镁(铝)金属粉的改性及其在金属/水反应推进剂中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速鱼雷是一种新概念武器,其依靠金属与水之间的反应提供能源(动力),具有高能、高速、巡航能力强等优点,是近年来重点发展的水下武器系统。为保证金属/水反应推进剂的能量性能,其配方中固体金属粉含量往往较高,相继带来点火困难、燃烧不充分、贮存性能差等棘手的问题,无法满足推进剂的基本性能要求,因此对该推进剂中金属燃料进行相应的改性处理是解决上述困难的根本途径。本文选取高热值的Al、Mg金属粉作为金属/水反应推进剂的主要燃料,以表面包覆及机械合金化为主要改性手段,在一定程度上解决了金属/水推进剂点火和燃烧困难等问题;此外对金属/水反应推进剂的能量性能进行了全面评估,同时详细讨论了改性后金属/水推进剂的反应机制,为该类推进剂的研究提供了详细的试验数据和坚实的理论基础。
     首先,为了提高Mg粉的水反应活性及其贮存性能,对Mg粉分别进行了两次包覆改性处理,得到了具有核—壳—膜结构的复合金属燃料粉。在一次处理中将常温稳定、水环境中易水解出强酸性物质的材料致密地包覆于微米Mg粒子的表面作为复合粉体的壳,显著提高了Mg粉的水反应活性;为进一步提高该壳—核材料的稳定性和贮存性能,采用不同高聚物对复合粒子进行了二次包覆改性处理。与原料Mg粉比较,所制备的复合金属粉与水反应生成H_2的速率在低温阶段降低,甚至不反应,但高温阶段显著提高,整个反应过程中产生H_2的总量较原料Mg粉提高2.7倍。
     其次,为了提高金属/水反应推进剂的能量性能,并同时改善其点火和燃烧性能,采用机械法进行改性处理,制备出具有较多晶体缺陷的高反应活性片状Al粉及Al/Mg合金粉。热分析结果表明,片状Al粉和Al/Mg合金粉的氧化增重分别达到44.5%和60%,较球形Al粉的23.3%有显著提高,说明机械改性处理可在很大程度上提高金属粉的氧化反应效率。
     第三,将金属粉及其它组分制成金属/水反应推进剂样品,研究了包覆处理以及添加新型氧化剂和纳米催化剂对推进剂热分解的影响。结果表明,当推进剂中Mg粉经HTPB、双基药二次包覆处理后,推进剂样品的放热峰峰温分别约提前了16℃和10℃。而片状Al和Al/Mg(含Mg20%)合金粉代替球形Al粉后,推进剂分解峰峰温分别提前了约26℃和36℃;采用新型氧化剂(ADN)部分取代高氯酸铵(AP)以及添加纳米催化剂也可以使金属/水反应推进剂分解峰峰温提前,这有助于改善金属/水反应推进剂的一次燃烧。
     第四,分析研究了金属/水反应推进剂的能量性能以及燃烧产物。结果表明推进剂的一次燃烧温度随配方中氧化剂——AP含量的增加而增加,7MPa下含Mg推进剂的一次燃烧温度在1600K~2600K之间,高温可使Mg气化;含Al推进剂一次燃烧温度在2000K~2500K之间,一次燃烧产物中Al主要以凝聚态形式存在。增加推进剂配方中的金属粉含量、增大水与推进剂的质量比(水燃比W/F)均可有效增加推进剂的比冲。W/F过小会造成金属燃烧不充分,而过大的W/F会生成金属的氢氧化物,并造成燃烧温度降低。经实验和理论分析得到金属/水反应推进剂的优化配方为:Mg/AP/HTPB≈55/30/15,W/F≈3,此时推进剂的比冲约为3994N·s·kg~(-1),二次燃烧温度为683K;Al/AP/HTPB≈55/30/15,W/F≈3.5,此时推进剂的比冲高达4547N·s·kg~(-1),二次燃烧温度为684K,在这些条件下系统的燃烧温度均大于600K,可以保证推进剂在水下工作时喷出的H_2O为气态。
     第五,对Mg(Al)金属粉与水的反应机理进行了研究。分析认为,新型包覆剂(Tec)主要通过改变反应体系中的pH值来加速低温下金属粉与水的反应速率。高温下Mg(Al)与水反应的燃烧时间主要受水蒸汽的浓度和金属粉的粒径控制。选择合适的W/F、选用适当粒径的金属粉作为燃料,并对金属粉进行改性处理,可以改善金属粉在水蒸气中的燃烧。
The ultrahigh speed torpedo is a new concept in underwater weaponry and it is currently an active area of research. These types of weapons utilize high energy density reaction between metal and water to provide them with superior speed and increased range. However, the high metal content adversely affects the ignition and combustion characteristics of the propellant which are the most important properties of the propellant. This work focuses on the modification of aluminium and magnesium powders and their application in metal/water propellants.
     As a first step in this research, magnesium pellets were modified using vapour and liquid deposition and the technics to improve the reactivity of magnesium with water, as well as the shelf life. The structure of the modified magnesium powder was characterized utilizing scanning electron microscope. It was found that the modified magnesium power had three distinct layers. The modification led to improvement in the control of the magnesium and water reactions under certain conditions. The modified magnesium pellets had little effect on the energy density of the reaction but increased the hydrogen generating ability by 2.7 times.
     The second objective of this project is to improve the ignition and combustion properties of the propellant by incorporating aluminium powder. Aluminium flakes, as well as aluminium/magnesium alloy with variable proportions of magnesium were obtained from spherical aluminium powder using a new type of mill. The modification of these metal powders decreased the ignition temperature of the propellant and improved the oxidation performance. The analysis of the various powders using DSC-TG showed that the weight of the spherical aluminium powder was increased by 23.3% due to the oxidation. Under same oxidation conditions the weight of superfine aluminium flakes and Al/Mg alloy was increased by 44.5% and 60%, respectively.
     The third outcome of this project was that the modification of the metal powder can affect the thermal decomposition temperature of the propellants. Based on the DSC-TG analysis results, the modification of magnesium by the addition of HTPB and double-base propellant decreased the thermal decomposition temperature by 16℃and 10℃, respectively. Similarly, by modifying spherical aluminium to superfine aluminium flakes and aluminium/magnesium alloy (contains 20% magnesium by weight), the thermal decomposition temperature decreased by 26℃and 37℃, respectively. This resulted in more favourable ignition and improved the decomposition characteristics of the propellants. Other experimental results indicated that the addition of the oxidizer ADN and a catalyst deceased the thermal decomposition temperature.
     The combustion energy and products of the Al/H_2O and Mg/H_2O propellants were systematically calculated and analysed. Results showed that the temperature of the first stage of combustion enhanced with increasing AP content. Under 7MPa the combustion temperature of Mg/H_2O propellant was between 1600K and 2600K, which resulted in the vaporization of the magnesium; while for Al/H_2O propellant, the combustion temperature was between 2000K and 2500K, the aluminium existed in the combustion products mainly as the condensed phase. The specific impulse (Isp) can be improved by increasing the proportions of the metal powder in the propellants, or the ratio between water and propellant (W/F). However, if the W/F value is too low, it will result in the incomplete combustion of the metal. Very high W/F ratios result in the formation of metal hydroxide and lower combustion temperatures. The optimized formulas for two propellants were determined to be: Mg/AP/HTPB≈55/30/15, W/F≈3, Isp≈3994N·s·kg~(-1) with the second stage combustion temperature of 683K; Al/AP/HTPB≈55/30/15, W/F≈3.5, Isp≈4547N·s·kg~(-1) with the second stage combustion temperature of 684K. The second stage combustion temperatures above 600K ensured that the water produced by the propellant was completely vaporized.
     The mechanism of Al/Mg and water reaction was explored as part of this project. The results suggested that additive Tec accelerated the reaction under lower temperature mainly by changing the pH of the reaction systems. The water vapour concentration and the metallic powder size are the dominant factors that affect the high temperature combustion reaction time. Under certain conditions, the combustion reaction can be controlled and the propellants combustion characteristics can be improved by the modification of the metal powders.
引文
[1]K.K郭,M.萨默菲尔德 主编.固体推进剂燃烧基础(下册)[M],宇航出版社,北京:1994
    [2]邓佑生主编.中国军事百科全书(火炸药、弹药分册)[M],北京:军事科学出版社:1991
    [3]Armstrong R W,Baschung B,Booth D W,et al.Enhanced Propellant Combustion with Nanoparticles[J].Nano Letters,2003,3(2):253-255
    [4]王桂兰,李疏粉,夏强,等.超细铝粉燃烧性能研究[J].兵工学报:火化工分册,1996,2:24-26
    [5]R.W.Armstrong,B.Baschung,D.W.Booth,et al.Enhanced Propellant Combustion with Nanoparticles[M].Nano Letters,2003,3(2):253-255
    [6]隋同波,王延籍.激光法合成SiC超细粉末物理化学过程的研究-Ⅰ.实验规律及粉末特性[J].硅酸盐通报,1993,(1):33-37
    [7]Chai Liyuan,Zhang Haiyun.Preperation of ultrafine nickel powder[J].Nonferrous Met.Soc.China,1996,6(2):22-25
    [8]Michio N,Sμmio S,Yasukazu S.Liquid-PhaseDehydrogenation of 2-Propanol by Suspended Nickel Fine-Particle Catalyst[J].Bull.Chem.Soc.Jpn.,1988,61(3):961-965
    [9]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001
    [10]Ivanov,G V,Ivanov,V G,Surkov,V G et al;Nanosize electro-explosion powders:assessment of safety in the production and application[C],NATO Sci.Set.1999,26(Prevention of Hazardous Fires And Explosions):329-340
    [11]vanov,G V,Yepper,F.Activated aluminum as a stored energy source for propellants;Challenges In Propellants And Combustion 100 Years After Nobel[C],edited by K.K.Kuo,et al.,1977:636-645
    [12]Volokitin Y,Sinzig J.Quantum-size effects in the thermodynamic properties of metallic nanoparticles[J].Nature,1996,384(6610):621-623.
    [13]Ismail I,Hawkins M K.Evaluation of electro-exploded aluminum(Alex)for rocket propulsion[C].CPIA Publication 650,1996,2:25-39,
    [14]Tepper F,Ivanov G,Lemer M,et al;Energetic formulation from nanosize metal powders[C],Pro.Int.protech.Semin 1998,24th,519-530
    [15]李志杰,曲家惠,左良,等.金属纳米粉材料的研制[J].东北大学学报(自然科学版),2004,25(3):243-246
    [16]李凤生.超细粉体技术[M].北京:国防出版社,2000
    [17]潘家祯,田萧岩.超细粉碎技术概述[J].化工设备与防腐蚀,2000,(1):19-21
    [18]袁诚,何煜.振动磨法制备金属颜料[J].涂料工业,1999,(3):18-20
    [19]赵云普,柴修成,才安等.振动磨(干法)磨制片状(超)细铝粉的原理与实验[C].2003年全国粉体设备技术产品信息交流大会
    [20]袁惠新,俞建峰.超微粉碎的理论、实践及其对食品工业发展的作用[J].包装与食品机械,2001,19(1):5-10
    [21]Linderoth S,Pedersen M S.Fe-Al_2O_3 Nanocomposites preparedby high-energy ball milling[J].Appl Phys,1994,75(10):5867-5869.
    [22]张国旺,黄圣生.超细粉体制备技术的应用和发展[J].化学矿物与加工,2001,(12):1-3
    [23]王洪海.合金粉末的生产与应用[J].粉末冶金工业,1994,20(2):52-57
    [24]田中贵将,菊池雄二,小野宪次.高速气流冲击式粉体表面改性装置-HYBRIDIZATION系统及应用[J].化工进展,1993(4):10-20
    [25]刘波,庄志强,刘勇,等.粉体的表面修饰与表面包覆方法的研究[J].中国陶瓷工业,2004,11(1):50-54
    [26]盛祖芳.粉体表面改性新进展.塑料加工,2001,37(6):11-15
    [27]Ivanov G V,Tepper F,Piehler H.Self Propagating sintering of nanosize powders advances in powder.Metallurgy and Particulate Materials,1996,3(11):445-451
    [28]廷明,李凤生.包覆式超细复合粒子的制备[J].火炸药学报,2000(1):33-35
    [29]亭杰,堤敦司,金涌.用石蜡-CO2超临界流体快速膨胀在流化床中进行细颗粒包覆[J].化工学报,2001.52(1):51-55
    [30]Frank C.Nanoengieering of Particle Surfaces[J].Advanced Matericals,2001,13(1):11-22
    [31]崔洪涛.颗粒表面包覆的研究[D].中国科学院长春应用化学研究所博士学位论文,2002
    [32]L.M.Liz-Marzan,M.Giersig,P.Mulvaney,Synthesis of Nanosized Gold-Silica Core-Shell Particles,Langmuir,1996,12,4329 - 4335
    [33]S.J.Oldenburg,R.D.Averitt,S.L.Westcot,N.J.Halas,Nanoengineering of optical resonances[J],Chem.Phys.Let.1998,288,243-247
    [34]杨毅,李凤生,刘宏英.金属铝粉表面纳米膜包覆[J].中国有色金属学报,2005,15(5):716-720
    [35]刘辉,叶红齐,陈子路,等.丙烯酸原位聚合包覆对颜料铝粉耐腐蚀性能的影响[J].材料保护,2006,39(10):8-11
    [36]张凯,傅强,范敬辉,等.纳米铝粉微胶囊的制备及表征[J].含能材料2005,13(1):4-6
    [37]Fred T,Vladimir L.Ageing Characterisitics Alex Nanosize Aluminum[C].AIAA 2001-3287
    [38]韩爱军,叶明泉,马明.Al/TiO_2超细复合粒子制备研究[J].化学世界,2006,11:650-652
    [39]韩爱军,刘永峙,叶明泉.Al/NiO复合粒子的制备与表征[J].精细化工,2005,22(12):881-883
    [40]刘永峙,韩爱军,叶明泉.均匀沉淀法制备Al/ZnS复合粒子[J].化工进展,2004,23(9):990-992
    [41]程志鹏,杨毅,刘小娣,等.置换法制备核壳结构Cu/Al复合粉末[J].化学学报,2007,65(1):81-85
    [42]程志鹏,杨毅,刘小娣,等.核壳结构纳米Ni/Al复合粉末的制备[J].纳米科技.2006,4:63-66
    [43]Kwon Y S,Ilyin A P,Nazarenko O B.Electric Explosion of Wires in Multicomponent Reacti-onary LiquidAmbiences as Method for Producing Nanopowder of Complex Composition[C].IEEE 0-7803-8943-3/05,2005
    [44]Gray J E,Luan B.Protective coatings on magnesium and its alloys-a critical review[J].Journal of Alloys and Compounds,2002,336:88-113
    [45]李卫平,朱立群.镁及其合金表面防护性涂层国外研究进展[J].材料保护,2005,38(2):41-46
    [46]Kurze,Kerpen P.Chromium-free surface treatment of magnesium-based materials [J].Galvanotechnik,2002,93(2):390-395
    [47]Shimajiri Y,Nakata S,Aono,et al.Communications:Chemical conversion treatment of magnesium alloys in non-chromium solution[J].Hyomen Gijutsu,2001,52(6):469-470
    [48]Tomlinson C E.Conversion coatings for metals using group Ⅳ-Zmetals in the presence of little or no fluoride and little or no chromium[P].USP:5952049,1999
    [49]Bronfin B,Polyak N,Aqhion E,et al.Application ofmagoxide method for cleanliness evaluation of magnesium alloys[A].TMS Annual Meeting[C].Seattle:[s.n.],2002.55-60
    [50]Shigematsu I,Nakamura M,Siatou N,et al Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating[J].J Mater Sci Lett,2000(19):473-475
    [51]江治,李疏芬,赵凤起,等.纳米金属粉对HMX热分解特性的影响[J].推进技术,2002,23(3):258-261
    [52]赵凤起,陈沛,杨栋,等.纳米金属粉对RDX热分解特性的影响[J].南京理工大学学报,2001,25(4):420-423
    [53]曹新富.纳米金属钴及其复合粉的制备与催化性能研究[D].南京理工大学硕士论文,2005
    [54]刘磊力.纳米金属及复合金属粉的制备及其催化性能的研究[D].南京理工大学博士论文,2004
    [55]陈沛,赵凤起,杨栋,等.纳米级金属粉对GAP热分解特性的影响[J].推进技术,2000,21(5):73-76
    [56]张端庆.火药用原材料性能与制备[M].北京:北京理工大学出版社,1995
    [57]顾学民,龚毅生,汤卡罗.无机化学丛书(第二卷)[M].北京:科学出版社,1998
    [58]张君远.金属推进燃料的研究进展[J].推进技术,1981,3(5):66-74
    [59]陈舒林,李风生.火药设计与制造[M].兵器工业教材编审室出版,1987
    [60]H.E.R.Schoyer,A.J.Schnorhk..Frist experiment results of an HFN/Al/GAP solid rocket propellant[C].AIAA 97-36339
    [61]钟一鹏.铝粉在火炸药、烟火剂中的应用.火工品[J],1995,1:30-33
    [62]Abraham S.,Hadassah A.,Moshe K.,et at.The effect of nanosized aluminum on composite propellant properties[C].AIAA 2005-3604
    [63]谢剑宏,焦继革,胡昭志等.国外纳米铝粉应用推进剂研究进展[J].化学推进剂与高分子材料,2002,5(89):15-17
    [64]江治,李疏芬,李凯,等.含纳米金属粉的推进剂点火实验及燃烧性能研究[J].固体火箭技术,2004,27(2):117-120
    [65]Mench M.M.,et al.Propellant Burning Rate Enhancements and Thermal Behavior of Ultra-fine Powder(ALEX)[A].29th int.Annu.Conf.Of ICT[c],1998
    [66]张明,梁彦,唐庆明.纳米铝粉在固体推进剂中的应用[J].火箭推进,2006,32(1):35-39
    [67]Roland.Characterition of Electro-explode Aluminum(ALEX)[A].29th int.Annu.Conf.Of ICT[C],1998
    [68]Tepper,et al.Internetallic Alloy Formation from Nanosize Metal Powder Produced by Electro-exploding Wires[A].1996 World Congress on Metallurgy and Particulate Materials[C],Washington D C
    [69]Fang Chong,Li Shufen.Experimental research of the effects of superfine aluminum powders on the combustion characteristics of NEPE propellants[J].Propellants,Explosives,Pyrotechnics,2002,27(1):34-38.
    [70]李颖,宋武林,谢长生,等.纳米铝粉在固体推进剂中的应用进展[J].兵工学报.2005,26(1):121-125
    [71]Ivanov V G.,Gavrilyuk O V,et al.Special features of the reation of ultrafine aluminum powder with water in the combustion regime[J].Fizika Goreniya Ivzryna,1999 36(2):60-66
    [72]牛和林,朱济,李疏芬.超细铝粉对NEPE推进剂燃烧性能的影响[J].飞航导弹,2001,(4):52-54
    [73]李疏芬,金乐骥,等.铝粉粒度对含铝推进剂燃烧性能的影响[J].含能材料,1996,4(2):68-74
    [74]Grant A R,Ying Huang,Richard A.et al.Experimental Investigation of Aluminum Particle Dust Cloud Combustion[C].AIAA 2005-0739
    [75]Brian E,Nicholas A.Favorito,et al.Characterization of Nano-Sized Energetic Particle Enhancement of Solid-Fuel Burning Rates in an X-RayTransparent Hybrid Rocket Engine[C].AIAA 2004-3821
    [76]胥会祥,蔚红建,樊学忠,等.富燃料推进剂的研制现状及展望[J].飞航导弹,2005,1:48-53
    [77]张炜,朱慧,方丁酉.固体贫氧推进剂研究[J].火炸药学报,2002,1:25-28
    [78]胥会祥,赵凤起.镁铝富燃料推进剂燃烧残渣影响因素理论分析[J].固体火箭技术,2006,29(3):200-203
    [79]张炜,方丁酋,朱慧等.镁铝贫氧推进剂的能量分析[J].固体火箭技术,1998,21(4):31-35
    [80]胥会祥,张晓宏,蔚红建,等.Mg/Al比对镁铝富燃料推进剂能量和燃烧特性影响研究[C],第21届宇航学会论文集,2004
    [81]张杰,贺俊,邹彦文.固体颗粒表面改性及其在推进剂领域中的应用研究[J].哈尔滨工业大学学报,2004,36(9):1147-1152
    [82]吕公连,张小平,杜磊,等.自组装单分子膜技术在推进剂中的应用[J].推进技术,2001,22(5):476-440
    [83]李凤生,丁中建,刘宏英,等.纳米微米粉体填料对推进剂浆料特性的影响[J].推进技术,2003,24(4):376-379
    [84]Lee W M.Aluminum Powder/Water Reaction Ignited by Electrical Pulsed Power[C].AD A269223
    [85]胡凡,张为华,夏智勋,等.水反应金属燃料发动机比冲性能与燃烧室长度设计理论研究[J].固体火箭技术,2007,30(1):12-16
    [86]缪万波,夏智勋,方丁酉,等.金属/水反应冲压发动机三维内流场数值模拟[J].固体火箭技术2007,30(2):102-105
    [87]李芳,张为华,张炜等.铝基水反应金属燃料性能初步研究[J].固体火箭技术,2005,28(4):256-259
    [88]IngenitoA,Bruno C.Using Aluminum for Space Propulsion[J].Propulsion and Powder,2004,20(6):1056-1063
    [89]GreinerL.Selection of high-performance propellants for torpedoes[J].ARSJ.1960,30:1161-1163
    [90]Kiely D H.Review of Underwater Thermal Propulsion[C].AIAA 94-2837
    [91]Foot J P,Lineberry J T,Thompson B R,et al.Investigation of Aluminum Particle Combustion for Under Propulsion Applications[C].AIAA 96-3086
    [92]Foot J P,Thompson B R,Lineberry J Y.Combustion of aluminum with Steam for Under Propulsion[C].Advances in Chemical Propulsion,133-146
    [93]查志武.鱼雷动力技术发展展望[J].鱼雷技术,2005,13(1):1-4.
    [94]郑邯勇.铝水推进系统的现状与发展前景.舰船科学技术,2003,25(5):24-25
    [95]赵卫兵,史小锋,伊寅.水反应金属燃料在超高速鱼雷推进系统中的应用.火炸药学报,2006,29(5):53-56
    [96]罗凯,党建军,王育才等.金属/水冲压发动机系统性能估算[J].推进技术,2004,25(6):495-498
    [97]李芳,夏智勋,张为华,等.水/金属燃料发动机水滴蒸发非傅里叶效应研究[J].固体火箭技术,2005,28(3):169-171
    [98]Lee W W.Launching projectiles with hydrogen gas generate from aluminum fuel powder/water reactions[P].USP:5052272.
    [99]李是良,张炜,朱慧,等.水冲压发动机用金属燃料的研究进展[J].火炸药学报,2006,(29)6:69-73
    [100]Vasilev A V.The effect of certain additives on critical diameter and combustion rates of mixtures of aluminum with gelled water[C].ADA000210
    [101]张运刚,庞爱民,张文刚,等.金属基燃料与水反应研究现状及应用前景.固体火箭技术,2006,29(1):52-55
    [102]郑邯勇,王永昌.铝水反应机理的实验研究与分析[J].舰船科学技术,2005,27(3):81-83
    [103]Mench,M.M;Comparison of the thermal behavior of regular and ultra-fine aluminum;Combustion science and technology[J],1998,135:269-292,
    [104]Ivanov V G,Leono S N,et al.Combustion of Mixtures of Ultradisperse Aluminum and Gel-like Water[J].Combustion,Explosion and Shock Waves,1994,30(4):123-134
    [105]Miller T F,Herr J D.Green Rocket Propulsion by Reaction oral and Mg Powder and Water[C]. AIAA 2004-4037
    [106]Gorbunov V V.Combustion of mixtures high-calorific metal powders and water[C].AD-771789.
    [107]Kol J,Fuhs A E.Experimental investigation of aluminum combustion in steam[C].AIAA 85-0323.
    [108]Brooks K P,Becksted M W.Dynamics of Aluminum Combustion[J].Propulsion and Powder,1995,11(4):769-780
    [109]Olsen,S.E.,Beckstead,M.W..Burn time measurements of single aluminum particles in steam and CO_2 mixtures[J].Propulsion and Power,1996,12(4):662-670
    [110]Becksead M W,A Summary of Aluminum Combustion[C].AD-A425147
    [111]Anatoli Z,Genadiy K,Viadimir K.Physics of Aluminum Particle Combustion at Ultrasonic Levitation[C].AIAA 2001-0472
    [112]Goroshin S,Higgins A J.Powdered Magnesium-Carbon Dioxide Propulsion Concepts for Mar Missions[C].AIAA 99-2408
    [113]Yetter R A,Dryer F L.Mental Particle Combustion and Classification,Mico-gravity Combustion:Fire in Free Fall[C].Academic Press,2001:419-487
    [114]李芳,张为华,张炜,等.铝基水反应金属燃料性能初步研究[J].国防科技大学学报.2005,27(4):4-7
    [115]Miller T F,Walter J L,and Kielv D H.A Next-Generation AUV Energy System Based on Aluminum-Seawater Combustion[C].IEEE 0-7803-7572-6,2002
    [116]Risha G A,Ying H,Yetter R A,et al.Experimental Investigation of Aluminum Particle Dust Cloud Combustion[C].A1AA 2005-0739
    [117]周杰,王树宗.超空泡鱼雷推进系统相关问题设计初探[J],鱼雷技术.2006,14(5):27-30
    [1]赖雪飞,游贤贵,谢克难,等.金属包履型复合粉末的研究进展[J].四川有色金属,2005,9:24-28
    [2]谢致薇,蒙继龙,王国庆.物理气相沉积薄膜的界面与附着力[J].真空科学与技术,2001,21(3):203-209
    [3]金涌等.流态化工程原理[M].北京:清华大学出版社,2001
    [4]黄敏.超细颗粒膜包覆技术及装置研究--流化床喷雾热解法和流化床化学气相沉积法[D].南京理工大学硕士论文,2004
    [5]史建明.纳米碳酸钙的分散和聚合物包覆[D].浙江大学博士论文,2005
    [6]Lu Yeu-Chemg,Kenneth K.Kuo.Thermal Decomposition study of Hydroxyl-terminated Polybutadiene(HTPB) Solid Fuel[J].Thermochimica Acta,1996,275:181-191
    [7]顾学民,龚毅生,汤卡罗.无机化学丛书(第二卷)[M].北京:科学出版社,1998
    [1]李凤生.超细粉体技术[M].北京:国防出版社,2000
    [2]朱骥良.颜料工艺学[M],北京:化学工业出版社,1989
    [3]夏书标,舒波,蔡晓兰.片状铝粉制备过程中助磨剂的研究[J].材料保护,2006,39(3):46-48
    [4]袁诚.铝粉颜料性能及应用[J].涂料与应用,1992,22(4):40-43
    [5]黄淑芹.铝颜料的国外状况[J].中国涂料,1994,(2):44-48
    [6]叶红齐,杨鹰,周涛.颜料用片状粉体[J].国外建材科技,2004,25(4):32-34
    [7]舒波,夏书标,蔡晓兰,等.片状铝粉制备的研究[J].南方金属,2006,3:21-23
    [8]陆必志,陈振兴,黄巧萍,等.纳米片状铝粉的制备及其发展动态[J].粉末冶金工程,2004,14(2):39-42
    [9]宋晓辉,孙宝明,吴亚光.磨制铝粉工艺中物料的动态平衡研究[J].轻合金加工技术,2004,32(1):23-24
    [10]付义平,李凤生,付廷明,等.闪光铝粉颜料的制备研究[J].轻合金加工技术,2005,33:33-36
    [11]吴明珠.助磨剂的应用及其作用机理[J].化工矿山技术,1987,16(1):28-32
    [12]宋晓辉,石广福,韩书超.磨制铝粉所用添加剂的研究.轻合金加工技术,2002,30(5):41-42
    [13]张川,夏书标,舒波,等.铝银浆制备中助剂的作用机理研究.金属功能材料,2006,13(3):38-40
    [14]Yuriy L,Shoshin,RuslanS,et al.Preparation and Characterization of Energetic Al-Mg Mechanical Alloy Powders[J].Combustion and Flame,2002,128:259-269
    [15]Trunov M A,μmbrajkar S M,Schoenitz M,et al.Oxidation and Melting of Aluminum Nanopowders[J].Phys.Chem.B,2006,110:13094-13099
    [16]Rozenband V I,VaganovaN I.A strength model of heterogeneous ignition of metal particles [J].Combust and Flame,1992,88:113-118
    [17]Ermakov V A,Razdobreer A A,Skorik A I,et al.Temperature of Aluminum particles at the Time of Ignition and Combustion[J].Combustion Explosion and Shock Waves,1980,18(2):256-257
    [18]Risha G A,Ying H,Yetter R A,et al.Experimental Investigation of Aluminum Particle Dust Cloud Combustion[C].AIAA 2005-0739
    [1]罗凯,党建军,王育才,等.金属/水反应水冲压发动机系统性能估算[J].推进技术,2004,25(6):495-498
    [2]李是良,张炜,朱慧,等.水冲压发动机用金属燃料的研究进展[J].火炸药学报,2006,29(6):69-73
    [3]Kiely D H.Review of Underwater Thermal Propulsion[C].AIAA 94-2837
    [4]胡凡,张为华,夏智勋,等.水反应金属燃料发动机比冲性能与燃烧室长度设计理论研究[J].固体火箭技术,2007,30(1):12-16
    [5]张运刚,庞爱民,张文刚,等.金属基燃料与水反应研究现状及应用前景[J].固体火箭技术,2006,29(1):52-55
    [6]缪万波,夏智勋,方丁酉,等.金属/水反应冲压发动机三维内流场数值模拟[J].固体火箭技术2007,30(2):102-105
    [7]李芳,张为华,张炜,等.水反应金属燃料能量特性分析[J].固体火箭技术,2005,28(4):256-259
    [8]Miller T F,Herr J D.Green rocket propulsion by react ion of A1 and Mg powders and water[C],A IAA:2004-4037
    [9]Foot J P,Lineberry J T,Thompson B R,et al.Investigation of Aluminum Particle Combustion for Under Propulsion Applications[C].AIAA 96-3086
    [10]Risha G A,Ying H,Yetter R A,et al.Experimental Investigation of Aluminum Particle Dust Cloud Combustion[C].AIAA 2005-0739
    [11]刘磊力.纳米金属及复合金属粉的制备及其催化性能的研究[D].南京理工大学博士论文,2004
    [12]黄洪勇.高能氧化剂二硝酰胺铵研究进展[J].上海航天,2005,4:31-35
    [13]Yang R,Thakre P,Yang V.Thermal Decomposition and Combustion of Ammonium Dinitramide(Review),Combustion,Explosion,and Shock Waves[J],2005,41(6):657-679
    [14]Walter H B.Prolysis Studies of Polymerc Materials Used as Binders in Composite Propellants:A Review[J].Combustion and Flame,1987,70:171 - 190
    [15]Chen J K,Brill T B.Chemistry and Kinetics of Hydroxyl-terminated Polybutadiene(HTPB)and Diisocyanate-HTPB Polymers during Slow Decomposition andCombustion-like Conditions[J].Combustion and Flame,1991,87:217-232
    [16]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].北京:北京理工大学出版社,1997
    [17]刘继华.火药物理化学性能[M].北京:北京理工大学出版社,1997
    [1]Brzustowski T A,Glassman I.Spectroscopic Investigation of Metal Combustion[J].Heterogeneous Combustion,Academic Press,New York,1964,pp 41-74.
    [2]Abhibit Modak.Detail Numerical Simulation of an Isolated Droplet/Particle Combustion with Applications to Combustion of Metals[D].University of Pune,1998
    [3]傅献彩,沈文霞,姚天杨.物理化学(第四版下册)[M].北京:高等教育出版社,1990
    [4]顾学民,龚毅生,汤卡罗.无机化学丛书(第二卷)[M].北京:科学出版社,1998
    [5]K.K.郭,M.萨默菲尔德主编.朱贵荣,于广经,廉茂林等译.固体推进剂燃烧基础(下册)[M],宇航出版社,北京:1994
    [6]Abbud M A,Modak A,Branch M C.Combustion of Metals in Reduced Gravity ADN Extraterrestrial Environments[C].NA SA:2003-212376,169-172
    [7]Shafirovich E Y,Goldshleger U I.Combustion of Magnesium Particles in CO_2/CO Mixtures[J].Combustion Science and Technology,1992,84:33-43
    [8]Edward L D,Charles H.Berman,and Edward P.Vicenzi.Condensed-Phase Modifications in Magnesium Particle Combustion in Air[J].Combustion and Flame,2000,122:30-42
    [9]Brewer L,Proter R.A Thermodynamic ADN Spectroscopic Study of Gaseous Magnesium Oxide[J].Chemical Physics,1954,22(11):1867-1877
    [10]Miller T F,John D Hr.Green Rocket Propulsion by Reaction of A1 and Mg Powders and Water[C].AIAA2004-4037
    [11]胡凡,张为华,夏智勋,等.水反应金属燃料发动机比冲性能与燃烧室长度设计理论研究[J].固体火箭技术,2007,30(1):12-16
    [12]Brooks K P,Beckstead M W.Dynamics of Aluminum Combustion[J],Journal of Propulsion and Power,1995,11(4):69-780.
    [13]Olsen S E,Beckstead M W.Bum Time Measurements of Single Aluminum Particles in Steam and Carbon Dioxide Mixtures[J].Propulsion & Power,1996,12(4):662-671.
    [14]刘冠鹏,李凤生,郭效德.铝粉燃料与水反应的研究进展.固体火箭技术.2007,30(2):138-141.
    [15]Ying H,Cirant A,Vigor Y,et al.Analysis of Nano-Aluminum Particle Dust Cloud Combustion in Different Oxidizer Environment[C].AIAA 2005-0738
    [16]Bruno C,Ingenito A,Cuoco F.Using powdered Aluminum for Space propulsion[J/OL].
    [17]Widener J F,Beckstead M W.Aluminum Combustion Modeling in Solid Propellant Combustion Products[C].AIAA 98-3824
    [18]Beckstead M W.A Summary of Aluminum Combustion[C].AD-001656,2004
    [19]李芳,张为华,张炜,等.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,24(4):4-7