镁基燃料水冲压发动机理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水冲压发动机属新概念推进系统,采用高能金属燃料,利用海水作为氧化剂,具有比冲高、结构简单和安全性好等优点,是满足未来水中兵器高航速和远航程的最佳动力系统。本文以镁基燃料水冲压发动机为研究对象,采用理论分析、数值模拟和试验研究相结合的方法,对发动机工作过程及性能开展系统研究,实现了发动机稳定工作,提高了发动机性能,为发动机设计提供了理论基础。
     在分析水冲压发动机工作过程基础上,建立了发动机热力循环模型,应用热力计算方法研究了金属燃料配方、工作参数及凝相产物对发动机理论性能的影响,分析了壅塞式和非壅塞式发动机构型性能调节能力,重点研究了非壅塞式构型性能调节特点和规律。
     建立了镁基燃料水冲压发动机一维两相多组分反应流计算模型,推导了镁水化学反应动力学模型,进行了发动机流场一维数值模拟,通过与试验结果对比分析,对程序有效性进行验证并修正模型,分析了稳态工作时发动机一次和两次进水流场特性,为在设计阶段快速获得性能参数提供了研究手段。
     建立了发动机内三维多相湍流仿真模型,开展了发动机内流场三维数值模拟研究,分析了一次与两次进水后发动机内燃烧流动过程,将仿真结果与试验测量结果比较,验证了模型正确性,为研究发动机构型及工作参数对性能影响提供了理论基础。
     通过发动机内三维数值模拟,研究了进水量、射流速度、进水孔数、雾化液滴直径、进水位置及发动机结构等因素对发动机性能的影响,得到不同构型和进水参数下发动机内流场分布及性能变化规律,为合理设计发动机和提高发动机性能提供了理论依据。设计了水冲压发动机试验系统及发动机,提出了工作参数设计及试验数据处理方法,通过试验研究了镁基燃料一次燃烧性能,实现了发动机进水后稳定工作,研究了四种发动机构型、一次水燃比和燃速等对发动机工作过程和燃烧效率的影响,进行了发动机两次进水试验,显著提高了发动机性能,试验结果为水冲压发动机研制与应用提供了重要技术支撑。
     本文研究成果将促进镁基燃料水冲压发动机应用技术的发展,对未来高速水中兵器动力系统研究具有重要理论价值和工程实践意义。
Water ramjet as a new concept propulsion system takes high-energy metal fuel and uses water as oxidizer. For merits of high specific impulse, simple structure and good safety, it is the best propulsion system for the future subaqueous weapon of high speed and long voyage. In this dissertation, focusing on the magnesium-based fuel water ramjet, the operation process and the performance of the engine are investigated systematically using the method of theory analysis, numerical simulation and experiment. The stable operation of the engine is achieved, and the performance is improved remarkably. The results can provide theoretical basis for the design of water ramjet.
     Based on the analysis of the operation process of water ramjet, the model of thermal cycling is established. The influences of metal fuel composition, work parameters and condensation phase product on the theoretical performance are researched by thermal calculation. The ability of performance adjustment of the choked and unchoked water ramjet is analyzed, and the unchoked water ramjet is studied in detail.
     The 1-D, two phases, multi species and reacting flow model of magnesium-based fuel water ramjet is established, and the chemical dynamics model of magnesium-water is derivated. The flow field of the engine is calculated based on the 1-D simulation model. Through comparing the calculation results with the experiment results, the validity of program is validated and the model is modified. The characteristic of the flow field is analyzed when the engine operates stably after once and twice water injection. The program can provide research means for obtaining performance parameter quickly at the design stage.
     The 3-D numerical simulation of magnesium-based water ramjet is developed based on the 3-D, multi-phase turbulent simulation model. The process of combustion and flow after once and twice water injection in the engine is analyzed. The model is validated by the experiment results, and it is the theoretical basis for investigating the influences of structure and work parameters on the performance of water ramjet.
     The variety law of the performance and the distribution of the flow field for the water ramjet are obtained through 3-D numerical simulation under different work parameters such as water injection mass, velocity, position, number of the orifice, the diameter of the atomization droplet and the structure of the water ramjet. The results can provide theoretical basis for designing the engine reasonably and improving the performance.
     The engine and the system for water ramjet experiment are designed, and the method of the operation parameter design and experiment data handling are also presented. The once combustion performance of magnesium-based fuel is surveyed through the experiment. After realizing the stable work of the experiment engine, the influence that four structures of the engine, once water/fuel ratio, and the burn rate of the fuel make on operation process and the combustion efficiency of the engine are researched. The experiment of twice water injection is developed, and as a result the performance of the experiment water ramjet is improved remarkably. The experiment results can provide important technical support for manufacturing and applying the water ramjet.
     The conclusions achieved in the dissertation will surely promote the application of the magnesium-based water ramjet. Therefore the research will be of great theoretical value as well as engineering practice meaning for the propulsion of the future high speed subaqueous weapon research.
引文
[1]查志武.鱼雷动力技术发展展望[J].鱼雷技术,2005,13(1).
    [2]宋伟峰.超空泡技术将改变海战模式[J].舰载武器,2003(2).
    [3] L. Greiner. Selection of High-Preformance Propellants for Torpedoes[J]. ARS J,1960(30):1161-1163.
    [4] D. H. Kiely. Reciew of Underwater Thermal Propulsion[R]. AIAA 94-2837.
    [5] D. R. Stinbring,R. B. Cook,J. E. Dzielski,et al. High-Speed Supercavitating Vehicles[R]. AIAA 2006-6441.
    [6]郑邯勇.铝水推进系统现状与发展前景[J].舰船科学技术,2005,25(5).
    [7]张运刚,庞爱民,张文刚.金属基燃料与水反应研究现状与应用前景[J].固体火箭技术,2006,29(1).
    [8]李是良,张炜,朱慧.水冲压发动机用金属燃料的研究进展[J].火炸药学报,2006,29(6).
    [9]张文刚,刘建红,肖金武.水冲压发动机用金属基燃料技术研究进展[C].冲压发动机交流会论文集,2005.
    [10]王建儒,任全彬,陆贺建.水冲压发动机原理性研究[C].中国宇航学会固体火箭推进第22届年会论文集,2005.
    [11] T. F. Miller,J. D. Herr. Green Rocket Propulsion by Reaction of Al and Mg Powders and Water[R]. AIAA 2004-4037.
    [12] J. A. Linnell,T. F. Miller. A Preliminary Design of A Magnesium Fueled Martian Ramjet Engine[R]. AIAA 2002-3788.
    [13]田维平,蔡体敏,陆贺建.水冲压发动机热力计算[J].固体火箭技术,2006,29(2).
    [14]赵卫兵,史小锋,伊寅.水反应金属燃料在超高速鱼雷推进系统中的应用[J].火炸药学报,2006,29(5).
    [15]罗凯,党建军,王育才等.金属/水反应水冲压发动机系统性能估算[J].推进技术,2004,25(6).
    [16]李芳,张为华,张炜.铝基水反应金属燃料性能初步研究[J].国防科技大学学报,2005,27(4).
    [17]李芳,王中伟,张为华.水反应金属燃料能量特性分析[J].固体火箭技术,2005,28(4).
    [18]缪万波,夏智勋,胡建新等.金属/水反应冲压发动机概念研究[C].冲压发动机交流会论文集,2005.
    [19]缪万波,夏智勋,郭健.金属/水反应冲压发动机理论性能计算与分析[J].推进技术,2005,26(6).
    [20]陈思远,徐旭.水冲压发动机性能评估[C].中国宇航学会固体火箭推进第23届年会论文集,2006.
    [21]何洪庆,潘洪亮,姚娜.海水固冲发动机性能初估[C].冲压发动机交流会文集,2005.
    [22]蒋雪辉,李亿民,宋晓伟.水冲压发动机性能计算方法[C].冲压发动机交流会文集,2005.
    [23]李智欣,汤龙生,凌文辉.水冲压发动机系统几种工况下的能量计算[C].冲压发动机交流会文集,2005.
    [24]田维平,蔡体敏,孙展鹏等.水冲压发动机掺混燃烧数值分析[J].固体火箭技术,2007,30(1).
    [25]缪万波,夏智勋,胡建新等.金属/水反应冲压发动机内流场数值模拟[J].推进技术,2007,28(2).
    [26]缪万波,夏智勋,方丁酉等.金属/水反应冲压发动机三维内流场数值模拟[J].固体火箭技术,2007,30(2).
    [27]李芳,张为华,王中伟等.水反应金属燃料发动机发动机三维两相燃烧数值模拟[J].固体火箭技术,2007,30(5).
    [28]李芳,张为华,夏智勋.水反应金属燃料发动机二维多相燃烧数值模拟[J].燃烧科学与技术,2007,13(6).
    [29] E. Y. Shafirovich,U. I. Goldshleger. Combustion of Magnesium Particles in Carbon Dioxide and Monoxide[R]. AIAA 95-2992.
    [30] A. Abbud-Madrid,M. C. Branch,J. W. Dialy. On the Burning Behavior of Radiatively Ignited Bulk Titanium and Magnesium in Low Gravity[R]. AIAA 96-0262.
    [31] A. Abbud-Madrid,C. Stroud,P. Omaly,M. C. Branch. Combustion of Bulk Magnesium in Carbon Dioxide under Reduced-Gravity Conditions[R]. AIAA 99-0695.
    [32] B. Legrand,E. Shafirovich,M. Marion,et al. Studies on the Burning of Levitated Magnesium Particles in CO2[R]. AIAA 98-1026.
    [33] S. Goroshin,A. J. Higgins,J. H. S. Lee. Powdered Magnesium-Carbon DioxidePropulsion Concepts for Mars Missions[R]. AIAA 99-2408.
    [34] C. Dreyer,J. Daily,A. Abbud-Madrid,M. Branch. PLIF Measurements of Magnesium Oxide During Combustion of Magnesium[R]. AIAA 2001-0788.
    [35] B. Palaszewski,J. S. Zakany. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Combustion Experiments[R]. AIAA 95-2435.
    [36] B. Palaszewski. Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Engine Calorimeter Heat Transfer Measurements and Analysis[R].AIAA 97-2974.
    [37] W. M. Lee. Aluminum Powder/Water Reaction Ignited by Electrical Pulsed Power[R]. AD-A269 223,1993.
    [38] J. P. Foote,J. T. Lineberry,B. R. Thompson. Investigation of Aluminum Particle Combustion for Underwater Propulsion Applications[R]. AIAA 96-3086.
    [39] T. F. Miller,J. L. Walter,D. H. Kiely. A Next-Generation AUV Energy System Based on Aluminum-Seawater Combustion[J]. IEEE 0-7803-7572-6,2002.
    [40] G. A. Risha,A. Ulas,E. Boyer. Combustion of HTPB-Based Solid Fuels Containing Nano-sized Energetic Powder in a Hybrid Rocket Motor. AIAA 2001-3535.
    [41] G. A. Risha,Y. Huang,R. A. Yetter,V. Yang. Combustion of Aluminum Particles with Steam and Liquid Water[R]. AIAA 2006-1154.
    [42] T. Miyayama,H. Oshima,S. Toshiyuki,et al. Improving Combustion of Boron Particles in Secondary Combustor of Ducted Rockets[R]. AIAA 2006-5250.
    [43]夏智勋,胡建新,王志吉等.非壅塞固体火箭冲压发动机二次燃烧试验研究[J].航空动力学报,2004,19(5).
    [44]王志吉.固体火箭冲压发动机燃烧过程仿真与试验研究[D].国防科学技术大学,2002.
    [45]郑邯勇,王永昌.铝水反应机理的试验研究与分析[J].舰船科学技术,2005,27(3).
    [46]李芳,夏智勋,张为华等.水/金属燃料发动机水滴蒸发非傅里叶效应研究[J].固体火箭技术,2005,28(3).
    [47]李是良,张炜,张为华.镁基水反应金属燃料及水冲压发动机初步试验[J].国防科技大学学报,2007,29(1).
    [48]张丽,罗智勇,周前.水冲压发动机用金属/水燃料推进剂燃烧性能研究[C].中国宇航学会固体火箭推进第23届年会论文集,2006.
    [49] A. M. Tahsini,M. Ebrahimi. Increasing Isp by Injecting Water into CombustionChamber of an Underwater SRM[R]. AIAA 2006-4959.
    [50] T. R. A. Bussing,E. M. Murman. Unsteay Model of Dual Model Scramjet Operation[R]. AIAA 83-0422.
    [51] D. C. Mueller,S. R. Turns. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants[R]. AIAA 94-0686.
    [52] R. S. McKamey,D. B. Landrum. A One-Dimensional Engineering Model for the Evaluation of Rocket-Based Combined Cycle Engine Performance[R]. AIAA 2001-3462.
    [53]张鹏,俞刚.超燃燃烧室一维流场分析模型的研究[J].流体力学实验与测量,2003,17(1).
    [54]余勇.超燃冲压发动机燃烧室工作过程理论与试验研究[D].国防科学技术大学工学博士学位论文,2004.
    [55]王元光,徐旭,蔡国飙.超燃冲压发动机燃烧室设计计算方法研究[J].北京航空航天大学学报,2005,31(1).
    [56]刘敬华,凌文辉,刘兴洲等.超声速燃烧室性能非定常准一维流数值模拟[J].推进技术,1998,19(1).
    [57] T. F. Miller,A. B. Garza. Finite Rate Calculations of Magnesiium Combustion in Vitiated Oxygen and Steam Atmospheres[R]. AIAA 2006-4066.
    [58] Y. Huang,G. A. Risha,V. Yang,R. A. Yetter. Analysis of Nano-Aluminum Particle Dust Cloud Combustion in Different Oxidizer Environments[R]. AIAA 2005-738.
    [59] M. W. Beckstead. A Summary of Aluminum Combustion[R]. ADA425147,2004.
    [60] A. Modak,C. B. Dreyer,A. Abbud-Madrid,et al. Numerical Simulation of the Structure of Metal/Carbon-Dioxide Flames in Microgravity[R]. AIAA 2000-0845.
    [61] B. Natan,A. Gany. Ignition and Combustion Boron Particles in the Flow Field of a Solid Fuel Ramjet[J]. Journal of Propulsion and Power,1991,7(1).
    [62] J. S. Sabnis,F. J. de Jong,H. J. Gibeling. A Two-phase Restricted Equilibrium Model for Combustion of Metalized Solid Propellants[R]. AIAA 92-3509.
    [63] P. Liaw,Y. S. Chen,H. M. Shang,D. Doran. Particulate Multi-Phase Flowfield Analysis for Advanced Solid Rocket Motor[R]. AIAA 93-2848.
    [64] P. Liaw,Y. S. Chen,H. M. Shang,D. Doran. Numerical Analysis of Particulate Multi-Phase Flowfield for A 3-D Advanced Solid Rocket Motor[R]. AIAA 94-0866.
    [65] P. Liaw,Y. S. Chen,H. M. Shang,D. Doran. Numerical Investigation of the SlagBehavior in the Aft-End Cavity of Solid Motors[R]. AIAA 95-0815.
    [66] P. Liaw,Y. S. Chen,H. M. Shang,et al. Numerical Investigation of Slag Behavior with Combustion/Evaporation/Breakup/VOF Models for Solid Rocket Motors[R]. AIAA 95-2726.
    [67] A. Ciucci,G. Iaccarino. Numerical Analysis of the Turbulent Flow and Alumina Particle Trajectories in Solid Rocket Motors[R]. AIAA 97-2860.
    [68] A. Ciucci,G. Iaccarino,M. Amato. Numerical Investigation of 3D Two-Phase Turbulent Flows in Solid Rocket Motors[R]. AIAA 98-3966.
    [69] F. M. Najjar,S. Balachandar,P. V. S. Alavilli,J. Ferry. Computations of Two-Phase Flow in Aluminized Solid Propellant Rockets[R]. AIAA 2000-3568.
    [70] M. Berglund,C. Fureby. Large Eddy Simulation of the Flow in A solid Rocket Motor[R]. AIAA 2001-0895.
    [71] S. P. Vanka,F. D. Stull,R. R. Craig. Analytical Characterization of Flow Fields in Sideinlet Dump Combustors[R]. AIAA 83-1399.
    [72] S. P. Vanka. Block-implicit Compution of Viscous Internal Flows-Recent Results[R]. AIAA 87-0055.
    [73] S. P. Vanka. Analytical Studies of Three-Dimensional Combustion Processes[R]. AFWAL-TR-88-2140.
    [74] R. A. Stowe,A. D. Champlain,A. E. H. J. Mayer,S. F. Niemeijer. Modelling and Flow Visualization of Mixing in a Ducted Rocket Combustor[R]. AIAA 98-3768
    [75] R. A. Stowe,A. D. Champlain,A. E. H. J. Mayer. Modeling Combustor Performance of a Ducted Rocket[R]. AIAA 2000-3728.
    [76] R. A. Stowe,C. Dubois,P. G. Harris,et al. Two Phase Flow Combustion Modelling of a Ducted Rocket[R]. AIAA 2001-3461.
    [77] T. M. Abdel-Salam,S. N. Tiwari,T. O. Mohieldin. Analysis of a Dual-Mode Scramjet Combustor[R]. AIAA 2001-3194.
    [78] T. M. Abdel-Salam,S. N. Tiwari,T. O. Mohieldin. Dual-Mode Flowfield In Scramjet Combustor[R]. AIAA 2001-2966.
    [79] T. M. Abdel-Salam,T. O. Mohieldin,S. N. Tiwart. Investigation of Mixing and Flow Charcteristics in a Dual-Mode Combustor[R]. AIAA 2003-372.
    [80] A. Ristori,E. Dufour. Numerical Simulation of Ducted Rocket Motor[R]. AIAA 2001-3193.
    [81] H. G. Sung,S. Y. Hsieh,V. Yang. A Unified Analysis of Ramjet Operation in anIntegrated Rocket Ramjet Engine Part I. Transition From Rocket Booster to Ramjet Sustainer[R]. AIAA 2001-3460.
    [82] H. G. Sung,S. Y. Hsieh,V. Yang. A Unified Analysis of Ramjet Operation in an Integrated Rocket Ramjet Engine Part II. Combustion Dynamics of Rmajet Engine[R]. AIAA 2001-3192.
    [83] P. Y. Liang,R. J. Ungewitter,S. E. Claflin. CFD Analysis of the 24-Inch JIRAD Hybrid Rocket Motor[R]. AIAA 95-2692.
    [84] G. C. Cheng,P. G. Anderson,R. C. Farmer. Development of CFD Model for Simulating Gas/Liquid Injectors in Rocket Engine Design[R]. AIAA 97-3228.
    [85] G. C. Cheng,R. C. Farmer. CFD Spray Combustion Model for Liquid Rocker Engine Injector Analyses[R]. AIAA 2002-0785.
    [86] H. Ko,B. H. Park,W. S. Yoon. Evolutions of Combusting Flow in Rocket-Ramjet Transition Regime[R]. AIAA 2005-3506
    [87] M. S. Raju. Numerical Investigation of Various Atomization Models in the Modeling of a Spray Flame[R]. AIAA 2006-176.
    [88] W. D. Liu,Z. G. Wang,F. C. Zhuang. Numerical Analysis of Combustion Instability in Liquid Propellant Rocket Engine[R]. AIAA 95-3117.
    [89] W. D. Liu,Z. G. Wang,J. Zhou,F. C. Zhuang. Numerical Simulation of Unsteady Flow in Liquid Propellant Rocket Engine with PISO Algorithm[R]. AIAA 96-3124.
    [90] W. D. Liu,Z. G. Wang,J. Zhou,F. C. Zhuang. Numerical Analysis Model for Radial Combustion Instability of Liquid Propellant Engine[R]. AIAA 97-3327.
    [91]费继友,俞炳丰,夏学礼等.二维火箭发动机燃烧室化学反应粘性流场的数值模拟与实验验证[J].火炸药学报,2002,(4).
    [92]费继友,俞炳丰,张杰等.液体火箭发动机推力室粘性流场数值模拟和实验验证[J].推进技术,2003,23(4).
    [93]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(I)计算模型和方法[J].推进技术,2002,23(2).
    [94]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(II)数值模拟结果及分析[J].推进技术,2002,23(3).
    [95]冯喜平.燃气发生器三维湍流和燃烧过程数值模拟[D].西北工业大学,2000.
    [96]杜新,汪亮,高峰. H2O2固液混合发动机燃烧流动计算分析[J].固体火箭技术,2002,25(4).
    [97]林志勇,周进.三组元发动机氢的质量分数对燃烧流场影响的数值研究[J].热科学与技术,2004,3(1).
    [98]林志勇.双工况氢氧发动机燃烧与传热过程数值仿真研究[D].国防科技大学,2002.
    [99]余勇,陈小前,王振国等.三维实验固体火箭冲压发动机燃烧室湍流反应流数值模拟[J].国防科技大学学报,2002,24(5).
    [100]胡建新,夏智勋,王志吉等.非壅塞固体火箭冲压发动机补燃室内流场数值模拟研究[J].固体火箭技术,2002,25(3).
    [101]胡建新,夏智勋,王志吉等.非壅塞固体火箭冲压发动机二次燃烧室进气方案研究[J].固体火箭技术,2004,27(1).
    [102]胡建新,夏智勋,刘君等.非壅塞火箭冲压发动机补燃室两相流数值模拟[J].推进技术,2004,25(3).
    [103] J. X. Hu,Z. X. Xia,Z. J. Wang,J. Guo. Experimental Investigation and Numerical Simulation of Secondary Chamber Flow in SDR[R]. AIAA 2004-3306.
    [104]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].国防科技大学,2006.
    [105]高岭松,何国强,刘佩进.固体火箭冲压发动机补燃室掺混与燃烧流场数值模拟[J].固体火箭技术,2005,28(3).
    [106]马朝恺,徐旭,刘明昊,蔡国飙.超声速补燃的三维数值模拟和实验研究[J].推进技术,2004,25(4).
    [107] E. Wintenberger,J. E. Shepherd. Thermodynamic Analysis of Combustion Processes for Propulsion Systems[R]. AIAA 2004-1033.
    [108] R. Andriani,F. Gamma,U. Ghezzi. Ramjet Engine Characteristics at Different Operation Comditions[R]. AIAA 2004-4078.
    [109]方丁酉,张为华.凝相相变过程的热力计算[J].推进技术,1997,18(5):46-49.
    [110]申慧君,夏智勋,胡建新.粉末燃料冲压发动机理论性能分析[J].推进技术,2007,28(2).
    [111]李宜敏,张中钦,赵元林.固体火箭发动机原理[M].国防工业出版社,1985.
    [112]夏智勋,张炜,方丁酉等.固体火箭冲压发动机性能调节研究[J].固体火箭技术,1999,22(1).
    [113]张炜,朱慧,方丁酉等.用于燃气流量可调固冲发动机的贫氧推进剂[J].推进技术,1999,20(5).
    [114]方丁酉,夏智勋,张炜.非壅塞固体火箭冲压发动机自适应调节特性[J].弹道学报,2000,12(4).
    [115]毛成立,李葆萱,李逢春等.燃气发生器流量调节方案的比较[J].固体火箭技术,2000,23(4).
    [116]傅献彩,沈文霞,姚天扬.物理化学[M].南京大学物理化学教研室,1990.
    [117]曹泰岳.固体火箭发动机燃烧过程理论基础[M].国防科学技术大学出版社,1992.
    [118]方丁酉.不等熵一维定常管流数值解法[J].推进技术,1991,4.
    [119]王承尧,王正华,杨晓辉.计算流体力学与其并行算法[M].国防科技大学出版社,2000.
    [120]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型和应用[M].国防科技大学出版社,1995.
    [121]田德余,刘剑洪.化学推进剂计算能量学[M].河南科技出版社,1999.
    [122]马庆芳,方荣声,项立成.实用热物理性质手册[M].中国农业机械出版社,1986.
    [123]叶大伦.实用无机物热力学数据手册[M].冶金工业出版社,1981.
    [124]周力行.多相湍流反应流体力学[M].国防工业出版社,2002.
    [125]赵坚行.燃烧的数值模拟[M].科学出版社,2002.
    [126]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].清华大学出版社,2005.
    [127]李晓斌,张为华,王中伟.固体火箭发动机稳态燃速二维模型参数最优化辨识[J].推进技术,2006,27(4).
    [128]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社,2001.
    [129]赵选民.试验设计方法[M].科学出版社,2006.