镁/水着火燃烧模型及高温均相反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水冲压发动机是一种新型的水下推进装置,其只携带水反应金属燃料,并以外界环境中的海水为主要氧化剂。通过金属燃料与水反应产生发动机所需推力,因此具有较高的质量能量密度和体积能量密度。综合比较各种金属与水反应的能量密度及反应活性,认为金属镁是水反应金属燃料的首选。研究镁/水反应机理是掌握水反应金属燃料与水的反应机理的基础,对于提高该类发动机燃烧效率和能量转换效率有重要意义。本文主要进行了四个方面的研究,包括镁在水蒸气中着火和燃烧的机理及模型研究,镁/水高温均相化学反应机理研究,镁铝合金在水蒸气中燃烧特性研究。
     本文首先研究了镁在水蒸气中的着火机理及模型,在高温管式炉中考察了加热速率、水蒸气浓度和粒径等因素,对镁颗粒着火温度和着火延迟时间的影响规律。在此基础上建立了镁颗粒在水蒸气中着火的能量方程,对能量方程中各控制变量进行分析简化,根据实验结果计算得到了不同粒径镁颗粒在水蒸气中着火的动力学参数,并对不同粒径的镁颗粒在水蒸气中的着火温度和着火时间进行了预测。
     然后研究了镁在水蒸气中的燃烧机理和模型,在可视化氙灯加热燃烧试验台上利用高速照相机拍摄了镁颗粒燃烧过程中表面形态的变化,检测了燃烧火焰的发射光谱,通过燃烧火焰中镁、氧化镁等物质的特征谱线确定了颗粒的燃烧时间,对不同粒径镁颗粒的燃烧时间进行测量。在实验的基础上,建立了镁颗粒在水蒸气中准稳态燃烧的物理数学模型,认为该过程为受扩散控制蒸发燃烧过程,同时考虑了氧化镁冷凝沉积等因素对燃烧过程的影响。根据模型计算得到的镁颗粒的燃烧时间,常压下与直径的2.5次幂近似成正比,高压下与直径的1.5次幂近似成正比,并与水蒸气浓度的0.9幂成反比关系,与实验结果基本吻合。同时对100μm镁颗粒在不同环境温度中的氧化、着火和燃烧过程进行了数值模拟。
     利用量子化学方法研究了镁/水高温均相化学反应机理,在B3LYP/6-311++G(3df,2p)水平上优化了镁/水反应的反应物、生成物、过渡态和中间体的结构,并用G2M(CC2)方法计算了反应通道上各驻点的能量。结果显示高温下镁/水的均相化学反应,先生成一个非平面结构的镁/水加合物Mg·OH2,其可以通过氢原子解离途径生成最终产物,反应中间体为MgOH和H;也可以通过氢原子转移途径生成最终产物,反应中间体为HMgOH,通过量子化学估算两个过程的活化能分别为48.28kcal/mol和32.51kcal/mol.根据计算得到反应途径及势能面数据,采用变分过渡态理论计算了高温下镁/水均相化学反应速率,并应用零曲率隧道法对反应速率进行了修正,计算得到在1000K~5000K温度范围内,镁/水均相总反应速率为k=3.85×10-10×T0.39×exp(-17852/T)。在此基础上,建立了高温下镁/水详细的反应机理和相应的燃烧数学模型,并利用CHEMKIN程序中的OPPDIF模块对镁/水燃烧火焰进行模拟分析。
     最后研究了镁铝合金在水蒸气中的燃烧特性,分别对金属镁、铝以及铝含量分别为40%、50%和60%的三种镁铝合金粉末的理化特性和物质组成进行了分析。并通过高温氢氧焰试验台研究了镁铝合金的燃烧特性,发现燃烧过程可分为两个阶段:第一阶段镁燃烧的时间基本不变,而第二阶段铝燃烧的时间随着铝含量的增加逐渐变长。对收集的燃烧产物进行了XRD检测,在此基础上分析了镁铝合金与水蒸气的反应途径,认为在合金中镁含量较多时,燃烧产物主要为MgO和MgAl2O4,只有当铝含量较多时,燃烧产物中才会出现Al2O3。
Water ramjet as a new type of underwater propulsion device, using hydro-reactive metal fuel and seawater in the external environment as the main oxidant. The propulsion of the engine is generated by the metal fuels reacting with water, which has very high mass and volumetric energy densities. Comprehensive comparison of the energy density and the reactivity of various metal reacting with water, magnesium is the first choice for hydro-reactive metal fuel. Studying the Mg/H2O reaction mechanism is the basis to grasp the reaction mechanism of the metal fuel reacting with water, which is important for enhancing the combustion efficiency and energy conversion efficiency of the water ramjet. This paper mainly performance four areas of research, including the ignition and combustion mechanism and model of magnesium in steam, high temperature homogeneous chemical reaction mechanism between magnesium and water, and the combustion characteristics of magnesium-aluminum alloy in steam.
     This paper firstly studied the ignition mechanism and model of the magnesium in steam. The effects of heating rate, steam concentration and particle diameter on ignition temperature and ignition delay time of magnesium in steam were studied by tube reactor. Based on experimental study, the ignition energy equation of magnesium particles in steam was established, and control variables in the energy equation were analysed and simplified. According to the experimental results, the kinetic parameters of magnesium particles with different diameters were calculated, and the ignition temperature and time of magnesium particles in steam were predicted.
     Then the combustion mechanism and model of the magnesium in steam were studied. The surface morphology of the magnesium particle in combustion process was shot by high-speed camera in visualization xenon lamp heating burner, the emission spectrum of the combustion flame was detected. The burning time of magnesium particle was determined by characteristic lines of combustion flame, and the burning time of magnesium particles with different diameters was measured. Based on experimental study, the quasi-steady physical and mathematical model of the combustion of magnesium particles in steam was established, mainly affected by the diffusion-controlled evaporation combustion process, and the magnesium oxide condensation and deposition was also considered. The burning time was calculated by the combustion model. The results shows that it is approximate proportion to the2.5power of the diameter in atmospheric pressure and1.5power of the diameter in high pressure, and inversely proportion to the0.9power of steam concentration, which are consistent with the experimental results. The oxidation, ignition and combustion process of100μm magnesium particles at different ambient temperature was also simulated.
     Reaction mechanism of Mg with water was investigated by ab initio quantum chemical methods. The geometries and frequencies of all reactants, products, intermediates and transition states were calculated at the B3LYP/6-311G++(3df.2p) level. Higher-level energies were obtained at G2M (CC2) level using the B3LYP-optimized geometries. The Mg and water firstly formed an atom-molecule adduct Mg·OH2, and then either formed MgOH+H by a H-dissociation process or formed HMgOH by a H-migration process. The barrier heights of two processes are48.28kcal/mol and32.51kcal/mol. The rate constants were calculated by using the variational transition-state theory with the zero-curvature tunneling correction in a temperature range of1000-5000K, and the total rate constant of Mg/water is3.85×10-10×T0.39×exp(-17852/T). Then a detailed reaction mechanism of magnesium/water under high temperature and combustion mathematical model was established, and OPPDIF simulator in CHEMKIN program was used to analysis the structure of the combustion flame.
     Finally, the combustion characteristics of magnesium aluminum alloy in steam were studied. The physical and chemical properties and composition of magnesium, aluminum, and magnesium-aluminum alloy with aluminum content of40%,50%and 60%were analyzed. The combustion characteristics of magnesium-aluminum alloy was studied in high-temperature hydrogen-oxygen flame, and found that the combustion process is divided into two phases:the first stage is the combustion of magnesium with nearly the same burning time, and the second stage is combustion of aluminum with longer burning time when the aluminum content in alloy increased. The combustion products were collected and analyzed by XRD. The reaction pathway of magnesium-aluminum alloy with steam is also analyzed, found that the combustion products are mainly the MgO, and MgAl2O4when the magnesium content in the alloy is more than aluminum, and the combustion products Al2O3only appears when the aluminum content is higher.
引文
[1]韩旭东.建设现代化海军[J].瞭望,2011.31:20-21.
    [2]曹伟,魏英杰,王聪,等.超空泡技术现状、问题与应用[J].力学进展,2006.36(4):571-579.
    [3]丛敏.美国研究超空泡高速水下运输艇[J].飞航导弹,2007.36(6):34-35.
    [4]王云,吕浩福.船舶喷射推进技术发展综述[J].舰船科学技术,2008.30(3):31-35.
    [5]李芳,张为华,张炜,等.水反应金属燃料能量特性分析[J].固体火箭技术,2005.28(4):256-259.
    [6]Savchenko YN. Supercavitating Object Propulsion [A]. Supercavitating Flows, Ukranian National Academy of Sciences-Institute of Hydromechanics,2001.
    [7]李明权.超空泡武器技术[J].现代军事,2001.7(8):38-40.
    [8]Gerrard-Gough JD, Christman AB. History of the Naval Weapons Center, China Lake, California [M]. Government Printing Office, Washington D.C.,U.S.,1978. 98-303.
    [9]刘佳,刘乐华,侯晓艳.德国超空泡水下导弹技术的发展[J].飞航导弹,2009.28(10):31-33.
    [10]Oda N, Yoshida T, Nakanishi T, et al. Method for Producing High-Pressure Hydrogen Containing Gas for Use as a Power Source [P]. USP:3985866,1976.
    [11]Yasaka, Kakegawa-shi, Shizuoka-ken. Magnesium Composites and Mixtures for Hydrogen Generation and Method for Manufacture thereof [P]. USP: 4072514,1978.
    [12]郑邯勇.铝水推进系统现状与发展前景[J].舰船科学技术,2003.25(5):24-25.
    [13]罗凯,党建军,王育才,等.金属水反应水冲压发动机系统性能估算[J].推进技术,2004.25(6):495-498.
    [14]李芳,张为华,张炜,等.铝基水反应金属燃料性能初步研究[J].固体火箭技术,2005.28(3):169-171.
    [15]张运刚,庞爱民,张文刚,等.金属基燃料与水反应研究现状及应用前景[J].固体火箭技术,2006.29(1):52-55.
    [16]范美强,曾巨澜,邹勇进,等.铝水推进剂用铝基复合材料的制备及性能研究[J].固体火箭技术,2007.30(6):510-513.
    [17]郜冶,贺征,刘平安.超空泡推进发动机燃料能量特性比较[J].固体火箭技术,2009.32(1):27-32.
    [18]李芳,夏智勋,张为华,等.水/金属燃料发动机水滴蒸发非傅里叶效应研究[J].固体火箭技术,2007.30(1):12-16.
    [19]李芳,张为华,王中伟,等.水反应金属燃料发动机三维两相燃烧数值模拟[J].固体火箭技术,2007.30(5):384-387.
    [20]李芳,张为华,夏智勋.水反应金属燃料发动机二维多相燃烧数值模拟[J].燃烧科学与技术,2007.13(6):554-558.
    [21]缪万波,夏智勋,胡建新,等.金属/水反应冲压发动机内流场数值模拟[J].推进技术,2007.28(2):186-189.
    [22]胡凡,焦绍球,张为华,等.水反应金属燃料发动机初步试验[J].推进技术,2008.29(3):367-370.
    [23]黄利亚,夏治勋,胡建新.水冲压发动机地面直连试验技术研究[J].推进技术,2009.30(6):722-726.
    [24]李是良,张炜.镁基水反应金属燃料的热分解性能[J].推进技术,2009.30(6):740-744.
    [25]李是良,张炜,周星,等.镁基水反应金属燃料一次燃烧波特性研究[J].固体火箭技术,2009.32(2):197-200.
    [26]Yuasa S, Isoda H, Carbon dioxide breathing propulsion for a Mars airplane [C]. AIAA-89-2863.1989.
    [27]Cassel HM, Liebman I. The cooperative mechanism in the ignition of dust dispersions [J]. Combustion and Flame,1959.3(0):467-475.
    [28]Elguindi K, Sullivan H, Spink DR. Studies on Ignition Characteristics and Combustion Mechanism of Magnesium in a Chlorine Atmosphere [J]. Journal of The Electrochemical Society,1973.120(3):386-389.
    [29]Popov El. Self-ignition of magnesium powders [J]. Powder Metallurgy and Metal Ceramics,1974.13(7):594-596.
    [30]Shevtsov V, Fursov V, Stesik L. Mechanism for combustion of isolated magnesium particles [J]. Combustion, Explosion, and Shock Waves.1976. 12(6):758-763.
    [31]Ezhovskii GK, Ozerov ES, Roshchenya YV. Critical conditions for the ignition of gas suspensions of magnesium and zirconium powders [J]. Combustion, Explosion, and Shock Waves,1979.15(2):194-199.
    [32]Derevyaga M, Stesik L, Fedorin E. Critical conditions for the ignition of magnesium [J]. Combustion, Explosion, and Shock Waves,1978.14(6): 731-735.
    [33]Takeno T, Yuasa S. Ignition of Magnesium and Magnesium-Aluminum Alloy by Impinging Hot-Air Stream [J]. Combustion Science and Technology,1980. 21(3-4):109-121.
    [34]Bobryshev BL, Aleksandrova YP. Ignition of Magnesium and its alloys [J]. Metal Science and Heat Treatment,1988.30(3):219-222.
    [35]Boiko VM, Lotov VV, Papyrin AN. Ignition of gas suspensions of metallic powders in reflected shock waves [J]. Combustion, Explosion, and Shock Waves,1989.25(2):193-199.
    [36]Valov AE, Gusachenko El, Shevtsov VI. Influence of the pressure of the oxidative medium and the oxygen concentration on the ignition of single magnesium particles [J]. Combustion, Explosion, and Shock Waves,1991. 27(4):393-396.
    [37]Beloni E, Dreizin EL. Experimental study of ignition of magnesium powder by electrostatic discharge [J]. Combustion and Flame,2009.156(7):1386-1395.
    [38]Coffin K.P. Burning times of magnesium ribbons in various atmospheres [R]. NACATN 3332,1954
    [39]Glassman I. Metal Combustion Processes [M]. Defense Technical Information Center,1959.
    [40]Cassel HM, Liebman I. Combustion of magnesium particles Ⅰ [J]. Combustion and Flame,1962.6(0):153-156.
    [41]Cassel HM, Liebman I. Combustion of magnesium particles Ⅱ — Ignition temperatures and thermal conductivities of ambient atmospheres [J]. Combustion and Flame,1963.7(0):79-81.
    [42]Markstein GH. Combustion of Metals [J]. AIAA-1595-957,1962.
    [43]Brzustowski TA, Glassman I, Vapor-phase Diffusion Flames in the Combustion of Magnesium and Aluminum, Ⅰ-Analytical Developments [C]. AIAA-63-0489. 1963.
    [44]Brzustowski TA, Glassman I, Vapor-phase Diffusion Flames in the Combustion of Magnesium and Aluminum. Ⅱ-Experimental Observation in Oxygen Atmospheres.pdf [C]. AIAA-63-0490.1963.
    [45]Gorbunov V, Khromov V, Shidlovskii A. Effect of pressure on the burning rate of a mixture of magnesium and oxygen-containing organic solids [J]. Combustion, Explosion, and Shock Waves,1969.5(2):187-189.
    [46]Mellor AM, Wittig SLK, Whitacre RF. Spectrometric Study of Shock-Heated Mg/MgO Particle Dispersions [J]. Combustion Science and Technology,1971. 4:31-36.
    [47]Gusachenko E, Stesik L, Fursov V, et al. Investigation of the condensed combustion products of magnesium powders Ⅰ. Dependence on pressure [J]. Combustion, Explosion, and Shock Waves,1974.10(4):476-482.
    [48]Gusachenko E, Stesik L, Fursov V, et al. Investigation of the condensed combustion products of magnesium powders Ⅱ. dependence on particle size [J]. Combustion, Explosion, and Shock Waves,1974.10(5):588-595.
    [49]Law CK, Williams FA. Combustion of magnesium particles in oxygen-inert atmospheres [J]. Combustion and Flame,1974.22(3):383-405.
    [50]Rossler F. Temperature distribution of magnesium flames [J]. Applied Physics A:Materials Science & Processing,1974.4(1):69-74.
    [51]Kashireninov OE, Kuznetsov VA, Manelis GB. Kinetics of Alkaline-Earth Atoms Reactions with Molecular Oxygen [J]. AIAA/SAE 12th Propulsion Conference,1977.1035-1037.
    [52]Derevyaga ME, Stesik LN, Fedorin EA. Magnesium combustion regimes [J]. Combustion, Explosion, and Shock Waves,1978.14(5):559-564.
    [53]Derevyaga ME. Effect of pressure on magnesium combustion [J]. Combustion, Explosion, and Shock Waves.1983.19(1):31-35.
    [54]Florko A, Golovko V. Characteristics of the radiation emitted by and the conditions for nucleation of submicron oxide particles during combustion of magnesium [J]. Combustion, Explosion, and Shock Waves,1993.29(5): 562-567.
    [55]Florko AV. Zolotko AN, Kaminskaya NV. et al. Spectral investigation of the combustion of magnesium particles [J]. Combustion, Explosion, and Shock Waves.1982.18(1):12-16.
    [56]Florko AV, Kozitskii SV, Pisarenko AN, et al. Study of combustion of single magnesium particles at low pressure [J]. Combustion, Explosion, and Shock Waves,1986.22(2):159-163.
    [57]Valov AE, Kustov YA, Shevtsov VI. Spectroscopic study of the combustion of solitary magnesium particles in air and in carbon dioxide [J]. Combustion. Explosion, and Shock Waves,1994.30(4):431-436.
    [58]Abbud-Madrid A, Branch MC, Daily JW, Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity [C].1996.
    [59]Dreizin EL, Berman CH, Vicenzi EP. Condensed-Phase Modifications in Magnesium Particle Combustion in Air [J].2000.
    [60]Gol'dshleger UI, Amosov SD. Combustion Modes and Mechanisms of High-Temperature Oxidation of Magnesium in Oxygen [J]. Combustion, Explosion, and Shock Waves.2004.40(3):275-284.
    [61]樊建锋,杨根仓,周尧和,等.纯镁的高温氧化特性研究[J].铸造技术,2006.27(6):605-608.
    [62]Mellor AM, Irvin G. Vapor-Phase Diffusion Flames in the Combustion of Magnesium and Aluminum. Ⅲ Experimental Observations in Carbon Dionxie Atmospheres [J]. AIAA-63-0491,1963.
    [63]Shafirovich EY. Gol'dshleger UI. Ignition and burning of magnesium particles in caseous oxides of carbon [J]. Combustion, Explosion, and Shock Waves. 1990.26(1):1-7.
    [64]Shafirovich EY, Goldshleger UI. The superheat phenomenon in the combustion of magnesium particles [J]. Combustion and Flame,1992.88(3钬?):425-432.
    [65]Shafirovich EY, Goldshleger UI. Combustion of Magnesium Particles in CO2/CO Mixtures [J]. Combustion Science and Technology,1992.84(1-6): 33-43.
    [66]Shafirovich EY, Shiryaev AA, Goldshleger UI. Magnesium and carbon dioxide: A rocket propellant for Mars missions [J]. Journal of Propellant and Power. 1993.9(2):197-203.
    [67]Shafirovich EY, Goldshleger UI, Combustion of magnesium particles in carbon dioxide and monoxide [C]. AIAA-1995-2992.1995.
    [68]Legrand B, Shafirovich E, Marion M, et al. Ignition and combustion of levitated magnesium particles in carbon dioxide [J]. Symposium (International) on Combustion.1998.27(2):2413-2419.
    [69]Abbud-Madrid A, Stroud C, Omaly P, et al. Combustion of Bulk IMagnesium in Carbon Dioxide under Reduced-Gravity Conditions [J]. AIAA-1999-695-765. 1999.
    [70]Abbud-Madrid A, AbhijifModak, Branch MC, et al. Combustion of Magnesium with Carbon Dioxide and Carbon Monoxide at Low Gravity [J]. Propulsion and Power,2001.17(4):852-859.
    [71]Dreyer C, Daily J, Abbud-Madrid A. et al., PLIF Measurements of Magnesium Oxide During Combustion of Magnesium [C]. AIAA 2001-0788.2001.
    [72]Prachukho VP. Ozerov ES. Yurinov AA. Burning of magnesium particles in water vapor [J]. Combustion. Explosion, and Shock Waves,1971.7(2): 195-198.
    [73]Prachukho V, Ozerov E. Yurinov A. Burning of magnesium particles in water vapor [J]. Combustion. Explosion, and Shock Waves,1971.7(2):195-198.
    [74]Ozerov E, Yurinov A. Combustion of particles of aluminum-magnesium alloys in water vapor [J]. Combustion, Explosion, and Shock Waves,1977.13(6): 778-780.
    [75]Chozev Y. Fuhs AE, Kol J, Burning Time and Size of Aluminum, Magnesium. Zirconium, Tantalum and Pyrofuze Particles Burning in Stream [C]. AIAA-86-1336.1986.
    [76]Maxwell KL, Hudson MK. Spectral Study of Metallic Molecular Bands in Hybrid Rocket Plumes [J]. Journal of Pyrotechnics,2005. (21):59-69.
    [77]Miller TF, Herr JD, Green Rocket Propulsion by Reaction of Al and Mg Powders and Water [C]. AIAA 2004-4037.2004.
    [78]Miller TF, Garza AB, Finite Rate Calculations of Magnesium Combustion in Vitiated Oxygen and Steam Atmospheres [C]. AIAA-2006-4006.2006.
    [79]Diwan M, DavidHanna, EvgenyShafirovich, et al. Combustion wave propagation in magnesium/water mixtures:Experiments and model [J]. Chemical Engineering Science,2010.65:80-87.
    [80]周星,张炜,李是良.镁粉的高温水反应特性研究[J].固体火箭技术2009.32(3):302-305.
    [81]周俊虎,周楷,杨卫娟,等.镁在水蒸气中高温氧化的动力学特性[J].燃烧科学与技术,2010.16(5):384-387.
    [82]Harrison PL, Yoffe AD. The Burning of Metals [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1961. 261(1306):357-370.
    [83]Gurevich MA, Stepanov AM. Ignition limits of a metal particle [J]. Combustion, Explosion, and Shock Waves,1968.4(2):109-112.
    [84]Gurevich MA, Stepanov AM. Ignition of a metal particle [J]. Combustion, Explosion, and Shock Waves,1968.4(3):188-192.
    [85]Rozenband V, Elizarova V, Olishevets V, et al. Estimation of the minimum energy of ignition of a layer of metal particles ignited by an instantaneous source [J]. Combustion, Explosion, and Shock Waves,1983.19(6):693-698.
    [86]Petukhova EV, Fedorov AV. Ignition of magnesium particles near the end of a shock tube [J]. Combustion, Explosion, and Shock Waves,1991.27(6): 778-780.
    [87]Fedorov AV. Numerical and analytical study of magnesium particle ignition [J]. Combustion, Explosion, and Shock Waves.1996.32(1):64-72.
    [88]Gosteev YA, Fedorov AV. Magnesium-particle ignition (distributed model) [J]. Combustion. Explosion, and Shock Waves,1996.32(4):363-369.
    [89]Gosteev Y, Fedorov AV. Mathematical study of thermal explosion of a magnesium particle with allowance for metal evaporation [J]. Combustion. Explosion, and Shock Waves,1998.34(2):151-158.
    [90]Fedorov AV, Shul'gin A. Conjugate mathematical model of ignition of magnesium samples [J]. Combustion, Explosion, and Shock Waves.2006.42(3): 295-301.
    [91]Coffin KP, Some physical aspects of the combustion of magnesium ribbons [C] 5th Symposium (International) on Cmbustion, Pittsburgh,1955.
    [92]Klyachko L. Combustion of a stationary particle of low-boiling metal [J]. Combustion, Explosion, and Shock Waves,1969.5(3):279-284.
    [93]Law CK. A Simplified Theoretical Model for the Vapor-Phase Combustion of Metal Particles [J].1973.
    [94]Sullivan HF, Glassman I. Vapor-Phase Diffusion Flames in the Combustion of Magnesium, Calcium and Strontium [J]. Combustion Science and Technology. 1971.4(1):241-256.
    [95]Breiter AL, Mal'tsev VM, Popov EI. Models of metal ignition [J]. Combustion. Explosion, and Shock Waves,1977.13(4):475-485.
    [96]Roberts TA. Burton RL, Krier H. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures [J]. Combustion and Flame,1993.92:125-143.
    [97]Mebarki N, Kumar NVR, Blandin JJ, et al. Correlation between ignition and oxidation behaviours of AZ91 magnesium alloy [J]. Materials Science and Technology,2005.21(10):1145-1151.
    [98]Breiter A, Kashporov L. Mal'tsev V. et al. Combustion of individual aluminum-magnesium alloy particles in the flame of an oxidizer-fuel mixture [J]. Combustion, Explosion, and Shock Waves,1971.7(2):186-190.
    [99]Popov EI, Kashporov LY, Mal'tsev VM, et al. Combustion mechanism of aluminum-Magnesium alloy particles [J]. Combustion. Explosion, and Shock Waves,1973.9(2):204-208.
    [100]Varshney BS, Kumar S, Sharma TP. Studies on the burning behaviour of metal powder fires and their extinguishment:Part 1-Mg, Al, Al-Mg alloy powder fires on sand bed [J]. Fire Safety Journal,1990.16(2):93-117.
    [101]Dreizin EL, Shoshin YL, Mudryy RS, et al. Constant pressure flames of aluminum and aluminum-magnesium mechanical alloy aerosols in microgravity [J]. Combustion and Flame,2002.130(4):381-385.
    [102]Shoshin YL, Mudryy RS, Dreizin EL. Preparation and characterization of energetic Al-Mg mechanical alloy powders [J]. Combustion and Flame.2002. 128(3):259-269.
    [103]Shih T-S. Wang J-H, Chong K-Z. Combustion of magnesium alloys in air [J]. Materials Chemistry and Physics.2004.85:302-309.
    [104]Shih T-S, Liu J-B, Wei P-S. Oxide films on magnesium and magnesium alloys [J]. Materials Chemistry and Physics,2007.104:497-504.
    [105]徐光宪.量子化学:基本原理和从头计算[M].科学出版社,北京,1989.
    [106]福井谦一.图解量子化学[M].化学工业出版社,北京,1976.
    [107]封继康.基础量子化学原理[M].高等教育出版社,北京,1987.
    [108]林梦海.量子化学计算方法与应用[M].科学出版社,北京,2004.
    [109]刘靖疆.基础量子化学与应用[M].高等教育出版社,北京,2007.
    [110]Levine IN. Quantum Chemistry (5th Edition) [M]. Prentice Hall, New York. 2000.
    [111]Moller C, Plesset MS. Note on an Approximation Treatment for Many-Electron Systems [J]. Physical Review.1934.46(7):618-622.
    [112]Pople JA, Seeger R, Krishnan R. Variational configuration interaction methods and comparison with perturbation theory [J]. International Journal of Quantum Chemistry,1977.12(S11):149-163.
    [113]Krishnan R, Pople JA. Approximate fourth-order perturbation theory of the electron correlation energy [J]. International Journal of Quantum Chemistry, 1978.14(1):91-100.
    [114]Raghavachari K, Trucks GW, Pople JA, et al. A fifth-order perturbation comparison of electron correlation theories [J]. Chemical Physics Letters,1989. 157(6):479-483.
    [115]Pople JA, Binkley JS, Seeger R. Theoretical models incorporating electron correlation [J]. International Journal of Quantum Chemistry,1976.10(S10): 1-19.
    [116]Pople JA, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]. The Journal of Chemical Physics,1987.87(10):5968-5975.
    [117]Gauss J, Cremer D. Analytical evaluation of energy gradients in quadratic configuration interaction theory [J]. Chemical Physics Letters,1988.150(3): 280-286.
    [118]Cizek J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods [J]. The Journal of Chemical Physics, 1966.45(11):4256-4266.
    [119]Pople JA, Krishnan R, Schlegel HB, et al. Electron correlation theories and their application to the study of simple reaction potential surfaces [J]. International Journal of Quantum Chemistry,1978.14(5):545-560.
    [120]Purvis Iii GD, Bartlett RJ. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples [J]. The Journal of Chemical Physics, 1982.76(4):1910-1918.
    [121]Scuseria GE, Janssen CL, Schaefer Iii HF. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J]. The Journal of Chemical Physics,1988.89(12):7382-7387.
    [122]Scuseria GE, Schaefer Iii HF. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J]. The Journal of Chemical Physics,1989.90(7):3700-3703.
    [123]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review, 1964.136(3B):B864-B871.
    [124]Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review,1965.140(4A):A1133-A1138.
    [125]Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis [J]. Canadian Journal of Physics,1980.58(8):1200-1211.
    [126]Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A,1988.38(6):3098-3100.
    [127]Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988.37(2):785-789.
    [128]Miehlich B, Savin A, Stoll H, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr [J]. Chemical Physics Letters,1989.157(3):200-206.
    [129]Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Physical Review B,1986.33(12):8822-8824.
    [130]Perdew JP, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J]. Physical Review B, 1996.54(23):16533-16539.
    [131]Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B,1992.46(11):6671-6687.
    [132]Becke AD. Density-functional thermochemistry. Ⅰ. The effect of the exchange-only gradient correction [J]. The Journal of Chemical Physics,1992. 96(3):2155-2160.
    [133]Becke AD. Density-functional thermochemistry. Ⅱ. The effect of the Perdew--Wang generalized-gradient correlation correction [J]. The Journal of Chemical Physics,1992.97(12):9173-9177.
    [134]Becke AD. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. The Journal of Chemical Physics,1993.98(7):5648-5652.
    [135]Becke AD. Density-functional thermochemistry. Ⅳ. A new dynamical correlation functional and implications for exact-exchange mixing [J]. The Journal of Chemical Physics,1996.104(3):1040-1046.
    [136]Becke AD. Density-functional thermochemistry. Ⅴ. Systematic optimization of exchange-correlation functionals [J]. The Journal of Chemical Physics,1997. 107(20):8554-8560.
    [137]Boys SF. The Integral Formulae for the Variational Solution of the Molecular Many-Electron Wave Equations in Terms of Gaussian Functions with Direct Electronic Correlation [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1960.258(1294):402-411.
    [138]Collins JB, Schleyer PvR, Binkley JS, et al. Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets [J]. The Journal of Chemical Physics,1976. 64(12):5142-5151.
    [139]Hehre WJ, Stewart RF, Pople JA. Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals [J]. The Journal of Chemical Physics,1969.51(6):2657-2664.
    [140]Ditchfield R, Hehre WJ, Pople JA. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules [J]. The Journal of Chemical Physics,1971.54(2): 724-728.
    [141]Hehre WJ, Ditchfield R, Pople JA. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules [J]. The Journal of Chemical Physics,1972.56(5):2257-2261.
    [142]Binkley JS, Pople JA, Hehre WJ. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements [J]. Journal of the American Chemical Society,1980.102(3):939-947.
    [143]Gordon MS, Binkley JS, Pople JA, et al. Self-consistent molecular-orbital methods.22. Small split-valence basis sets for second-row elements [J]. Journal of the American Chemical Society,1982.104(10):2797-2803.
    [144]Pietro WJ, Francl MM, Hehre WJ, et al. Self-consistent molecular orbital methods.24. Supplemented small split-valence basis sets for second-row elements [J]. Journal of the American Chemical Society,1982.104(19): 5039-5048.
    [145]Francl MM, Pietro WJ, Hehre WJ, et al. Self-consistent molecular orbital methods. ⅩⅩⅢ. A polarization-type basis set for second-row elements [J]. The Journal of Chemical Physics,1982.77(7):3654-3665.
    [146]Rassolov VA, Ratner MA, Pople JA, et al.6-31G* basis set for third-row atoms [J]. Journal of Computational Chemistry,2001.22(9):976-984.
    [147]Petersson GA, Bennett A, Tensfeldt TG, et al. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements [J]. The Journal of Chemical Physics,1988.89(4): 2193-2218.
    [148]Petersson GA, Al-Laham MA. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms [J]. The Journal of Chemical Physics,1991.94(9):6081-6090.
    [149]Clark T, Chandrasekhar J, Spitznagel GW, et al. Efficient diffuse function-augmented basis sets for anion calculations. Ⅲ. The 3-21+G basis set for first-row elements, Li-F [J]. Journal of Computational Chemistry,1983. 4(3):294-301.
    [150]Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets [J]. The Journal of Chemical Physics,1984.80(7):3265-3269.
    [151]穆尔,皮尔逊.化学动力学和历程:均相化学反应的研究[M].科学出版社,北京,1987.
    [152]Schleyer PvR. Encyclopedia of Computational Chemistry [M]. Wiley,1998.
    [153]Gonzalez C, Schlegel HB. An improved algorithm for reaction path following [J]. The Journal of Chemical Physics,1989.90(4):2154-2161.
    [154]Foresman JB. Frisch A. Exploring Chemistry with Electronic Structure Methods,2nd ed [M]. Gaussian, Pittsburgh, PA,1996.
    [155]Ochterski JW. Thermochemistry in Gaussian [M]. Gaussian. Pittsburgh, PA. 2000.
    [156]Curtiss LA, Frurip DJ. Ab initio molecular orbital calculations on beryllium and magnesium atom reactions with water [J]. Chemical Physics Letters,1980. 75(1):69-74.
    [157]Hwang D-Y, Mebel AM. Theoretical Study on the Reaction Mechanism of CO2 with Mg [J]. J. Phys. Chem. A,2000.104:7646-7650.
    [158]Jordan KD, Kurtz HA,1982. Theory of Metal Atom-Water Interactions and Alkali Halide Dimers, Metal Bonding and Interactions in High Temperature Systems. AMERICAN CHEMICAL SOCIETY, pp.377-393.
    [159]Chen Q, Milburn RK, Hopkinson AC, et al. Magnesium chemistry in the gas phase:calculated thermodynamic properties and experimental ion chemistry in H2-O2-N2 Flames [J]. International Journal of Mass Spectrometry,1998.
    [160]Lesar A, Prebil S, Hodoscek M. Enthalpy of the Gas-Phase CO2+ Mg Reaction from ab Initio Total Energies [J]. Journal of Chemical Information and Computer Sciences,2002.42:853-857.
    [161]Yun-lan S, Yan T, Shu-fen L. Theoretical Study on Reaction Mechanism of Aluminum-Water System [J]. Chinese Journal of Chemical Physics,2008.21(3): 245.
    [162]国家标准局,GB4374.8-84,气体容量法测定活性镁及活性铝镁量,1984.
    [163]岑可法.姚强,骆仲泱.高等燃烧学[M].浙江大学出版社,杭州,2002.
    [164]傅维标.燃烧学[M].高等教育出版社,北京,1989.
    [165]雷内·托姆.结构稳定性与形态发生学[M].四川教育出版社,成都,1992.
    [166]何平,赵子都.突变理论及其应用[M].大连理工大学出版社,大连,1989.
    [167]杨成虎,镁在水蒸汽中着火和燃烧特性和机理研究[D].浙江大学2008.
    [168]Steinfeld A, Kuhn P, Reller A, et al. Solar-processed metals as clean energy carriers and water-splitters [J]. Int. J. Hydrogen Energy,1998.23(9):767-774.
    [169]Vishnevetsky I, Berman A, Epstein M. Features of solar thermochemical redox cycles for hydrogen production from water as a function of reactants' main characteristics [J]. International Journal of Hydrogen Energy,2010.36(4): 2817-2830.
    [170]Gavez ME, Frei A, Albisetti G, et al. Solar hydrogen production via a two-step thermochemical process based on MgO/Mg redox reactions Thermodynamic and kinetic analyses [J]. International Journal of Hydrogen Energy,2008.33(12):2880-2890.
    [171]Drozd V, Saxena S, Garimella SV. et al. Hydrogen release from a mixture of NaBH4 and Mg(OH)2 [J]. International Journal of Hydrogen Energy,2007. 32(15):3370-3375.
    [172]Shafirovich E, Diakov V, Varma A. Combustion-assisted hydrolysis of sodium borohydride for hydrogen generation [J]. International Journal of Hydrogen Energy,2007.32(2):207-211.
    [173]Soler L, Macanas J, Munoz M, et al. Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions [J]. International Journal of Hydrogen Energy,2007.32(18):4702-4710.
    [174]Diwan M, Diakov V, Shafirovich E, et al. Noncatalytic hydrothermolysis of ammonia borane [J]. International Journal of Hydrogen Energy,2008.33(4): 1135-1141.
    [175]Diwan M. Hanna D, Varma A. Method to release hydrogen from ammonia borane for portable fuel cell applications [J]. International Journal of Hydrogen Energy,2010.35(2):577-584.
    [176]Douglas MA, Electronic matrix isolation spectroscopic studies of metal atom photochemistry [D]. Rice University 1982.
    [177]Frisch MJ. Trucks GW, Schlegel HB, et al.,2003. Gaussian 03, version c.01 ed. Gaussian, Inc., Pittsburgh, PA.
    [178]Corchado JC, Chuang Y-Y, Fast PL, et al.,2007. POLYRATE, version 9.7 ed, University of Minnesota, Minneapolis.
    [179]Malcolm WC, NIST-JANAF Thermochemical Tables,
    [180]Douglas MA, Hauge RH, Margrave JL. Electronic matrix isolation spectroscopic studies of the group IIA metal-water photochemistry [J]. High Temp. Sci.,1984.17:201-206.
    [181]Kauffman JW, Hauge RH, Margrave JL. Infrared matrix isolation studies of the interactions of Mg, Ca, Sr and Ba atoms and small clusters with water [J]. High Temp. Sci.,1984.18(97):97-118
    [182]Bunker PR, Kolbuszewski M, Jensen P, et al. New rovibrational data for MgOH and MgOD and the internuclear potential function of the ground electronic state [J]. Chemical Physics Letters,1995.239(4-6):217-222.
    [183]Jain SK, Rout C, Rastogi RC. Density functional study of the isomerisation of MOH (M=Be and Mg) [J]. Chemical Physics Letters,2000.331(5-6):547-552.
    [184]Sakai S. Theoretical Studies of Mg('S,3P) Atom Reaction Mechanisms with HF, H2O, NH3. HCl, H2S, and PH3 Molecules [J]. Bull.Chem.Soc.Jpn,1993.66: 3326-3333.
    [185]Wagman DD, Evans WH, Parker VB, et al. The NBS Tables of Thermochemical Properties [J]. Journal of Physical and Chemical Reference Data 1982.11 (Suppl.2).
    [186]Operti L, Tews EC, MacMahon TJ, et al. Thermochemical properties of gas-phase MgOH and MgO determined by Fourier transform mass spectrometry [J]. Journal of the American Chemical Society,1989.111(26): 9152-9156.
    [187]Schulz A. Smith BJ, Radom L. Heats of Formation of Alkali and Alkaline Earth Oxides and Hydroxides:Some Dramatic Failures of the G2 Method [J]. The Journal of Physical Chemistry A.1999.103(37):7522-7527.
    [188]Sullivan MB, Iron MA. Redfern PC, et al. Heats of Formation of Alkali Metal and Alkaline Earth Metal Oxides and Hydroxides:Surprisingly Demanding Targets for High-Level ab Initio Procedures [J]. J. Phys. Chem. A.2003.107: 5617-5630.
    [189]Truhlar DG. Garrett BC. Variational transition-state theory [J]. Accounts of Chemical Research.1980.13(12):440-448.
    [190]Smith GP. Golden DM. Frenklach M, et al.. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.
    [191]Svehla RA. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures [R].1962
    [192]GRIFFIN JL. M.SHERMAN P. Computer Analysis of Condensation in Highly Expanded Flows [J].1965. AIAA-3264-844.
    [193]Pilyugin NN. Nonequilibrium Magnesium-Related Processes in the Wake Behind a Model Moving with Hypersonic Speed in Air [J]. Combustion, Explosion, and Shock Waves,2000.36:72-81.
    [194]Kee RJ, Rupley FM, Miller JA, et al.,2007. CHEMKIN Release 4.1.1. Reaction Design, San Diego, CA.
    [195]Grcar JF. The Twopnt Program for Boundary Value Problems [R]. SAND91-8230,1992
    [196]Andrew EL, Robert JK, Joseph FG, et al. OPPDIF:A Fortran program for computing opposed-flow diffusion flames [R]. SAND96-8243,1997