W频段接收机前端研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是对W频段接收机前端进行研究。受器件和工艺的影响,该系统采用混合集成的方法研制。接收机前端的任务是将天线送来的92-96GHz高频信号变频到中频8-12GHz,要求系统有较高的灵敏度和频率稳定度。系统主要由高频带通滤波器、本振信号源和亚谐波混频器组成。文中对构成电路的鳍线及其不连续性和构成系统的三个部分分别做了研究。
     编制了一套用谱域法和经验公式法分析鳍线的计算软件。提出了采用径向基函数神经网络作为鳍线不连续性的网络模型。通过电磁仿真软件分析鳍线不连续性,获得神经网络需要的样本数据。鳍线不连续性的物理尺寸和频率作为输入变量,不连续性等效电路元件参数作为神经网络的输出变量,经过对神经网络的训练,最后可以由神经网络快速、有效地获得鳍线不同槽宽的跳变、凹槽和凸带的等效电路参数。经过训练后的网络可以模拟鳍线不连续性的网络特性,计算速度比直接用电磁仿真软件分析要快得多,使之能用于含有鳍线不连续性的电路设计和优化。
     对于带通滤波器,采用E面滤波器的方式实现,首先用传统的模式匹配法设计了用于本振滤波的U频段滤波器,所设计的滤波器经现有商业软件的仿真,性能都符合要求。提出了可以用于复杂结构的神经网络模型综合方法设计E面滤波器,并提出了用反转神经网络输入输出变量的网络模型以简化滤波器的综合设计,避免了一次求解方程获得物理尺寸的过程,并以该方法设计了用于射频滤波的W频段E面带通滤波器,测试结果跟预期的结果符合的比较好。
     本振源是采用高稳定的微波锁相,然后倍频到毫米波的方式实现。微波锁相源采用数字锁相集成电路PE3236实现。压控振荡器输出10.5GHz的微波信号经过HEMT器件倍频器获得所需要的42GHz信号,信号经过毫米波单片功率放大器以获得推动混频器的本振功率。输出采用对极鳍线的波导微带过渡,通过仿真认为影响过渡性能最重要的参数是对极鳍线余弦过渡线的长度。通过测试计算研制的本振源输出功率达到19dBm。
     亚谐波混频器采用单脊鳍线的方式实现。先分析了肖特基势垒二极管对的特性,然后通过分别独立出射频网络、本振网络和中频网络的方法设计该混频器。即先用大信号方法设计本振网络,使之匹配混频用的肖特基二极管对,用谐波平
The W-band receiver front-end is developed in this dissertation. The system is realized using hybrid integrated circuits because limited by the device and manufacture technique. The mission of the receiver front-end is converting the signal with frequency from 92 to 96 GHz, which received by the antenna to intermediate frequency signal with frequency from 8 to 12 GHz. The receiving sensitivity and frequency stability are important. The system consists of radio frequency band pass filter (BPF), local oscillator (LO) and sub-harmonic mixer. Finlines, finline discontinuities and the three parts as mentioned above are discussed respectively.
    A software which calculates the characteristic impedance and propagation constant of finline is developed. The radial basis network is used as the finline discontinuities EM neural network models. EM software anlysis is employed to characterize finline discontinuities. EM neural network models are then trained using physical parameters and frequency as inputs and equivalent electric circuit element parameters of finline discontinuities as outputs. Once trained , the EM neural network models can simulate equivalent electric circuit element parameters of finline step, notch and strip very fast and efficiently. These trained models allow for circuit design, simulation, and optimization. Circuit simulated with these models.
    The BPFs are realized using E-plane filter. The U band filter is designed by mode-matching method, and simulating result given by commercial simulation software achieves the aim. A method for synthesis filter with the EM ANN models, which can be used in complex structure, is given to design E-plane filter. The EM ANN model with exchange the input/output is given to simplify the process of synthesis filter. The method can obtain the actual dimension avoiding solved equations. A E-plane BPF that uses in the RF network is developed by this method, and the measured results coincide with the simulated.
    The local oscillator source is realized by a method, which a high stability microwave phase locked loop oscillator is achieved, then the microwave signal is converted to millimeter wave by a quad-multiplier. The microwave locked phase
引文
[1] 阮成礼.毫米波理论与技术.成都:电子科技大学出版社,2001
    [2] 薛良金.毫米波工程基础.北京:国防工业出版社,1998
    [3] Meier P. J. Two New Integrated Circuit Media with Special Advantages at Millimeter Wavelengths. IEEE. MTT-S International Microwave Symposium Digest, 1972: 222-223
    [4] Sequeira, H. B., Duncan S. W. et al. Monolithic GaAs W-band Pseudomorphic MODFET Amplifiers. IEEE GaAs IC Symposium, 1990: 161-164
    [5] Wang H., Lai R. et al. A monolithic W-band three-stage LNA using 0.1μm InAIAs/InGaAs/InP HEMT technology. IEEE. MTT-S International Microwave Symposium Digest, 1993: 519-522
    [6] Tu D.-W., Berk W. P. et al. High gain monolithic p-HEMT W-band four-stage low noise amplifiers. IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1994. Digest of Papers, 1994: 29-32
    [7] Weinreb S., Lai, R. Erickson et al. W-band InP wideband MMIC LNA with 30 K noise temperature. IEEE. MTT-S International Microwave Symposium Digest, 1999: 101-104
    [8] S. Raman, G. M. Rebeiz. A 94 GHz Uniplanar Subharmonic Mixer. IEEE. MTT-S International Microwave Symposium Digest, 1996: 385-388
    [9] P. D. Chow, D. Garske, et al. Design and Performance of a 94 GHz HEMT Mixer. IEEE. MTT-S International Microwave Symposium Digest, 1989: 731-734
    [10] S. Nagano, S. Ohnaka. Highly Stabilized IMPATT Oscillators at Millimeter Wave lengths. IEEE Trans. Microwave Theory Tech., 1973, 21(7): 491-492
    [11] K. P. Weller, R. S. Ying, D. H. Lee. Millimeter IMPATT Sources for the 130-170-GHz Range. IEEE Trans. Microwave Theory Tech., Special Issue on Millimeter Waves: Circuits, Components, and Systems, 1976, 24(11): 738-743
    [12] Y.-W. Chang. Millimeter-Wave (W-Band) Quartz Image Guide Gunn Oscillator. IEEE Trans. Microwave Theory Tech., 1983, 31(2): 194-199
    [13] J. E. Carlstrom, R. L. Plambeck, D. D. Thornton. A Continuously Tunable 65-115GHz Gunn Oscillator. IEEE Trans. Microwave Theory Tech., 1985, 33(7): 610-619
    [14] James J.Whelehan. Low-Noise Millimeter-Wave Receivers. IEEE Trans. Microwave Theory Tech., 1977, 25(4): 268-280
    [15] W.Menzel. An integrated Ka-band receiver Front-end. Proceeding of the European Microwave Conference, 1981:361-365
    [16] Walid Y.Ali-Ahmad, William L.Bishop, et al. An 86-106GHz Quasi-Integrated Low Noise Schottky Receiver. IEEE Trans. Microwave Theory Tech., 41(4): 558-564
    [17] L.T. Yuan, P.GAsher. A W-Band Monolithic Balanced Mixer. 1985 IEEE MTTs-Internationa Microwave Symposium Digest. 1985:113-115
    [18] Curtis C.Ling, Gabriel M.Rebeiz. A 94GHz Planar Monopulse Tracking Receiver. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(10): 1863-1871
    [19] M.I.Herman, Lan G.-L.,et al, Multifunction W-band MMIC receiver technology. P roc. IEEE, 1991, 79(3) :342-354
    [20] Raman, N.Scott Barker, Gabriel M.Rebeiz. A W-Band Dielectric-Lens-Based Integrated Monopulse Radar Receiver. IEEE Trans. Microwave Theory Tech., 1998, 46(12): 2308-2316
    [21] S.B. Cohn. Slot-Line on a Dielectric Substrate. IEEE Trans. Microwave Theory Tech., 1969, 17(10): 768-778
    [22] P.J. Meier. Inteegrated Fin-Line Millimeter Components. IEEE Trans. Microwave Theory Tech., 1974, 22(12): 1209-1216
    [23] P.J.Meier. Equivalent Relative Permittivity and Unloadede Q-factor of Integrated Fin-Line. Electron. Lett., 1973, 9(4): 62-163
    [24] S. Hopfer. The Design of Ridge Wawguides. IRE Trans. Microwave Theory Tech., 1955, 3(10): 20-29
    [25] G.C. Southworth. Principles and Applications of Waveguide Transmission.Van Nostrand, Princeton, NJ, 1950
    [26] A.K. Sharma, W.J.R.Hoefer. Empirical Expressions for Fin- Line Design. IEEE Trans. Microwave Theory Tech., 1983, 31(4): 350-356
    [27] P, Pramanick, P. Bhartia. Accurate Analysis Equations and Synthesis Techniqne for Unilateral Fin Lines. IEEE Trans. Microwave Theory Tech., 1985, 33(1): 24-30
    [28] Cam Gguyen. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures. New York: John Wiley&Sons, Inc,2000
    [29] Lorenz Peter, Schmidt, Tatsuo Iton. Spectral Domain Analysis of Dominant and Higher Order Modes in Fin-Lines. IEEE Trans. Microwave Theory Tech., 1980, 28(9): 981-985
    [30] L. P. Schmidt, Tatsuo Itoh. Characterics of Unilateral Fin-Line Structures with Arbitrarily Located Slots. IEEE Trans. Microwave Theory Tech., 1981, 29(4) 352-355
    [31] Jeffrey B. Knorr, Paul M. Shayda. Millimeter-Wave Fin-Line Characteristics. IEEE Trans. Microwave Theory Tech., 1980, 28(7): 737-743
    [32] 张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,1994
    [33] 金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998
    [34] Hadia EI Hennawy, Klaus Schunemann, M. V. D. E. Impedance transformation in fin lines. IEE., Proc., Pt, H, Microwaves Opt. Acoust, 1982, 12(9): 342-350
    [35] Roberto Sorrentino, Tatsuo Itoh. Transverse Resonance Analysis of Finline Discontinuities. IEEE Trans. Microwave Theory Tech., 1984, 32(12): 1633-1638
    [36] Animesh Biswas, Bharathi Bhat. Accurate Characterization of an Inductive Strip in Finline. IEEE Trans. Microwave Theory Tech., 1988, 36(8): 1233-1238
    [37] Kevin J. Webb, Raj Mittra. Solution of the Finline Step-Discontinuity Problem Using the Generalized Variational Technique. IEEE Trans. Microwave Theory Tech., 1985, 33(10): 1004-1010
    [38] P. M. Watson, K. C. Gupta. EM-ANN models for microstrip vias and interconnects in dataset circuits. IEEE Trans. Microwave Theory Tech., 1996, 44(12): 2495-2503
    [39] P. M. Watson, K. C. Gupta. Design and Optimization of CPW Circuits using EM-ANN models for CPW corhponents. IEEE Trans. Microwave Theory Tech., 1997, 45(12): 2515-2523
    [40] X. L. Ding, V. K. Devabhaktuni, et al. Neural-Network Approaches to Electromagnetic-Based Modeling of Passive Components and Their applications to High-Frequency and High-Speed Nonlinear Circuit Optimization. IEEE Trans. Microwave Theory Tech., 2004, 52(1): 436-449
    [41] 刘荧,林嘉宇,毛钧杰.基于神经网络的微波电路建模和优化.微波学报,2000,16(3):242-248
    [42] Fang Wang, Q. J. Zhang. Knowledge-based neural models for microwave design. IEEE Trans. Microwave Theory Tech., 1997, 45(12): 2333-2343
    [43] Howard Demuth, Mark Beale. Neural Network Toolbox User's Guide. Massachusetts: MathWorks, Inc., 2001
    [44] Y. Konishi, K. Uenakada. The design of a bandpass filter with inductive strip-planar circuit mounted in waveguide IEEE Trans. Microwave Theory Tech., 1974, 22(10): 869-873
    [45] R. Vahldieck, J. Bomemann, et al. Optimized waveguide E-plane Metal Insert Filters for Millimeter-wave Applications. IEEE Trans. Microwave Theory Tech.., 1983, 31 (1): 65-69
    [46] Yi-Chi Shib, Tatsuo Itoh, I. Q. Bui. Computer-Aided Design of Millimeter-Wave E-Plane Filters. IEEE Trans. Microwave Theory Tech., 1983, 31(2): 135-141
    [47] Ruediger Vahldieck, Wolfgang J. R. Hoefer. Finline and Metal Insert Filters with Improved Passband Separation and Increased Stopband Attenuation, IEEE Trans. Microwave Theory Tech., 1985, 33(12): 1333-1338
    [48] J. Uher, J. Bomemann, Uwe Rosenberg. Waveguide Components for Antenna Feed Systems: Theory ad CAD. Boston: Artech House, 1993
    [49] 清华大学《微带电路》编写组.微带电路.北京:人民邮电出版社,1976
    [50] Ralph Levy. Theory of Direct-Coupled-Cavity Filters. IEEE Trans. Microwave Theory Tech., 1967, 15(6): 340-348
    [51] Robert E. Collin. Field Theory of Guided Waves (Second editon). New York: John Wiley&Sons, Inc., 1990
    [52] R. Mittra, S. W. Lee. Analytical Techniques in the Theory of Guided Waves. New York: The Macmillan Company, 1971
    [53] 恽小华,恽才华等.8mm小型化低相位噪声锁相源.红外与毫米波学报,1995,14(5):383-385
    [54] 鲍景富,朱君范等.Ka波段锁相系统研究 电子科学学刊,1995,17(3):311-314
    [55] 张永鸿.吴正德等.W波段小型化锁相源.电子科技大学学报,1999,28(4):353-357
    [56] 徐锐敏,延波等.小型Ka频段锁相倍频源.电子科技大学学报 2001,30(6):555-558
    [57] 张厥盛.锁相技术.西安:西安电子科技大学出版社,1994
    [58] Donald R. Stephens. Phase-locked Loops for Wireless Communications Digital, Analog and Optical Implementations (second edition). New York: Kluwer Academic Publishers, 2002
    [59] 郑燕诒.频率合成.北京:科学出版社,1982
    [60] Vectron International. Frequency contral products 2002 catalog
    [61] PE3236 2.2 GHz Integer-N PLL for Low Phase Noise Applications, Peregrine Semiconductor Corp. 2003
    [62] Agilent Technologies. Agilent HMMC-3108 DC-16GHz Packaged Divide-by-8Prescaler Data Sheet
    [63] 费元春,苏广川等.宽带雷达信号的产生技术.北京:国防工业出版社,2002
    [64] Agilent Technologies. Agilent HMMC-5618 6-20 GHz Medium Power Amplifier Data Sheet
    [65] Stephen mass. Nolinear Microwave Circuit (Second edition). Boston: Artech House, 2003
    [66] Edmar Camargo. Design of FET Frequency Multipliers and Harmonic Oscillators. Boston: Artech house, 1998
    [67] Rauscher. C. High Frequency Doubler Operation of GaAs Field-Effect. Transistors. IEEE Trans. Microwave Theory Tech., 1983, 31(6): 462-473
    [68] Rauscher. C. Large-Signal Technique for designing single frequency and voltage controlled GaAs FET Oscillators. IEEE Trans. Microwave Theory Tech., 1986, 34(4): 293-304
    [69] Guo, C. E, Ngoya. R. Quere, et al. Optimal CAD of MESFETs Frequency Multipliers with and without Feedback. IEEE. MTT-S International Microwave Symposium Digest, 1988: 1115-1118
    [70] Agilent Techologies. Agilent HMMC-5040 20-40 GHz Amplifier Data Sheet
    [71] Agilent Application Note HMMC-5040 As a 20-40 GHz Multiplier #50-Rev A. 1 1995
    [72] Agilent Technologies. 11970 Series Harmonic Mixers Data Sheet
    [73] UMS. UMS 10-40GHz frequency multiplier CHX2092a
    [74] Agilent Technologies. Agilent AMMC-5040 20-45 GHz Amplifier Data Sheet
    [75] Begemann G. An X-Band Balanced Fin Line Mixer. IEEE Trans. Microwave Theory Tech., 1978, 26(12): 1007-1011
    [76] Van J. H. C. Heaven. An Integrated Waveguide-Microstrip Transition. IEEE Trans. Microwave Theory Tech., 1976, 24(3): 144-147
    [77] Ahmed M. J. Impedance Transformation Equations for Exponential, Cosine-Squared and Parabolic Tapered Transmission Lines. IEEE. MTT-S International Microwave Symposium Digest, 1984: 336-338
    [78] A. I. Harris. A 800GHz Schottky Diode Mixer. Int. J. Infrared and Millimeter Waves, 1989, 10(11): 1371-1376
    [79] W. C. B. Peatman, Thomas W. Crowe. A 1600GHz Schottky Mixer, Int. J. Irffrared and Millimeter Waves, 1990, 11(3): 355-365
    [80] Stephen A. Maas. Mcirowave Mixers. Boston: Artech House, 1986
    [81] M/A-Com. GaAs Beam Lead Schottky Barrier Diodes MA4E2037, MA4E2039, MA4E2040
    [82] 《中国集成电路大全》编委会.微波集成电路大全.北京:国防工业出版社,1995
    [83] ERIC R. CARLSON, Schneider M. V et al, Subharmonically Pumped Millimeter-Wave Mixers, IEEE Trans. Microwave Theory Tech., 1978, 26(10): 706-715
    [84] Wang Yun-yi and Shu Yong-hui. A study of W-band Subharmonically pumped mixer. IEEE Trans. Microwave Theory Tech., 1985, 33(12): 1340-1345
    [85] Meier, P. J. Wideband Subharmonically Pumped W-Band Mixer In Single-Ridge Fin-Line. IEEE. MTT-S International Microwave Symposium Digest, 1982: 201-203
    [86] Meier P. J., Calviello J. A., Bie P. R. Wide-Band Subharmonically Pumped W-Band Mixer in Single-Ridge Fin-Line. IEEE Trans. Microwave Theory Tech., 1982, 30(12): 2184-2189
    [87] Quan Xue, Kam Man Shum, Chi Hou Chan. Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications. IEEE Trans. Microwave Theory Tech., 2003, 51(5): 1449-1454
    [88] Asher Madjar A Novel General Approach for the Optimum Design of Microwave and Millimeter Wave Subharmonic Mixers. IEEE Trans. Microwave Theory Tech., 1996, 44(11): 1997-2000
    [89] 李超.毫米波集成接收前端的研究:[博士学位论文].成都:电子科技大学应用所,2001
    [90] 王胜平,徐军等.W频段测频系统的研制.空间电子技术,2002,(4):27-31
    [91] 张永鸿,樊勇等.W波段低成本数字通信系统.电子学报,2002,30(3):410-412
    [92] 邹涌泉,甘体国.W频段机载防撞雷达收发分机.电讯技术,2004,44(1):48-51