R4s级系泊钢腐蚀疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
R4s级系泊钢是新型低碳、低合金高强度钢,具有优良的综合性能。系泊在工作过程中,上与海面浮体相连,下与海底锚腿相接,通体基本浸入在海水中,受到周围环境主要是海水的腐蚀,而且随着海洋洋流的作用,随着海水的响应上下来回震动。由于其自身重力和海面浮体的拉力,使其承受了一定的应力作用,而响应震动又引起了应力的变化,产生了交变应力,和海水腐蚀的共同作用,产生了腐蚀疲劳。
     本文根据系泊焊接后在连续炉中热处理的实际生产条件,选择在930℃温度保温30min快速加热后水冷淬火+930℃温度保温30min快速加热后水冷淬火的二次淬火+630℃温度回火保温30min,同时,利用金相显微镜、扫描电镜等分析仪器,对上述样品的微观组织和断口形貌进行了分析;利用洛氏硬度计、显微硬度计、万能试验机和冲击试验机等,对不同热处理状态下的力学性能进行了测试;利用电化学试验、海水挂片试验、应力腐蚀试验对材料的腐蚀性能进行了测试,结合前面的力学、腐蚀性能,利用腐蚀疲劳试验对R4s级系泊钢的腐蚀疲劳性能进行了测试及客观的分析。
     实验结果表明:系泊钢在受到腐蚀和交变应力共同作用时,腐蚀和疲劳作用同时在刚表面进行伤害,海水溶液中的离子和氧对钢表面进行侵蚀产生点蚀,而交变应力作用使得钢表层的位错移动形成小的滑移带从而产生沟槽和隆脊,二者的共同作用下,钢表面上的点蚀尖部和滑移所引起的沟槽底部吸附了较多的Cl-和OH-,致使金属原子键的和力减弱,即金属表面能降低,在交变应力的作用下,促进了金属的破裂,微观裂纹在钢表面形成。随着交变应力和腐蚀的继续作用,裂纹沿着两组互不平行的{111}滑移面扩展,裂纹的扩展方向平行于{111}面的交线,即{110}方向。裂纹的扩展引起了应力集中逐渐增大,裂纹逐步向材料内部扩展。随着腐蚀时间的增加,腐蚀产物也随之增多,腐蚀产物覆盖在裂纹的周围,腐蚀产物会阻隔在腐蚀液与裂纹尖端之间,阻止了腐蚀的进行,此时裂纹扩展主要由交变应力作用下的金属滑移扩展,产生新鲜的金属表面。而裂纹在交变应力作用下围绕裂纹尖端作一张一弛运动,张弛运动将腐蚀产物挤压出裂纹缝,也会将腐蚀产物撕裂,腐蚀溶液接触新鲜的金属裂纹表面。随着腐蚀产物覆盖裂纹表面-腐蚀产物层破裂-重新覆盖的过程不断重复,裂纹在{110}面上的扩展也不断进行,直到金属不能承受应力作用时发生断裂。
Class R4s mooring chain is a new low-carbon and low alloy high strength steel, with excellent overall performance. In the work process, the floating-body of mooring chain connected with the seawater,the next phase with the seabed anchor leg,henselae basic immersion in sea water by the surrounding environment is primarily seawater corrosion, and along with the role of ocean currents, with the sea water back and forth up and down vibration response. Because of its self-gravity and surface tension floating body to withstand a certain amount of stress and stress response to vibration has caused the change, resulting in alternating stress, and the joint action of sea water corrosion, resulting in corrosion fatigue.
     Based on the mooring chain welded in a continuous heat treatment furnace in the actual production conditions, choose the temperature insulation 30min at 930℃than water quenching after rapid heating temperature of + 930℃insulation 30min after the rapid heating of the secondary water-cooled quenching quenching tempering temperature + 630℃insulation 30min, At the same time, the use of optical microscope, scanning electron microscopy and other analytical instruments , samples of the above-mentioned microstructure and fracture morphology were analyzed; The use of Rockwell hardness tester, micro hardness tester, universal testing machine and impact testing machine for different heat treatment state of the mechanical properties were tested; The use of electrochemical tests, the sea is hanging patch test, stress corrosion test corrosion of materials were tested,Combination of the previous mechanics, corrosion, corrosion fatigue testing on the use of mooring chain R4s grade steel corrosion fatigue performance of Germany has been tested and objective analysis.
     Experimental results show that mooring chain steel by corrosion and the common role of the alternating stress, corrosion and fatigue damage while just the surface of the sea water solution of ions and oxygen on the steel surface erosion pitting produced, while the role of the alternating stress makes the steel surface The formation of small, mobile dislocation slip bands resulting in grooves and ridge, both working together, pitting corrosion on the steel surface and the tip of the groove bottom of the slip caused by adsorption of a greater amount of Cl-and OH-, resulted in reduced affinity of metal atoms bond, namely, the metal surface can reduce, in the role of alternating stress, promote the breakdown of metal, micro-cracks in the steel surface. As the alternating stress and the continuing role of the corrosion, cracks along the two are not mutually parallel to the (111) slip plane expansion, crack propagation direction parallel to (111) planes of the cross-lines, namely, (110) direction. Crack caused stress concentration increased gradually, step by step to the material within the crack extension. With the corrosion time increased, the corrosion products also increase, and corrosion products covering the cracks around the corrosion products will be separated between the crack tip in the etching solution and to prevent the corrosion progresses, the crack growth at this time mainly by the alternating stress expansion of metal under the action of sliding, resulting in fresh metal surface. The crack under the action of alternating stress around the crack tip for a one relaxation exercise, relaxation campaign will squeeze out the cracks seam corrosion products, will bring tears of corrosion products, corrosion of the metallic solution contact with the fresh crack surface. As the corrosion products cover the crack surface - corrosion product layer break - to re-cover the process of repeated, crack in the expansion of (110) faces are also ongoing, until the metal can not withstand stress fracture occurred.
引文
[1]史斗,郑军卫.我国石油安全与天然气开发利用问题研究[J].天然气地球科学.2003,(2):3-6.
    [2]刘光穆,四级锚钢的实验室研究[J].钢铁研究.2002.10,5:53-58
    [3]华责澎.我国海洋石油发展战略思考[J].中国石油报. 2006,(4):10-13。
    [4]黄耀华,周铁金.中国油气资源与可持续发展战略的思考[J].资源与产业.2006,8(5):64-67.
    [5]李展.浮式生产储油装置(FPSO)及其系泊系统[J].广东造船。2006,(3):40-44。
    [6] Asano K, Ishikawa F, Uno K, and Sakai, Y.Fatigue properties of mooring chain for offshore structures[C].In Proceedings of the International Conference on Offshore mechanics and arctic engineering (OMAE’86),1986,529-536
    [7] Pacheco, P.M.C.L.Kenedi, P.P.and Jorge.J.C.F.Elastoplastic analysis of the residual stress in chain links[C].In Proceedings of the 21st International Conference on Offshore mechanics and arctic engineering (OMAE’02), Oslo, Norway, 23–28 2002: 39-46
    [8] Casey, N.F.A review of available laboratory test data on mooring chain applications[R].Report OTO 96 033, Health and Safety Executive, 1998
    [9] Earl Groshart. Design for finishing. Metal Finishing,1986,4:63-65
    [10] C.G.Munger. Marine and Offshore Corrosion Control-past , present and future. Materials Performance,1993,32(9):p.37-41
    [11] Economides, C.Torsion in offshore mooring and the torsional response of mooring chain[R].Final Year M EngReport, Department of Civil Engineering, Imperial College of Science, Technology and Medicine, University of London, 2002
    [12] R E Hobbs and I M L Ridge.Torque in mooring chain[J].Strain Analysis, 2005, 40 (7)
    [13]张文基,郭艳,张玉峰.高强度、高韧性海洋四级系泊锚钢的试制及应用[J]。钢铁钒钛。2000,21(2):6-11。
    [14]丁华.大冶特钢成功开发和生产Φ150mm四级系泊用钢22CrMnNiMo[J]。特殊钢。2003, 24(1):58。
    [15]殷瑞钰.钢的质量现代进展(下册)[M].北京:冶金工业出版社,1995:180-185.
    [16]项程云.合金结构钢[M].北京:冶金工业出版社,1999:19-26.
    [17]周丽萍,谢春生,朱林放.热处理对新型系泊钢22MnCrNiMo组织和性能的影响[D].江苏科技大学,2009.
    [18] Det Norske Veritas。Rules for Cassification of Ships 2002 Standard 2-6一Certification of Offshore Mooring Chain.
    [19] Bureau Veritas。Rules for the Classification of Steel Ships 2005,5:NR216
    [20] American Bureau of Shipping。Offshore Mooring Chain 1999
    [21]董杰,孟兆生,杨浩,等。R4级海洋系泊用热轧圆钢的研制.莱钢科技,1994(3):25
    [22]范模,两点系泊系统的研究[J].中国海上油气(工程). 2003.12,15(6):13-17
    [23]吴同亮,王庆陶,关于系船水鼓受力的数学模型[J].天津轻工业学院学报. 2003.12,18:61-64
    [24]黄剑,朱克强,半潜式平台两种锚泊系统的静力分析与比较[J].华东船舶工业学院学报(自然科学版) .2004.06,18(3):1-5
    [25]何明,悬锚腿系泊装置的结构特点及安装和检查方法的探讨[J].中国海洋平台.2004.04,15(4):41-45
    [26]余龙,谭家华,深水中悬线锚泊系统设计研究进展[J].中国海洋平台.2004.06,19(3):24-29
    [27]朱克强,郑道昌,周江华等,生产驳船多点系泊定位系统动态响应[J].中国航海.2007,2:6-9
    [28]陈徐均,汤雪峰,沈庆,孙芦忠,系泊浮体布方式优劣的理论分析[J].河海大学学报.2001.9,29(5):84-87
    [29]刘海笑,黄泽伟.新型深海系泊系统及数值分析技术.海洋技术,2007(6):26
    [30]赵麦群,雷阿丽等,金属的腐蚀和防护,北京:国防工业出版社,2002
    [31] Kamoutsi H,Haidemenopoulos G N,Bontozoglou V .Corrosion-induced hydrogen embrittlement in aluminum alloy 2024[J].Corosion Science,2006,48(5):1209.
    [32]吴荫顺,方智等,腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社.1996
    [33]张宝宏,丛文博,杨萍,金属电化学腐蚀与防护[M].北京:化学工业出版社.2005
    [34]王凤平,康万利,敬和民等,腐蚀电化学原理、方法及应用[M].北京:化学工业出版社.2008
    [35]孙曼丽,中碳刚高强度弹簧钢的腐蚀疲劳破坏行为[D].昆明理工大学硕士学位论文.2008.
    [36] Jaske C E. Corrosion fatigue of metals in marine environments. Springer- Verlag and Battelle Press,1981.224
    [37]刘志刚,何炎平.FPSO转塔系泊系统的技术特征及发展趋势[J].中国海洋平台.2006,21(5):1-6.
    [38]原晓波,改善船用锚闪光焊接头组织和性能的研究[J].武汉造船.2001 .3 :17-20
    [39]束德林.工程材料力学性能[M].北京:机械工业出版社,2003:66-67.
    [40]崔约贤,王长利,金属断口分析[M].哈尔滨:哈尔滨工业大学出版社.1998
    [41]郑长卿,周利,张克实,金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社.1995
    [42]屠海令,干勇,金属材料理化测试全书[M].北京:化学工业出版社.2007
    [43]杨武,顾荣祥,黎樵桑等.金属的局部腐蚀[M].北京:化学工业出版社,1997
    [44] Tomohiro Nakano,Takayuki Sakaibara and Masami Wakita. Development of High-strength Suspension Coil Springs with improved Corrosion fatigue Strength. In: China international Ferrous Wire Symposium 2004.Beijing,2004
    [45] Yoshiaki Kurihara,Soichi Takasaki. Corrosion fatigue Behavior of Automobile Suspension SpringSteels.In:ASME Winter Annual Meeting. NewYork,1991
    [46] Masataka Shimotsusa,Nobuhiko Ibarakl,Tatsuo Ikeda and Takenori Nakayma. Wire Rod for SuSpension SpPring with Excellent Corrosion fatigue Life,Wire Journal International,1998,78-83
    [47] Annual Book of ASTM standards,American Society for Testing and Materials,ASTM G46-76,1984
    [48]甘阳,李瑛,林海潮.海水中低合金钢局部腐蚀过程的实验室模拟[J].中国腐蚀与防护学报.2001.21(2):82~87
    [49]蒋祖国主编.飞机结构腐蚀疲劳.北京:航空工业出版社,1991
    [50]吴荫顺编,金属腐蚀研究方法,冶金工业出版社,北京,1993.5:24-28,68-73
    [51]冷文兵,袁鸽成,倪学明,路浩东.5083铝合金在3.5%NaCI溶液中的应力腐蚀行为[J].广东工业大学学报,2009.3,26(1):65-67
    [52]闫永贵,马力,曾红杰,张海兵. 7A52铝合金的应力腐蚀性能研究[J].腐蚀科学与防护技术.2009.3,21(2):119-121
    [53]李金权,王茂廷,李均峰,焊接后热处理对金属材料抗应力腐蚀性能的影响[J].金属铸锻焊技术.2009,4.38(7):118-120
    [54]杨兴林,张俊苗,陈宇光,高强度螺栓应力腐蚀断裂过程的建模与仿真[J].南京航空航天大学学报.2009.2, 4l(1):130-133
    [55]安丽乔,刘玉宝,刘德义,刘世程.脱碳深度对60Si2CrVAT弹簧钢疲劳性能的影响[J].大连交通大学学报,2009,2
    [56]惠卫军,董瀚,陈思联.非金属夹杂物和表面状态对高强度弹簧钢疲劳性能的影响[J].特殊钢,1998,19(6):8-14
    [57]王荣,金属材料的腐蚀疲劳[M].西安:西北工业大学出版社.2001
    [58]曾春华,邹十践编译,疲劳分析方法及应用[M].北京:国防工业出版社.1991
    [59]王放,金属基复合材料循环响应和疲劳破坏的理论和模拟[D]上海大学博士学位论文.2007.8
    [60] Suresh S,王中光,材料的疲劳[M].北京:国防工业出版社,1993
    [61] Zhuyao Z, Farrar R A, Columnar Grain. Development in C Mn N lowalloyweldmetals and the influence of nicke[J]. Journal ofMaterials Science, 1995, 30(22):5581-5588.
    [62] Zhuyao Z, Farrar R A. Influence of Mn and Ni of microstructure and toughness of C Mn Ni weldsmetals[J]. Welding Journal, 1997, 7(5): 183-196.
    [63]韩顺昌.针状铁体的物理冶金学(待续)[J].材料开发与应用,1995,10(5): 2-7.
    [64]韩顺昌.针状铁体的物理冶金学(续)[J].材料开发与应用1995, 10(6): 2-8.
    [65] Mills, Thewlis G, Whiteman J A. Nature of inclusions in steel welmetals and their influence on formation of acicular ferrite [J]. Materials Science and Technology, 1987, 3(12): 1051-1061.
    [66] Gutierres I, Madariaga I, Bhadeshia HK D H. Acicular ferrite mor-phologies in a mediumcarbon microalloyed steel[J]. Metall &Mate Trans, 2001, 32A(9): 2187-2196.
    [67]陈蕴博,马炜,金康.强韧微合金非调质钢的研究动向[J].机械工程材料, 2001,25(3): 1-6.
    [68]冯国庆,船舶结构疲劳强度评估方法研究[D].哈尔滨工程大学工学博士学位论文. 2006.8