木蹄层孔菌漆酶的产生、分离纯化及酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对东北林业大学微生物及免疫学实验室保存的27株(种)大型真菌木素氧化酶系组成、活性及对染料脱色作用的研究,筛选出木蹄层孔菌作为产漆酶的菌株。并进一步对该菌产漆酶发酵条件、漆酶的纯化及酶学性质进行了研究。获得如下结果:
     (1)采用丁香醛连氮、苯胺蓝平板脱色等4种方法,定性检测了株(种)大型真菌的木素氧化酶系组成。结果表明5个菌种同时具有Lac、Lip、Mnp 3种酶的活性,5个菌种同时具有Lac、LiP 2种酶的活性,8个菌种具有1种酶的活性;12个菌种具有漆酶活性。选择其中生长速度快、漆酶活性高的5个菌种进行漆酶产生的研究,发现木蹄层孔菌在诱导、静止培养条件下产生的漆酶酶活峰值高达9496 U/mL,远远高于其它已报道过的菌种,说明木蹄层孔菌静止培养可代替振荡培养进行漆酶产生的后续研究。木蹄层孔菌等5种真菌对刚果红等4类染料均具有高效广谱的脱色作用,其中木蹄层孔菌效果最好。
     (2)利用正交实验对木蹄层孔菌产漆酶发酵条件进行研究,得到优化培养基组成为(/L):淀粉20 g;藜芦醇2.5 g;蛋白胨2.5 g;Tween80 0.15%;CuSO_4 0.1 mM(调节pH至4.0,温度为30℃)。
     (3)通过DEAF-Sepharose FF离子交换层析和Sephadex G-75凝胶过滤等纯化技术对木蹄层孔菌胞外漆酶进行了纯化,最终纯化倍数达11.93,回收率为20.18%。
     (4)以ABTS作为底物时木蹄层孔菌纯化后的漆酶的最适pH为2.8,在pH 2.0-5.0之间维持较高的酶活,超过pH 5.0漆酶活性急剧下降;纯化后的漆酶最适反应温度为60℃,在20-65℃范围内较稳定,超过65℃酶活力下降迅速。纯化后的漆酶对底物ABTS的催化效率较高,米氏常数为0.068 mmol/L。几种漆酶的抑制剂中的NaN_3、半胱氨酸和DTT对漆酶活力有强烈的抑制,而金属离子鳌合剂EDTA对漆酶活力的抑制程度较低。Zn~(2+)、Mg~(2+)、Ca~(2+)等金属对漆酶活性有明显的激活作用。染料降解实验发现木蹄层孔菌与染料的共培养体系、木蹄层孔菌纯化后的漆酶均对偶氮类染料刚果红、三苯甲烷类染料结晶紫、杂环类染料亚甲基兰、蒽醌类染料茜素红四类染料有很高的降解作用。显示了木蹄层孔菌及其所产生的漆酶在染料降解的应用上具有很强的工业应用潜力。
In this study, the lignin oxidative system, laccase activities and decolorization assay of the 27 fungi were analyzed, which were preserved in the Laboratory of Microbiology and Immunology, Northeast Forestry University. From the results, Fomes fomentariu had been chosen as the strain produced laccase with its excellent capability and researched detailedly in fermentation conditions, purification and enzymatic properties on extracellular laccase which it produced. Main results as followed:
     (1) The lignin oxidative system of 27 fungi species were analyzed qualitatively by four methods besides using syringaldazine as the substrate and the decolorization of aniline blue in plate cultivation. The result showed that 5 species had three enzymes activity of Lacese, Lip and Mnp, and 5 species had two. Another 8 species only had one enzymes activity. There were also 12 species produced laccase activities. The 5 fungi, which grew quickly and produced high laccase activity, were selected to study how the cultivation mode and inducer could affect the production of laccase activity. The laccase activities was produced by Fomes fomentarius reaching a peak of 9496 U/ml on induction and static cultivation, which was obviously higher than other fungi. It proved that shaking cultivation could be taken place by static cultivation to produce and prepare laccase in the follow up work for Fomes fomentarius. By the decolorization assay, it was found that all of this 5 species have efficient and broad-spectrum discolored function to 4 head kinds of dye and Fomes fomentarius had most excellent capability.
     (2) Utilizing the orthogonal design experiment method, the best response system of media (g/L): starch 20, veratryl alcohol 2.5, peptone 2.5, Tween80 0.15 %, CuSO_4 0.1 mM (pH4.0, 30℃).
     (3) Laccase from Fomes fomentarius was purified using DEAE-Sepharose FF anion-exchange chromatography and Sephadex G-75 gel filtration. The purification fold was 11.93 and recovery of total laccase activity was 20.18%.
     (4) The pH for laccase activity against ABTS showed a peak of maximum activity at pH 2.8. The enzyme was stable at pH range from 2.0 to 5.0. The optimum temperature of the purified enzyme was observed at 60℃and was stable at range from 20℃to 65℃. But the activity decreased rapidly beyond 65℃. The purified laccase showed activity against various substrates. The highest Km value (0.068 mmol/L) was found for ABTS. The purified enzyme was strongly inhibited by sodium azide, L-cysteine and DTT, whereas the metal ion chelator EDTA showed only a slight inhibitory effect. The metal ion Zn~(2+), Mg~(2+) and Ca~(2+) could activate the laccase activities.
     (5) In the dye degradation assay, it was found that the co-culture system of Fomes fomentarius and dye had high degradation effect as the laccase purified on the congo red, crystal violet, methylene blue and alizarin red, which were belong azo compounds, triphenylmethane, heterocyclic and anthraquinones, respectively. This result showed that the laccase produced by Fomes fomentarius had industrial application potential on the dye degradation.
引文
[1]季立才,胡培植.漆酶的结构功能及其应用.氨基酸和生物资源,1996,18(1):25
    [2]钞亚鹏,叶军,钱世钧.担子菌组成型漆酶产生特性的研究.微生物学报,2000,40(6):628-632
    [3]Eriksson K E, Blanchette R A, Ander P. Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin Heidelberg, 1990: Springer-Verlag
    [4]Orth A B, Royse D J, Tien M. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol, 1993,59(12): 4017-4023
    [5]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiology Reviews, 1994,13(2): 125-135
    [6]蔡磊,尹峻峰.几种简便的木质素降解真菌定性筛选方法.微生物学通报,2002,29(1):67-69
    [7]程东升,潘学仁.食用菌过氧化物同工酶染色法比较.中国食用菌,1994,12(3):15-18
    [8]程东升,山口岳广.两类木蹄层孔菌在酶蛋白水平上的遗传分化.菌物系统,2000,19(1):81-86
    [9]Magdalena J, Jerzy Z, Elzbieta D. Ligninolytic enzymes can participate in a multiple response system to oxidative stress in white-rot basidiomycetes: Fomes fomentarius and Tyromyces pubescent. International Biodeterioration & Biodegradation, 2006, 58(3): 168-175
    [10]刘亮,周守兵.木蹄层孔菌乙醇提取物对肿瘤细胞的抑制作用.癌变畸变突变,2004,17(2):15-20
    [11]Jeong-Sook Lee. Effects of Fomes fomentarius supplementation on antioxidant enzyme activities, blood glucose and lipid profile in streptozotocin-induced diabetic rats.Nutrition Research, 2005(25) :187-195
    [12]Mayer A M, Staples R C. Laccase: New Functions for an Old Enzyme. Phytochem, 2002, 60(6): 551-565
    [13]Rehammar B. Purification and Properties of Laccase and Stellacyanin from Rhus Vernicifera. Biochim Biophys Acta, 1970,205(1): 35-47
    [14]Johannes C, Majcherczyk A, Huttermann D. Degradation of a thracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol, 1996, 46(3): 313-317
    [15]Givaudan A, Effosse A, Faure D, et al. Polyphenol oxidase from Azospirillum lipofeum isolated from the rhizosphere: evidence for a laccases in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett, 1993,108(2): 205-210
    [16]张敏,肖亚中,龚为民.真菌漆酶的结构与功能.生物学杂志,2003,20(5):6-8
    [17]胡平平,付时雨.漆酶催化活性中心结构及其特性研究进展.林产化学与工业,2001,21(3):69-75
    [18]Annadurai G, Babu S R, Nagarajan G, et al. Use of Box-Behnken design ofexpeiiments in the production of manganese peroxidase by Phanerochaete chrysosporium (MTCC 767) and decolorization of crystal violet. Bioproc Eng, 2000, (23): 715-719
    [19]Alexandra G, Zhulin I B. Laccase are widespread in bacteria. Trends Biochem Sc, 2000,18(2): 41-42
    [20]Kahraman S S, Gurdal I H. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresource Technology, 2002,82(3): 215-217
    [21]朱思明,于淑娟,杨连生.真菌漆酶的生产、性质和应用.中国食品添加剂,2006,1:126-131
    [22]Rodriguez C S, Toca H J L. Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 2006,24(5): 500-513
    [23]Minussiy R C, Glaucia M. Potential application of laccase in the food industry. Trend Food Sci Technol, 2002,13(6): 205-216
    [24]黄乾明,杨婉身,陈华萍,等.粗毛栓菌诱变菌株SAH-12漆酶的分离纯化及酶学性质研究.菌物学报,2007,26(4):539-548
    [25]初华丽,梁宗琦.漆酶的潜在应用价值.山地农业生物学报,2004,23(6):529-533
    [26]曹治云,郑腾,谢必峰,等.漆酶在生物检测中的应用进展.传感器技术,2004,23(8): 1-3
    [27]赵敏,杨谦,辛颖,等.扁芝漆酶诱导与产生的初步研究.北京林业大学学报,2004, 26(4):43-47
    [28]黄乾明,谢君,张寒飞,等.漆酶高产菌株的诱变选育及其产酶条件.菌物学报,2006,25(2):263-272
    [29]吴坤,朱显峰,张世敏,等.杂色云芝产漆酶的发酵条件研究.菌物系统,2001,20(2): 207-213
    [30]肖亚中,张敏,吴涓,等.影响白腐真菌AH28-2菌株漆酶合成的因子与发酵条件.生物工程学报,2001,17(5):579-583
    [31]刘尚旭,造佳里,张义正.糙皮侧耳菌漆酶同工酶谱分析.四川大学学报,2000, 37(5):768-771
    [32]Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30(2): 215-242
    [33]Wang J W, Wu J H, Huang W Y, et al. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresource Technology, 2006,97(5): 786-789
    [34]杨建明,张小敏,邢增涛,等.毛木耳漆酶纯化及其部分漆酶特性的研究.菌物学报,2005,24(1):61-70
    [35] H'ela Z M, Tahar M, Abdelhafidh D, et al. Laccase purification and characterization from Trametes trogii isolated inTunisia: decolorization of textile dyes by the purified enzyme. Enzyme and Microbial Technology, 2006,39(1): 41-148
    [36] Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microbiol Biotechnol, 2004, 63(5): 560-563
    [37] Halaouli S, Asther M, Kruus K, et al. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. Appl Microbiol, 2005, 98(2): 332-343
    [38] Wang H X, Ng T B. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol, 2006,69(5): 521-525
    [39] Guo Y J. Experimental techniques in protein electrophoresis, 2nd edn. Science Press, 2005, 16(1): 53-56
    [40] Martin H. Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 2002,30(4): 454-466
    [41] Leonowicz A, Grzywnowicz K. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme andMicrobial Technology, 1981,3(1): 55-58
    [42] Archibald FS. A new assay for lignin 2-type peroxidase. Appl Environ Microbiol, 1992,58(9): 3110-3116
    [43] 李慧蓉.白腐菌真菌生物学和生物技术.北京:化学工业出版社.2005:25-49
    [44] 秦小琼,傅庭治,曹幼琴.红栓菌胞外漆酶的诱导、纯化及部分特性研究.微生物学报,1996,36(5):360
    [45] 赵敏,钱程.白腐菌木素氧化酶系的检测及其漆酶诱导产生的研究.中国造纸学报,2005,120(2):101-105
    [46] 慕庆峰,赵敏,钱程.血红密孔菌对刚果红脱色的共培养体系优化的研究.中国造纸学报,2005,20(2):5-100
    [47] Lu L, Zhao M, Zhang B B, et al. Purification and characterization of laccase from Pycnoporus-sanguineus and decolorization of an anthraquinone dyeby the enzyme. Appl Microbiol Biotechnol, 2007,74:1232-1239
    [48] Boominathan K, Redd C A. Handbook of Applied Mycology. Academic Press, Washington DC. 1992,7: 63
    [49] 朱明旗,曹支敏,李振歧.栓菌属高产酶菌株的筛选及其发酵产酶条件研究初报.中国农学通报,2006,22(2):119-121
    [50] 林丽萍,赵敏.三色革裥菌胞外漆酶发酵条件及部分特性研究.中国造纸学报,2004,19(2):113-117
    [51] Olga V K, Elena V S, Valeria PG,et al. Laccase and Mn-peroxidase production by Coriolus hirsutus strain 075 in a jar fermentor. Journal of Bioscience and Bioengineering, 2002, 93(5): 449-455
    [52] 王宜磊.培养条件对毛栓菌漆酶分泌的影响.微生物学杂志,2003,23(5):28-30
    [53] Claus H. Laccases and their occurrence in prokaryotes. Arch Microbiol, 2003, 179(3): 145-150
    [54] 吴坤,闵航,朱显峰,等.杂色云芝漆酶的分离、纯化、和酶学特性研究,高校化学工程报,2003,17(2):173-179
    [55] Nagai M, Sato T, Watanabe H et al. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol, 2002,60(3): 327-335