菌株B7和F4产木质素降解酶条件优化及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是植物材料中仅次于纤维素的最丰富的组份。木质素的降解、转化和利用关系到制浆造纸工业清洁化生产及污染环境的生物修复等领域。对木质素高效降解的菌株主要有真菌、细菌和放线菌,其中白腐真菌是研究最多的菌种,其木质素降解过程的实质是氧化过程,酚氧化酶是其中的关键酶,它们对于天然木质素的再利用有不可低估的作用。白腐真菌是自然界中最有效的木质素降解微生物之一,其分解转化木质素主要依赖生长代谢过程中产生的木质素降解酶系完成,但目前仍存在所用的白腐真菌种类不多且产酶能力和产酶量都有限等问题。细菌和放线菌降解木质素的研究还不多见。开发研究新的降解木质素的真菌、细菌或放线菌,对丰富菌种资源、开发高产木质素降解酶的菌株具有重要意义。本文的研究内容如下:
     1.本文通过对从玉米秸杆表面筛选得来的产木质素降解酶的细菌菌株B7、B8、B9和真菌菌株F2、F3、F4、F5、F7、F8、F10、F12进行进一步评价,得到产木质素降解酶能力强的菌株B7和F4。菌种鉴定命名B7菌株为Enterobacter cloacae B7。F4菌株命名为Fusarium annulatum strain F4。
     2.通过单因子及正交优化试验确定了F4菌株产木质素降解酶的最佳碳源为淀粉,用量为2.0g/l,最佳氮源为酒石酸铵,用量为1.0g/l,最佳pH为5。此条件下得出的漆酶活力达3827.1U/l。木质素过氧化物酶活力达8602.2U/l。B7菌株产木质素降解酶的最佳碳源为麦芽糖,用量为2.0g/l,最佳氮源为酒石酸铵,用量为1.2g/l。最佳pH为4.5,此条件下的漆酶活力达210.6U/l。木质素过氧化物酶活力达2150.6U/l。进行诱导剂对B7菌株产木质素降解酶的影响显示,诱导剂对B7菌株产木质素降解酶有诱导作用,其中二甲苯胺诱导效果较好,在O.O1mM条件下漆酶活力可达2222.2U/l。木质素过氧化物酶活力达8602.2U/l。
     3.对木质素降解酶的酶学性质的研究发现,漆酶的作用最适pH为3.5,低浓度的铜离子对漆酶活力有促进作用,浓度过高则抑制。漆酶具有较好的温度耐受性,在5~65℃间酶活力都具有较高酶活力,酶活力无明显变化。木质素过氧化物酶的最适pH为2.5,低浓度的铁离子对漆酶活力有促进作用,浓度过高则抑制。
Lignin is a class of substances constitute with polymer of aromatic alcohols,found in wood-based organizations,a major role is through formation of intertwined with Net to hardening cell wall.Lignin is mainly located between the cellulose fibers,as a role of resistance.In woody plants,the lignin 25%,is the world's second most abundant organic compounds after cellulose.With the rise of awareness the problem of resources crisis,such as environmental pollution,and the renewable of the natural polymer,human pay more and more attention to biodegradable nature.Waste and the resources renewable,are the major issues of contemporary economic and social development,as well as the new requirements to the contemporary science and technology.
     Lignin degradation,conversion and use are related to clean production of today's pulp and paper industry,and the Sound processing of toxic phenolic compounds and bioremediation of environmental pollution,lignin-degrading strains are mainly fungi,bacteria and actinomycetes,white-rot fungi are the most studied species,the lignin degradation process are the real oxidation process,phenol oxidase is one of the key enzyme.Their role in natural lignin re-use should not be underestimated.
     In nature,White-rot fungi are the most effective lignin degradation microbial,the decomposition of lignin rely largely on the process of lignin degradation enzymes achieve during the its growth and metabolism,since the late 80's of 20th century,many aspects of the study against the white-rot fungi in the degradation of pollutants,production of lignin-degrading enzyme characteristics,optimization of fermentation conditions and biological characteristics of the molecular level are carry on both at home and abroad,but just a narrow range of white-rot fungi are used,enzyme production capacity and a amount of enzyme production are limited.The research of bacteria and Actinomycete bacteria on lignin degradation are rare,it is significance to research and development of new bacteria or actinomycetes to degrade lignin,and can rich strains resources.
     In this paper,bacteria strains B7,B8,B9 and fungal strains F2,F3,F4,F5,F7,F8,F10, F12 were screened form a corn straw surface,all have the Capacity of produce lignin-degrading enzyme.after screened I choise B7 and F4 strains for advanced reseach,and optimized the lignin-degrading enzyme production conditions of F4 and B7 strains with Orthogonal test.inhance the production of lignin-degrading enzyme and studied the physical and chemical properties of lignin-degrading enzyme.
     1.optimized the condition for Ligninolytic enzymes production
     Established at the experimental conditions obtained:the best culture conditions of F4 strain producing ligninolytic enzymes as follow:carbon source for starch 2g/l,ammonium nitrogen for the tartaric acid 1g/l,the best pH was 4.5.Under these conditions the laccase activity reached up to 3827.1u / L,Lignin peroxidase activity of 8602.2U/l.The best culture conditions of B7 strain producing lignin-degrading enzyme producing as follow:carbon source is maltose 2g/l.tartaric acid ammonium nitrogen for the 1.2g/l.Optimum pH of 4.5. Under these conditions the laccase activity reached up to 210.6U/l.,Lignin peroxidase activity of 8602.2U/l.The induced For B7 strain produce lignin-degrading enzyme have show that Inducer have an impact on lignin-degrading enzyme production.xylidine have a best induced,under the conditions at 0.01mM xylidine,the laccase activity can be of 2222.2U/l. Lignin peroxidase activity of 8602.2U/l.
     2.Enzymatic properties
     Crude enzyme obtained from the fermentation liquid,obtained purified laccase and lignin peroxidase after purified.The optimal pH is 4 of laccase from enzyme study,low concentrations of copper ions have a promotion on the laccase activity,high concentration inhibitory the laccase activity.Laccase has good temperature tolerance,between the 5-65℃,there no significant changes in laccase activity.The optimum pH is 2.5 of Lignin peroxidase,low concentrations of iron ions have an promotion on the Lignin peroxidase activity,high concentration inhibitory the Lignin peroxidase activity.
     3.ligninolytic enzymes production capacity compared of F4 and B7 strains
     The ability of F4 strain producing ligninolytic enzymes is high then B7,and easy culture, F4 strain con production a mount of lignin-degrading enzyme even without inducer.but B7 strain producing ligninolytic enzymes has a shorter incubation time also has certain advantages,shorten the fermentation time in industrial production ligninolytic enzymes,improve the fermentation efficiency.
引文
[1]蒋挺大,木质素[M].北京:化学工业出版社,2001.
    [2]Sena-Martins G,Almeida-Varaa E,Duartea JC.Eco-friendly new products from enzymatically modified industrial lignans.Industrial Crops and Products 2008,27(2):189-195.
    [3]王筱捷,程贤.木质素的研究进展和在橡胶工业中的应用[J].橡胶科技市场,2006,19:16-20.
    [4]Argyropoulos S.Wood Chem.Technol,1993,13(2):187.
    [5]Mai C,Majcherczyk A,Huttermann A.Chemo-enzymatic synthesis and characterization of graft copolymers from lignin and acrylic compounds.Enzyme Microb Technol,2000,27(1-2):167-175.
    [6]刘千钧,詹怀宇,刘明华.木质素磺酸镁接枝丙烯酰胺的影响因素[J].化学研究与应用,2003.15(5):737-739.
    [7]郑大锋,邱学青.木质素的结构及其化学改性进展[J].精细化工,2005,22(4):249-253.
    [8]Vanholme R,Morreel K,Ralph J,et al.Lignin engineering.Curr Opin Plant Biol,2008,11(3):278-285.
    [9]李宏清,武旭业,魏慧冬.木质素改性材料及其多级结构对性能的影响[J].科协论坛,2007,1(8):30-31.
    [10]liveiraa L,Evtuguin D,Cordeiro N.Structural characterization of stalk lignin from banana plant.Industrial Crops and Products,2008,(6):1-10.
    [11]Davin LB,Lewis NG.Lignin primary structures and dirigent sites.Curr Opin Biotechnol,2005,16(4):407-415.
    [12]Derek S.Lignin as a base material for materials applications:Chemistry,application and economics.Industrial Crops and Products,2008,27(2):202-207.
    [13]Arker,A.V.,Bryson,G.M.,Bioremediation of heavy metals and organic toxicants by composting.The Scientific World Journal,2002,2:407-420.
    [14]Higuchi T H.Biodegradation of lignin:biochemistry and potential applications[J].Expertia,1982,38:159-166.
    [15]Zimmermann W,Broda P.Conventional and high-performance size-exclusion chromatography and gramineosLignin-carbohydrate complex[J].Method.Enzymolo,1988,161(B):191-199.
    [16]Zyskind J W,Bernstein S I.Recombinant DNA laboratory manual[J].Academic Press,Inc,1981,224.
    [17]孙正茂,肖克宇.真菌木质素降解酶系的研究进展[J].广东饲料,2006,15(2):41-43.
    [18]郑思海,龙和,徐丹.我国能源消耗状况分析,2008,341:21.
    [19]贾芳,刘小青,木质素生物特性对口腔材料的作用[J].2008,45(12)8909-8912.
    [20]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机研究的进展[J].上海环境科学,1998,17(11):46-49.
    [21]刘玲,叶博,刘长江.白腐真菌及其木质素酶的研究进展[J].饲料工业,2006,8(27):25-28.
    [22]陈素华.白腐真菌的木质素降解酶[J].生物通报,2005,8(40):26-27.
    [23]兰进.真菌漆酶研究进展[J].食用菌学报,2005,12(1):57-64.
    [24]张晓昱,黄慧艳.漆酶在食品工业中的研究与应用进展食品科技[J].2003,4:4-7.
    [25]张敏,肖亚中,龚为民.真菌漆酶的结构与功能生物学杂志[J].2003,20(5):6-8.
    [26]王佳玲,余惠生等.白腐真菌的研究进展[J].生物学通报,1998,25(4):233-235.
    [27]郭梅,蒲军等.白腐真菌的特性及其应用前景[J].天津农学院学报,2004,11(3)44-47.
    [28]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [29]黄慧艳,张晓昱.漆酶测定过程中缓冲体系的影响研究[J].工业微生物,2005,35(4):29-32.
    [30]何为,詹怀宇等.一种改进的漆酶活力检测方法,华南理工大学学报(自然科学版)[J],2003,31(12):46-50.
    [31]孙正茂,肖克宇.真菌木质素降解酶系的研究进展[J].广东饲料,2006,15(2):41-43.
    [32]王海磊,李宗义.三种重要木质素降解酶研究进展[J].生物学杂志,2003,20(5):9-11.
    [33]刘梦茹,付时雨等.锰过氧化物酶应用的研究进展[J].林产化学与工业,2006,26(2):112-116.
    [34]赵士豪,赵学库,杨丽宁.锰依赖过氧化物酶研究进展[J].安徽农业科学,2007,35(4):957-959.
    [35]陈立祥,章怀云.木质素生物降解及其应用研究进展[J].中南林学院学报,2003,23(1):79-85.
    [36]MESTER T,FIELD J A.Characterization of a novel manganese peroxidase lignin peroxidase hybrid isozyme produced by bjerkandera speciesstrain BOS55 in the absence of manganese[J].The Journal of Biological Chemistry,1998,25(19):15412-15417.
    [37]HA H C,HONDA Y,WATANABE T,et al.Production of manganese peroxidase by pellet cultureof the lignin2degrading basidiomycete,Pleurotus ostreatus[J].Appl Microbiol Biotechnol,2001,55:704-711.
    [38]LANKINEN V P.,BONNEN A M.ANTONL H,et al.Characteristics and N terminal amino acid sequence of manganese peroxidase from solid substrate cul2tures of Agaricus bisporus[J].Appl Microbiol Biotechnol,2001,55:170-176.
    [39]GIARDINA P,PALMIERI G,FONTANELLA B,et al.Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust[J].Archives of Biochemistry and Biophysics,2000,376(1):171-179.
    [40]STEFFEN K T,HOFRICHTER M,HATAKKA A,et al.Purification and characterization of manganese peroxidases from the litter decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla[J].Enzyme and Microbial Technology,2002,30:550-555.
    [41]P~*RI~* F H,SHENGD,GOLDM H.Purification and characterization of two manganese peroxidase isozymes from tile white2rot basidiomycete Dichomitus squalens[J].Biochimica et Biophysica Acta,1996,1297:139-148.
    [42]BREKR,KA N,PAZARLIOGLU S.Purification and partial characterization of manganese peroxidase from immobilized phanerochaete chrysosporium[J].Process Biochemistry,2004,39:2061-2068.
    [43]BABOROV# P,M;DERM,BALDRIAN P,et al.Purification of a new manganese peroxidase of the white2rot fungus Irpex lacteus,and degradation of polycyclic aromatic hydrocarbons by the enzyme[J].Research inMicrobiology,2006,157:248-253.
    [44]WANG Y,DUHALT R V,PICKARDMA.Purification,characterization,and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258[J].Current Microbiology,2002,45:77-87.
    [45]ZIEGENHAGEN D,HOFRICHTER M.A simple and rapid method to gain high amounts of manganese peroxidase with immobilized myceliumof the agaric white rot fungus Clitocybula dusenii[J].Appl Microbiol Biotechnol,2000,53:553-557.
    [46]TELLO M,CORSINII G,LARRONDO L F,et al.Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceripori opsis subvermispora[J].Biochimica et Biophysica Acta,2000,1490:137-144.
    [47]LOBOS S,LARRONDOL,SALASL,et al.Cloning and molecular analysis of a cDNA and the Cs2mnpl gene encoding a manganese peroxidase isoenzyme from the lignin2degradingbasidiomycete Ceriporiopsis subvermispora[J].Gene,1998,206:185-93.
    [48]MAEDA Y,KAJ IWARA S,OHTAGUCHI K.Manganese peroxidase gene of the perennial mushroom Elfvingia applanata:cloning and evaluation of its relationship with lignin degradation[J].Biotechnology Letters,2001,23:103-109.
    [49]Kuhad RC,Singh A & Eriksson KEL(1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls.Adv.Biochem.Eng.Biotechnol.57:45-125.
    [50]Leonowicz A,Matuszewska A,Luterek J,Ziegenhagen D,Wojtas-Wasilewska M,ChoNS,Hofrichter M & Rogalski J(1999)Biodegradation of lignin by white rot fungi.Fungal Genet.Biol.27:175-185.
    [51]B.E.Lechner,V.L.Papinutti,Production of lignocellulosic enzymes during growth and fruiting of the edible fungus Lentinus tigrinus on wheat straw。Process Biochemistry,200641:594-598.
    [52]Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compost environment:a review.Bioresource Technology,2000,72(2):169-183.
    [53]Shingo K,Masanori A,Noriko O,et al.Degradation of a non-phenolic L-O-4substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole.FEMS Microbiology Letters,1999,170(1):51-57.
    [54]Leatham GF.Extracellular enzymes produced by the cultivated mushroom Lentinus edodes during degradation of lignocellulosic medium.Appl Environ Microbiol,1985;50:859-867.
    [55]陈石根,周润琪,酶学[M].复旦大学出版社,2001,12-25.
    [56]Andre F,Jaime R,Juanita F,et al.World Journal of Microbiology & Biotechnology,2001,17:31-34.
    [57]Spadaro J T,Gold M H,Renganathan V.Degradation of azo dyes by the lignin -degrading fungus phanerochaete chrysosporium[J].Appl Environ Microbiol,1992,58:2397-2401.
    [58]LI Xiangfei,WEN Xianghua,LIN Gang.Decolorization of dyes by a white rot fungus F1[J].Techniques and Equipment for Environmental Pollution Control,2002,3(7):1-4.
    [59]WU Juan,XIAO Yazhong,WANG Yiping.Treatment ofpulp blackliquor wastewater by white-rot fungi in biofilm[J].Chin J Appl Environ Biol,2004,10(3):370-374.
    [60]高大文,文湘华等.pH值对白腐真菌液体培养基抑制杂菌效果的影响研究[M].环境科学,2005,26(6):173-179.
    [61]高大文,文湘华,钱易.不同培养方式对白腐真菌降解染料体系抑杂菌效果的影响[J].清华大学学报(自然科学版),2005,45(12):1625-1628.
    [62]TANGShun et al.ISOLATION OF WHITE-ROT FUNGI FROM CHINA FOR SCREENING LACCASE-HYPERPRODUCING STRAINS.Mycosystema 2001 20(4):520-525.
    [63]赵华等.白腐真菌液态深层培养条件的研究[J]生物技术,2003,13(6):21-24.
    [64]尹艳丽等.不同摇瓶条件对侧耳菌生长及漆酶分泌的影响[J].生物技术,2004,14(5):72-76.
    [65]谢君等.白腐真菌液体培养产生木质纤维素降解酶的研究[J].四川大学学报(自然科学版,2000,37:161-166.
    [66]Baldy V,Gessner MO and Chauvet E(1995) Bacteria,fungi and the breakdown of leaf litter in a large river.Oikos 74:93-102.
    [67]Kamoda S,Saburi Y Structural and enzymatical comparison of lignostilbene -a,p- dioxygenase isozymes,Ⅰ,Ⅱ,and Ⅲ,from Pseudomonas paucimobiBaldy V,Gessner MO and Chauvet E(1995) Bacteria,fungi and the breakdown of leaf litter in a large river.Oikos 74:93-102.
    [68]Elwood JW,Mulholland PJ and Newbold JD(1988) Microbial activity and phosphorus uptake on decomposing leaf detritus in a heterotrophic stream.Verh Internat Verein Limnol 23:1198-1208.
    [69]Bomeman W S,Hartley R D,Morrison W H,et al.Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation.Appl.Microbiol.Biotechnol.,1990,33(3):345-351.
    [70]Hern(?)ndez M,Hern(?)ndez-Coronado M J,Montiel M D,et al.Pyrolysis/gas chromatography /mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw.Journal of Analytical and Applied Pyrolysis,2001,58-59:539-551.
    [71]Steffen H.Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns[J].International Journal of Food Microbiology 2007,118:151-157.
    [72]陈素华.白腐真菌的木质素降解酶[J].2005,40(8):26-27.
    [73]李翠珍,文湘华.白腐真菌F2的生长及产木质素降解酶特性的研究[J].环境科学学报,2005,25(2):226-231.
    [74]宋安东,周利霞,胡渝等.产木质素降解酶类香菇菌株的筛选[J].河南农业大学学报,2006,40(3):307-310.
    [75]欧阳平凯,曹竹安等.发酵工程关键技术及应用[M].北京:化学工业出版社.2005.
    [76]Tsao G-T,Cao N-J,Cong C-S.production of multifunctional organic acids from renewable sources[J].Adv Biochem Eng Biotechnol.1999,(65):245-77.
    [77]Richter K,Berthold C.Biotechnological conversion of sugar and starchy crops into lactic acid[J].J.Agric.Eng.Res.1998,(71):181-191.
    [78]Vishnu C,Sudha R.K.,Gopal R.,Seenayya G.Amylolytic bacteria producing lactic [J].J.Sci.ind.Res,1998,(71):181-191.
    [79]宋微,吴小芹.12种林木外生菌根真菌的培养条件[J].南京林业大学学报,2007,31(3):133-135.
    [80]李玉双,祝儒刚等.一株菲降解细菌的培养条件优化及特性研究[J].化学与生物工程,2006,23[1]:39-41.
    [81]赵丽丽,刘忠.L.缬氨酸生产菌的选育及发酵条件的优化[J].齐鲁药事,2008,27(12):745-747.
    [82]李春喜,邵云等.生物统计学[M].北京科学出版社,2008.
    [83]黄俊,王行国.klebsilla.601细菌漆酶的鉴定及性质[J].化学与生物工程2006,23(3):31-33.
    [84]金义鑫,杨艳燕等.二苯并噻吩降解菌筛选及16SrDNA系列分析[J].环境科学与技 术,2006,29(3):19-20.
    [85]曲丰发,蔡畅等.利用16S rDNA建立种特异性PCR快速检测鸭疫里默氏菌[J].微生物学报,2006,46(1):17-19.
    [86]王素英,杨晓丽等.西藏根瘤菌新表现群的DNA同源性及16S rDNA全系列分析[J].微生物学报,2006,46(11:132-135.
    [87]刘静,阌航等.一株产低温蛋白酶菌株的筛选鉴定及纯酶研究[J].浙江大学学报,2006,32(3):251-256.
    [88]崔洪霞,李富超等.一株产抑制真菌活性全霉素的胶州湾海洋链霉菌[J].中国海洋药物杂志,2006,25(1):11-15.
    [89]李志勇,黄艳琴等.一株细薄星芒海棉细菌的抗菌活性与分类学研究[J].生物技术通报,2006,2:93-96.
    [90]陈立梅,徐文静等.玉米弯孢菌叶斑病菌拮抗链霉菌的分离及鉴定[J].玉米科学,2006,14(2):152-155.
    [91]雷正瑜.16s rDNA系列分析技术在微生物分类鉴定中的应用[J].湖北生态工程职业技术学院学报,2006,4(1):4-7.
    [92]施碧红,罗秀针等.枯草菌素产生菌芽孢杆菌FB123的发酵条件优化及其16S rRN系列分析[J].工业微生物,2008,38(4):14-18.
    [93]辛如,张惠文等.利用16S rDNA系列对十株根瘤菌系统发育的研究[J].中国科技论文在线,2007,2(2):88-91.
    [94]王涛,孟祥晨.一株来源于人体的双歧杆菌的分离与鉴定[J].东北农业大学学报2008,39(7):107-111.
    [95]萨姆布鲁克,D.W.拉赛尔.分子克隆试验指南[M],2002.
    [96]HUBLING,SCHINNERF F.Characterization and immobilization of the laccase fromPleurotus ostreatusand its use for the continuous elimination of phenolic pollutants[J].Enzyme and Microbiol Technol,2000,27:330.
    [97]史伯安,雷福厚等.酸度对漆树酶活力性的影响[J].中国生漆,1996,15:8-11.
    [98]钞亚鹏,叶军,钱世均.担子菌组成型漆酶产生特性的研究[J].微生物学报,2000,40(6):628.
    [99]黄慧艳,张晓昱.漆酶测定过程中缓冲体系的影响研究[J].工业微生物,2005,35(4):29-32.
    [100]孙彦.生物分离工程[M].化学工业出版社,2005.
    [101]刘斌,何绍江.微生物学试验[M].科学出版社,2004.
    [102]施巧琴,吴松刚.工业微生物育种学[M].科学出版社,2003.
    [103]张玉奎.现代生物样品分离分析方法[M].科学出版社,2003.
    [104]周德庆.微生物学教程[M].高教出版社,2002.
    [105]黄茜,黄凤洪等.木质素降解菌的筛选及混合菌发酵降解秸秆的研究[J].中国生物工程杂志,2008,28(2):66-70.
    [106]赵敏,钱程.白腐菌木素氧化酶系的检测及其漆酶诱导产生的研究[J].中国造纸学报,2005,20(2):101-105.
    [107]宋安东,王明道等.平菇木质素降解酶类研究[C].中国资源生物技术与糖工程学术研讨会论 文集,2005,241-245.
    [108]胡道伟,朱雄伟等.白腐菌产漆酶培养条件的研究[J].华中科技大学学报,2003,31(4):111-113.
    [109]康从宝等.白腐菌产漆酶的纯化及部分酶学性质[J].中国生物化学与分子生物学报,2002,18/(5):638-642.