents were 60% and 73% respectively, were adopted in the study. The thermal decomposition courses of both fuels were analysed with DSC and TG-DTA method. It was observed that the thermal decomposition of the fuels consist of decompositions of their components, and the maximum decomposition temperature of AP in the Type 73 fuel was higher than that in Type 60.
     The combustion experiments of the two fuels were carried out in Argon and steam atmospheres respectively. For the Type 60 fuel, results show that the burning surface temperature is higher than the melting point of magnesium, and the magnesium droplets enter the gas zone, along with the decomposed gas products of AP and HTPB. The flame brightness in steam is stronger than that in Argon, and the content of MgO in combustion products is also higher in steam. For the Type 73 fuel, the burning surface temperature is still higher than magnesium melting point, while the magnesium droplets do not leave the burning surface but adhere to the carbon framework of HTPB.
     A model was built to describe the combustion of the Type 60 fuel. Magnesium particles melt and ignite in the surface temperature. The gas-phase combustion near the burning surface includes AP premixed flame, AP/HTPB primary and final diffusion flame. The magnesium droplets react with the decomposed products of AP prior to the reaction with the steam. Under the working pressure, the thermal feedback to burning surface mainly comes from the reaction of magnesium and AP. It was found that working pressure, concentration of steam and atmosphere temperature have positive effect on the burning rate and surface temperature.
     A model describing the combustion of the Type 73 fuel was also established. The flame consists of AP premixed flame, AP/HTPB primary and final diffusion flame forms near the burning surface. Under the surface temperature, magnesium particles melt, evaporate and then react with the oxidization products of AP. With the moving of AP/HTPB/Mg flame, water steam diffuses into the burning area and reacts with the remained magnesium. Under the working pressure of water ramjet engines, thermal feedback to the burning surface mainly comes from the combustion of magnesium. The burning rate and surface temperature increase with the working pressure, concentration of steam and temperature of atmosphere.
     A numerical model was built to simulate the combustion and flow of high-metal magnesium-based fuel water ramjet engines. Influences of the moving of the burning surface, water/fuel ratio, injection angle, atomize diameter and injection velocity of primary water-jet on combustion characteristic were studied. The variation rules of surface temperature and burning rate were obtained. Methods for optimizing the combustion characteristic were put forward.
引文
[1]吴胜利,胡彦林.锻造适应我军历史使命要求的强大人民海军[J].求是,2007,14:31~33.
    [2]茹呈瑶.现代鱼雷、水雷技术发展研究[J].舰船科学与技术,2002,25(4):42~47.
    [3]尹韶平,杨芸.鱼雷总体技术的发展与展望[J].鱼雷技术,2005,13(3):1~4.
    [4]陈兢.新概念武器超空泡水下高速武器[J].飞航导弹,2004,10:34~37.
    [5]傅金祝.超空泡水中兵器[J].水雷战与舰船防护,1998,(2):2~4.
    [6] Hargrove J.Supercavitation and Aerospace Technology in the Development of High-Speed Underwater Vehicles[R].AIAA 2004-0130,2004.
    [7] Owis F M,Nayfeh A H.A Compressible Multi-Phase Flow Solver for the Computation of the Supercavitation over High-Speed Torpedo[R].AIAA 2002-0875,2002.
    [8]缪万波.水反应冲压发动机内部工作过程理论与实验研究[D].长沙:国防科学技术大学博士学位论文,2007.
    [9] Kiely D H.Review of Underwater Thermal Propulsion[R].AIAA 94-2837,1994.
    [10] Foote J P,Lineberry J T,Thompson B R.Investigation of Aluminum Particle Combustion for Underwater Propulsion Applications[R].AIAA 96-3086,1996.
    [11]查志武.鱼雷动力技术发展展望[J].鱼雷技术,2005,13(1):1~4.
    [12]海天.未来海战的杀手锏——新概念武器之超高速、超空泡、反鱼雷武器[J].兵器大观,2005,12:72~80.
    [13]李明权.超空泡武器技术[J].现代军事,2001,8:38~40.
    [14] Miller T F,Walter J L,Kiely D H.A Next-Generation Auv Energy System Based on Aluminum-Seawater Combustion [J].IEEE 0-7803-7572-6/02,2002.
    [15] Miller T F,Herr J D.Green Rocket Propulsion by Rection of Al and Mg Powders and Water [R].AIAA 2004-4037,2004.
    [16] Tahsini A M,Ebrahimi M.Increasing Isp by Injecting Water into Combustion Chamber of an Underwater Srm[R].AIAA 2006-4959,2006.
    [17]罗凯,党建军,王育才,等.金属/水反应水冲压发动机系统性能估算[J].推进技术,2004,25(6):496~498.
    [18]王建儒,任全彬,陆贺建.水冲压发动机原理性研究[C].中国宇航学会固体火箭推进第22届年会论文集,2005
    [19]甘晓松,何国强,王建儒,等.水冲压发动机原理性实验技术研究[J].固体火箭技术,2008,31(1):4~7.
    [20]李智欣,汤龙生,凌文辉.水冲压发动机系统几种工况下的能量计算[C].2005年冲压发动机技术交流会论文集,2005.
    [21]蒋雪辉,李亿民,宋晓伟.水冲压发动机性能计算方法[C].2005年冲压发动机技术交流会论文集,2005.
    [22]何洪庆,潘洪亮,姚娜.海水固冲发动机性能初估[C].2005年冲压发动机技术交流会论文集,2005.
    [23]李芳,张为华,张炜.铝基水反应金属燃料性能初步研究[J].国防科技大学学报, 2005,27(4):4~7.
    [24]李芳,张为华,张炜,等.水反应金属燃料能量特性分析[J].固体火箭技术, 2005,28(4):256~259.
    [25]李芳,张为华,夏智勋.水反应金属燃料发动机二维多相燃烧数值模拟[J].燃烧科学与技术,2007,13(6):554~558.
    [26]李芳,张为华,王中伟,等.水反应金属燃料发动机三维两相燃烧数值模拟[J].固体火箭技术,2007,30(5):384~387.
    [27]缪万波,夏智勋,郭健.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6):563~566.
    [28]缪万波,夏智勋,胡建新,等.金属/水反应冲压发动机概念研究[C].冲压发动机交流会论文集,2005:299~301.
    [29]缪万波,夏智勋,胡建新,等.金属/水反应冲压发动机内流场数值模拟[J].推进技术,2007,28(2):186~189.
    [30]缪万波,夏智勋,方丁酉,等.金属/水反应冲压发动机三维内流场数值模拟[J].固体火箭技术,2007,30(2):102~105.
    [31]缪万波,夏智勋,黄利亚,等.漩涡反应器式金属/水反应冲压发动机燃料供应系统实验研究[C].中国航空学会动力学分会火箭发动机专业委员会2006年会议论文集,2006:101~104.
    [32]胡凡,张为华,夏智勋,等.水反应金属燃料发动机的性能调节[J].固体火箭技术,2007,30(5):381~383.
    [33]胡凡,张为华,夏智勋,等.金属燃料/水冲压发动机一次进水实验[J].航空动力学报,2008,23(10):1949~1952.
    [34]胡凡,张为华,夏智勋,等.水反应金属燃料发动机理论性能分析及初步实验研究[C].中国航空学会动力学分会火箭发动机专业委员会2006年会议论文集,2006.
    [35]胡凡.镁基燃料水冲压发动机理论分析与实验研究[D].长沙:国防科技大学博士学位论文,2008.
    [36]黄利亚,夏智勋,胡建新.水冲压发动机地面直连实验技术研究[J].推进技术,2009,30(6):722~726.
    [37]黄利亚,夏智勋,张为华,等.水冲压发动机实验水燃比选择方法研究[J].航空学报,2010,31(9)1740~1745.
    [38]杨琼编译.俄罗斯的“暴风雪”高速鱼雷[J].水雷战与舰船防护,2005,(2):57~58.
    [39] Chozev Y, Fuhs A E, Kol J. Experimentall Investigation of Magnesium Combustion in Steam[R].AIAA-86-1497,1986.
    [40] Epstein M,Fauske H K.A Crystallization Theory of Underwater Aluminum Ignition [J].Nuclear Engineering and Design, 1994, 146.
    [41] Epstein M,Fauske H K,Theofanous T G.On the Mechanism of Aluminum Ingition in Steam Explosions[J]. Nuclear Engineering and Design, 2000, (201):71.
    [42] Mcclean R E,Nelson H H.Kinetics of Reaction Al(2p0)+Ho over an Extended Temperature Range [J].Journal of physics chemistry,1993,97:9673.
    [43] Servaites J C,Burton R L,Melcher J C,et al.Ignition and Combustion of Aluminum Particles in Shocked H2O/O2/Ar and CO2/O2/Ar Mixtures[R].AIAA 2000-3331,2000.
    [44] Servaites J C,Krier H,Melcher J C,et al.Ignition and Combustion of Aluminum Particles in Shocked H2O/O2/Ar and CO2/O2/Ar Mixtures[J].Combustion and Flame,2001,125:1040.
    [45] Rosenband V,Gany A,Timnant Y N.Magnesium and Boron Particles Burning in Hot Steam Atomosphere [J].Defense Science Journal,1998,48(3).
    [46] Malinin V I,Berbek A M.Interplanetary Space Vehicles Rocket Engine,Utilizing Powdered Metal Fuel and Oxidizer,Obtained on a Surface of Explored Space Objects[C].Proceedings of the European Combustion Meeting,2003.
    [47] Gorbunov V V.Combustion of Mixtures High-calorific Metal Powders and Water[R].AD-2771789.
    [48] Megli T W,Krier,H Burton R.Shock Tube Ignition of Al/Mg Alloys in Water Vapor and Argon[C].Proceedings of the 3rd World Conference on Heat Transfer and Thermodynamics,1993:1097~1105.
    [49] Miller T F.A High-Pressure, Continuous-Operation Cyclone Separator Using a Water-Generated Flow Restriction [J].Powder Technology,2002,122:61~68.
    [50]郑邯勇.铝水推进系统现状与发展前景[J].舰船科学技术,2003,25(5):24~25.
    [51]张运刚,庞爱民,张文刚,等.金属基燃料与水反应研究现状与应用前景[J].固体火箭技术,2006,29(1):52~55.
    [52]张文刚,刘建红,肖金武.水冲压发动机用金属基燃料技术研究进展[C].冲压发动机交流会论文集,2005:302~304.
    [53]范美强,曾巨澜,邹勇进,等.铝水推进剂用铝基复合材料的制备及性能研究[J].固体火箭技术,2007,30(6):510~513.
    [54]陈支厦,郑邯勇,王树峰,等.含能粘合剂BGAP在水反应金属燃料中的应用研究[J].舰船科学技术,2009,31(1):124~127.
    [55]李是良,张炜,周星,等.镁基水反应金属燃料一次燃烧波特性研究[J].固体火箭技术,2009,32(2):197~200.
    [56]李是良,张炜.镁基水反应金属燃料的热分解性能[J].推进技术,2009,30(12):740~744.
    [57]周星,张炜,李是良.镁粉的高温水反应特性研究[J].固体火箭技术,2009,32(3):302~305.
    [58]周星.镁基水反应金属燃料与水反应特性研究[D].长沙:国防科技大学博士学位论文,2010.
    [59] Zenin, A . Study of combustion mechanism of new polymer/oxidizer mixtures[R].ADA403097,2002.
    [60] Zenin, A . Physics of combustion of new oxidizer/polymer mixtures[R].ADA420008,2004.
    [61] Chen D M,Hsieh W H.Combustion behavior and thermophysical properties of metal-based solid fuels[J].Journal of Propulsion and Power, 1991,7(2):250-257.
    [62] Modiano S H , Vanderhoff J A . Multichannel infrared (IR) absorption spectroscopy applied to solid propellant flames[R].ADA302785,1996.
    [63] Schroeder M A,Fifer R A.Condensed-phase processes during combustion of solid gun propellants.I. Nitrate ester propellants[J].Combustion and Flame, 2001,126:15 69.
    [64] Korobeinichev O P,Paletsky A A,Tereschenko A G,et al.Combustion chemistry of composite solid propellants based on nitramine and high energetic binders[R].ADA440834,2006.
    [65] Korobeinichev O P,Kuibida L V,Paletsky A A.Development and application of molecular beam mass-spectrometry to the study of ADN combustion chemistry [R].AIAA98-16316,1998.
    [66] Korobeinichev O P,Kuibida L V,Tereschenko A G.GAP decomposition and combustion chemistry studied by molecular beam mass-spectrometry [R].AIAA99-16469,1999.
    [67] Xiao Y,Amano R S.X-ray real time radiography technique to determine the velocities of particles on the solid propellant surface[R].AIAA 2001-1096,2001.
    [68] Xiao Y,Amano R S.Velocity of particles on solid propellant surface[R].AIAA 2002-0640,2002.
    [69] Cauty F . Investigation in energetic materials combustion: a strategy for numerical simulation validation[R].AIAA 2006-4742,2006.
    [70] Cauty F.Investigation in energetic materials combustion: Solid propellant flame structure and temperature profile[R].AIAA 2007-5863,2007.
    [71] Stufflebeam J H . CARS diagnostics for solid propellant combustion investigation[R].ADA249650,1992.
    [72] Cerri S,Galfetti L.Experimental investigation of the condensed combustion products of micro aluminized solid rocket propellants[R].AIAA 2007-5766,2007.
    [73] Kakami A,Masaki S.Solid propellant microthruster unsing laser-assisted combustion[R].AIAA 2004-3797,2004.
    [74] Kakami A,Hiyamzu R.Laser-assisted combustion of solid propellants[R].AIAA 2007-5783,2007.
    [75]王瑛,孙志华,赵凤起,等.NEPE推进剂燃烧机理研究[J].火炸药学报,2000,23(4):24~26.
    [76]董存胜,陆殿林.用钨铼微热电偶测温技术研究固体推进剂的燃烧波结构[J].火炸药,1995,18(2):22~26.
    [77]李春喜,赵明,赵凤起,等.CARS技术及其在火炸药燃烧诊断中的应用[J].含能材料,2001,9(3):133~135.
    [78]郝海霞,李春喜,王江宁,等.推进剂火焰烟尘对CARS测温精确度的影响[J].火炸药学报,2005,28(2):23~25.
    [79]张小平,李葆萱,汪越,等.NEPE推进剂的高压燃烧特性研究[J].推进技术,2008,29(4):508~512.
    [80]秦能,张超,王明星.低燃速低燃温双基推进剂燃速与燃烧波特征量的相关性研究[J].含能材料,2010,18(1):110~114.
    [81]张杰.固体推进剂燃烧波温度分布测定[J].固体火箭技术,2005,28(3):228~231.
    [82]赵文华,朱曙光,李岩.用相对强度法测量固体推进剂火焰温度分布[J].光谱学与光谱分析,2004,24(9):1144~1147.
    [83]刘佩进,陈敬平,李葆萱.丁羟/铝镁富燃推进剂燃烧实验[J].推进技术,2002,23(4):342~345.
    [84]王英红,李葆萱,李进贤,等.含硼富燃料推进剂燃烧机理研究[J].推进技术,2005,26(2):178~183.
    [85] Summerfield M.Burning mechanism of ammonium perchlorate propellants, solid propellant rocket research[M].New York: AIAA Inc., 1960.
    [86] Beckstead M W, Derr R L, Price D F.A model of composite solid propellant combustion based on multiple flames[J] . AIAA Journal, 1970, 8(12) :2200~2207.
    [87]徐司雨,赵凤起,宋洪昌,等.硝胺推进剂和双基系推进剂燃速预估模型进展[J].化学推进剂与高分子材料,2006,4(2):32~36.
    [88]汪少平.复合固体推进剂燃烧机理及燃速预估程序研究[D].南京:南京理工大学,2007.
    [89]杨栋,宋洪昌,李上文,等.双基和硝胺改性双基推进剂平台燃烧模型的研究[J].兵工学报,1997,18(1):42~45.
    [90]张炜,朱慧.双基推进剂稳态燃速特性计算研究[J].含能材料,1996,4(1):33~37.
    [91]杨栋,宋洪昌,李上文,等.RDX-CMDB推进剂铅-铜-炭催化燃速模型[J].推进技术,1995,16(3):46~51.
    [92] Glick R L, Condon J A.Statistical analysis of polydisperse heterogeneous propellant combustion steady state[C].13th JANNAF Combust Meeting.CPIA publication 281,1976:313~345.
    [93] Sammons G D.Multiple flame combustion model fortran computer program [R].AIAA-482719,1974.
    [94] Hermance C E.A detailed mode1 of the combustion inc1uding surface heterogeneity and heat generation[J].AIAA Journal, 1966, 4(9):1626~1637.
    [95] Hermance C E.A detailed model of the combustion of composite solid propellants[A].Proc.ICRPG /AIAA 2nd solid propulsion ConL[C].1967:89~103.
    [96] Knott G M,Jackson T L,Buckmaster J.The random packing of heterogeneous propellants[J].AIAA Journal,2001,39(4):678~686.
    [97] Kochevets S,Buckmaster J,Jackson T L,et al.Random packs and their use in the modeling of heterogeneous solid propellant combustion[J].Journal of Propulsion and Power,2001,17(4):883~891.
    [98] Buckmaster J,Jackson T L,Ulrich M.Numerical modeling of heterogeneous propellant combustion[R].AIAA 2001-3579,2001.
    [99] Buckmaster J , Chen M , Jackson T L , et al . Numerical modeling of three-dimensional heterogeneous propellant combustion[R].AIAA 2002-0780,2002.
    [100] Massa L,Jackson T L,Buckmaster J.Recent developments in the modeling of heterogeneous propellant combustion[R].AIAA 2005-4467,2005.
    [101]张炜,朱慧.AP/RDX/HTPB复合推进剂燃速特性计算研究[J].推进技术,1997,18(4):75~79.
    [102]王英红,李葆萱,李进贤,等.含硼富燃料推进剂凝聚相反应对低压燃烧的影响[J].推进技术,2004,25(2):169~172.
    [103]王英红,李葆萱,张晓宏,等.含硼富燃料推进剂燃烧表面“沉积层”研究[J].固体火箭技术,2006,29(2):120~123.
    [104]王英红,李葆萱,张晓宏,等.含硼富燃料推进剂低压燃烧模型[J].固体火箭技术,2006,29(1):39~42.
    [105]徐温干,李葆萱,王克秀.含负压力指数的复合固体推进剂的稳态燃烧机理[J].宇航学报,1983,3:1~19.
    [106]徐温干,吴心平,李葆萱,等.呈正、负压强指数的复合固体推进剂稳态燃烧模型[J].推进技术,1992,4:39~48.
    [107]赵银,田德余,江瑜.AP复合固体推进剂燃烧模型[J].宇航学报,1988,10(4):15~23.
    [108]赵银,田德余,江瑜.含铝复合固体推进剂的燃烧模拟计算[J].航空动力学报,1987,2(2):147~152.
    [109]邓鹏图,田德余,庄逢辰.硝胺固体推进剂燃烧性能计算的神经网络方法[J].固体火箭技术,1996,19(3):17~22.
    [110]邓鹏图,田德余,庄逢辰.复合固体推进剂燃烧性能模拟计算的神经网络方法[J].推进技术,1996,17(4):72~76.
    [111] Lankford D W,Simmons M A,Heikkinen B D.A detailed numerical simulationof a liquid-propellant rocket engin groud test experiment[R].AIAA 92-3604,1992.
    [112] Dang A L,Navaz H K.Numerical analysis of bipropellant combustion in liquid thrust chambers by an euleria-eulerian approach[R].AIAA 92-3735,1992.
    [113] Tang Y L,Schuman M D.Numerical modeling of liquid-liquid bipropellant droplet/gas reacting flows[R].AIAA 92-0232,1992.
    [114] Wirzberger H,Macales Y,Yaniv S.Prediction of slag formation in a solid rocket motor[R].AIAA 2005-4488,2005.
    [115] Liou T M,Hwang Y H.Calculation of flow fields in side-inlet ramjet combustors with an Algebraic Reynolds Stress model[J].Journal of Propulsion and Power,1989,5(6): 686~693.
    [116] Ristori A , Dufor E. Numerical simulation of ducted rocket motor[C].AIAA2001-3193,2001.
    [117] Lentini D,Jones W P. Numerical simulation of nonpremixed turbulent flow in a dump combustor[C].AIAA 90-1858,1990.
    [118] Fei Q,Guoqiang H,Jiang L,et al.Integrated flow field calculation of combustor and inlet in variable flow ducted rocket[C].AIAA 2008-5172,2008.
    [119] Natan B,Gany A.Ignition and combustion characteristics of individual born particles in the flow field of a solid fuel ramjet [C].AIAA 87-2034,1987.
    [120] Natan B,Gany A. Ignition and combustion boron particles in the flow field of a Solid Fuel Ramjet [J].Journal of Propulsion and Power, 1991, 7 (1).
    [121] Cesco N,Lavergne G,estivalezes J L.Simulation of Two Phase Flow in Solid Rocket Motors [C]. AIAA 96-2640, 1996.
    [122] Ciucci A,Iaccarino G.Numerical Analysis of the Turbulent Flow and Alumina Particle Trajectories in Solid Rocket Motors [C].AIAA 97-2860,1997.
    [123] Ciucci A,Iaccarino G, Amato M.Numerical Investigation of 3d Two-Phase Turbulent Flows in Solid Rocket Motors [C].AIAA 98-3966,1998.
    [124]林志勇,周进.三组元发动机氢的质量分数对燃烧流场影响的数值研究[J].热科学与技术, 2004,3 (1).
    [125]林志勇,罗世彬,田章福.双工况氢氧发动机燃烧与传热数值分析[J].推进技术,2003,24 (3).
    [126]胡建新,夏智勋.非壅塞固体火箭冲压发动机补燃室内流场数值模拟研究[J].固体火箭技术,2002,25 (3).
    [127]胡建新,夏智勋.非壅塞火箭冲压发动机补燃室两相流数值模拟研究[J].推进技术,2004,25 (3).
    [128]赵春宇.冲压发动机补燃室工作过程数值仿真研究[D].南京:南京理工大学硕士学位论文,2006.
    [129]赵春宇,李斌,鞠玉涛.碳粉燃料在火箭冲压发动机补燃室内燃烧特性的分析[J].火箭推进,2007, 33(5): 37~41.
    [130]赵春宇,李斌,鞠玉涛.环向进气固体火箭冲压发动机补燃室流场数值模拟[J].弹箭与制导学报,2008,28(2): 136~138.
    [131]陈铮.固体火箭冲压发动机补燃室气粒反应流数值模拟[D].南京:南京理工大学硕士学位论文,2007.
    [132]周继时,李进贤,钟华,等.二元进气道夹角对冲压发动机二次燃烧的影响[J].固体火箭技术,2005,28(2): 112~115.
    [133]高龄松.固体火箭冲压发动机补燃室性能研究[D].西安:西北工业大学硕士学位论文,2005.
    [134]高岭松,何国强,刘佩进,等.固体火箭冲压发动机补燃室掺混与燃烧流场数值模拟[J].火箭推进,2007,33(5): 37~41.
    [135]石喜勤,陈兵,徐旭,等.冲压发动机进气道/燃烧室/尾喷管耦合流场计算[J].推进技术,2008,29(5): 557~561.
    [136]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(I)计算模型和方法[J].推进技术,2002,23 (2).
    [137]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ⅱ)数值模拟结果及分析[J].推进技术,2002,23 (3).
    [138]许超.补燃室结构对冲压发动机二次燃烧影响研究[D].西安:西北工业大学硕士学位论文,2007.
    [139]费继友,俞炳丰,夏学礼.二维火箭发动机燃烧室化学反应粘性流场的数值模拟[J].贵州工业大学学报自然科学版,2001,30 (3).
    [140]费继友,俞炳丰,夏学礼.二维火箭发动机化学反应粘性流场的数值模拟与实验验证[J].火炸药学报,2002,(4).
    [141]费继友,俞炳丰,张杰.液体火箭发动机推力室粘性流场数值模拟和实验验证[J].推进技术,2003,24 (4).
    [142]陈超,王英红,张放利.铝粉粒径对高铝含量富燃料推进剂一次燃烧性能的影响[J].固体火箭技术,2010,33 (6).
    [143]沈维道,等.工程热力学[M].北京:高等教育出版社.1983.
    [144]周力行.多相湍流反应流体力学[M].北京:国防工业出版社.2002.
    [145]杨涛,等.火箭发动机燃烧原理,长沙:国防科技大学出版社.2008.
    [146]方丁酉,张为华等编著.固体火箭发动机内弹道学[M].长沙:国防科技大学出版社.1997.
    [147] G. Carrier, F.Fendell, D. Brent, C. Kimbrough, and S. Loucks. Simple modeling of particle trajectories in solid rocket motors. Journal of Propulsion and Power, 1991, 7(2): 185~195.
    [148] S.S.Jayant, J.D.Frederik, and H.J.Gibeling. Calculation of particle trajectories in solid rocket motors with arbitrary acceleration. Journal of Propulsion and Power, 1992, 8(5): 961~967.
    [149] N.Cesco, G.Lavergne, J.L. Estivalezes. Simulation of two phase flow in solid rocket motors. AIAA 96-2640, 1996.
    [150]庄逢辰编著.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.
    [151]向红军.固体火箭发动机熔渣沉积数值模拟与实验研究[博士学位论文].北京:北京航空航天大学, 2000.
    [152]李是良.水冲压发动机用镁基水反应金属燃料一次燃烧性能研究[D].长沙:国防科技大学博士学位论文,2009.
    [153]艾玉杰.氮化镁的制备与性质表征及中间层对纳米线生长作用研究[D].山东济南:山东师范大学,2007.
    [154]孟春站.氮化镁粉末的制备及性质研究[D].山东济南:山东大学,2009.
    [155]孙永明,钱运华,徐海青.超细氢氧化镁粉体的制备研究[J].应用化工,2009,38(2):264~266.
    [156]王宝和,王增辉,王刚,等.高分散氧化镁粉体的制备及反常红外特性[J].河南化工,2010,27(1):37~40.
    [157]黄晓梅,张春红,张密林.纯镁和镁锂合金在中性3.5%NaCI溶液中的腐蚀行为[J].航空材料学报,2008,28(3):71~76.
    [158]柯以侃,董慧茹.分析化学手册光谱分册[M].北京:化学工业出版社,1998.
    [159]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    [160] Anton M.Heyns,Linda C.Pdnsloo,et a1.The Vibrational Spectra and decomposition of a-Calcium Nitride(a-Ca3N2) and Magnesium nitride(g3) [J].Journal ofsolid state chemistry ,1998,137:3-41.
    [161]张炜.固体推进剂性能计算原理[M].长沙:国防科技大学出版社, 1995.
    [162]彭培根.固体推进剂性能及原理[M].长沙:国防科技大学出版社, 1987.
    [163]刘晓俐.高金属含量固体火箭发动机的相关问题研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2006.
    [164]赵文忠,郑邯勇,林碧亮.纳米氧化铁的制备及其对高金属含量燃料的催化作用[J].火炸药学报,2008,31(5): 69~72.