香菇漆酶优化培养
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验研究目的是:通过对香菇菌种的选取,培养基配方和培养条件的优化,最终得到实验室条件下最高的香菇漆酶活性,然后计算过程中的相关动力学参数。香菇漆酶活性测定底物采用邻联甲苯胺(3,3'-二甲基联苯胺)醋酸-醋酸钠缓冲溶液当酸碱度为4时是最佳反应缓冲体系,漆酶活性的最小变化值为0.2。铜离子对香菇漆酶活性测得值最高可提升50%,亚铁离子可以完全抑制香菇漆酶活性。对最初六种香菇菌种的初步培养表明,在完全不优化的情况下,香菇漆酶的活性在40 U/ml到100 U/ml之间,最佳菌种的漆酶活性约为120U/ml,选取香菇菌种A和E进一步优化,振荡培养条件提前了香菇漆酶活性最高值的出现时间但不利于香菇菌丝体产酶,250ml培养体系效果明显好于500ml培养体系。利用八种简单液体培养基对香菇菌种A、E(重新命名为B)和华香8号进行培养,最后选择香菇菌种B为接下来的实验菌种,并以培养基配方葡萄糖、蛋白胨、酵母粉、牛肉浸膏加微量元素为基础培养基进一步优化。培养基的均匀设计优化实验得到的最佳培养基配方为:葡萄糖22.57克,牛肉浸膏2.8克,酵母粉3.0克,蛋白胨5.12克,微量元素1.17ml。最高漆酶活性增加到180 U/ml左右。培养基中铜离子浓度在19mg/l到20mg/l之间时最适合香菇菌丝体产酶,利用数学方法除去了铜离子对测定结果的影响,诱导效应使香菇漆酶活性提高到270 U/ml。运用响应面分析优化法选择了培养基起始酸碱度、培养温度和培养天数三因素继续优化并最终利用分析图确立了各自的最优值为初始酸碱度为3.6左右,过程中香菇菌丝体的培养温度为26.1℃左右,香菇菌丝体培养到46到47天。通过所以的优化部分后,测得的香菇漆酶活性最高值为362.6(U/ml),比最初平均值大约提高了四倍。动力学部分计算了香菇漆酶反应动力学、香菇生长和产酶动力学的相关参数。
The aim of this experiment is by selecting different kinds of Lentinula edodes strain, optimizing the fermentation formula and fermentation process, and finally obtaining the highest activity value of Lentinula edodes Laccase, then calculating the kinetic parameters during the process. The o-tolidine(3,3'-dimethylbenzidine) is used as substrate to determine the optimal pH values in varies kind of conditions resulted in the acetic acid-natrium aceticum and its pH value 4 as the optimal buffer solution. The minimum changeable value of Laccase is 0.2. The Laccase activity was enhanced by about 50% when the copper ion concentration was between 19 and 20 mg/L and ferrous ion could entirely inhibit the activity of Laccase.First cultivation of six kinds of Lentinula edodes indicate, without any kind of optimization, the average activity value of Laccase is between 40 U/ml and 100 U/ml, the highest is about 120 U/ml. Strain A and E is selected to enter next step. Shaking culture condition can advance the appearing time of highest activity value of Lentinula edodes Laccase but ultimately, it reduce the Laccase activity value, and 500ml cultivation system reduce the Laccase activity value by about 50% compared to 250ml cultivation system. Eight basic liquid cultures are used to cultivate Lentinula edodes strain A, E (renamed B) and Huaxiang 8 resulted in strain B is the best candidate. In the process to find out the best fermentation formula by using homogeneous design resulted in glucose 22.57 g, beef extract 2.8 g, yeast powder 3.0g, peptone 5.12 g, microelement 1.17ml is the best formula to culture Lentinula edodes strain. The Laccase activity value increase to 180 U/ml. Copper ions as an inducer increase the value to 270 U/ml. Response surface method indicate that the pH 3.6, cultivation temperature 26.1℃and cultivation process time 46 are the best conditions for fermentation. 362.6(U/ml) is the highest Laccase activity value in the whole experiment, it is about 4 fold compared to original average values. In the dynamic part lots of kinetic parameters are calculated which are related to the whole optimization process.
引文
[1]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展[J].重庆教育学院学报. 2001 ,14(3):64-67.
    [2]杨军,吕晓静,王迪珍.木质素在塑料中的应用[J].高分子通报。2002,4:53-60.
    [3]蒋挺大.木质素.第一版.化学工业出版社[M] . 2001: 1-34.
    [4]张建军,罗勤慧.木质素降解酶及其化学模拟的研究进展[J].化学通报2001,8:470-476.
    [5]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工2005,4:249-252.
    [6]曲音波.制浆造纸生物技术研究进展[J].生物技术通报,1998(6):14-19.
    [7] Rayner A D M, Boddy L. Fungal decomposition of wood [M]. John Wiley&Sons, Chichester. 1988: 587-598.
    [8] Pirkko K, Petteri R, Jussi S. Dibenzodioxocins A novel type of linkage in softwood lignins [J]. Tetrahedron Lett. 1995, 36: 4501-4504.
    [9] Kirk T K, Farrell R L. Enzymatic“combustion”: the microbial degradation of lignin [J]. Ann. Rev. Microbial. 1987, 41: 465-505.
    [10]叶汉玲.新鲜香菇子实体漆酶的纯化和性质. [J].南京林业大学学报,1997,6:50-53.
    [11]张欣,吕作舟.香菇多糖的纯化及其理化性质的研究[J].中国食用菌,1 999,118(6):25-31.
    [12]王卫国,赵永亮.香菇多糖分离最佳工艺及最佳原料探讨[J].中草药.2000,31(8):584-585.
    [13]雷敬敷,张玲,李兴义.香菇发酵工艺及香菇多糖的提取[J].中国食用菌,1993, 12(3): 31-35.
    [14] Tassinari T. Energy requirement and process design consideration in compression milling pretreat cellulose wastes for enzymatic hydrolysis [J]. Biotech and Bioeng.1980, 22: 1689-1705.
    [15]高扬.木质索的生物降解及酶的作用[J].纸和造纸,1996, 3(2):51-54.
    [16]林鹿,詹怀宇.白腐菌对芳香化合物的降解及其机制[J] .环境科学与技术,1999, 3: 8-13.
    [17] Aader J P. The cellobiose-oxidizing anznnes CBQ and CIO as related to lignin and cellulose degration-a renew [J] .FEMS Micro. Rev. 1994,13: 297-312.
    [18] Gould J M. The mechanism of alkaline peroxide delignification of agricultural residues [J]. Biotech and Bioeng.1985, 26:46-72.
    [19]李越中,高培基.黄胞原毛平革菌合成木素过氧化物酶的营养调控[J].微生物学报, 1994, 34(1): 29-36.
    [20]丁佐龙.碳源组合方式对粉刺侧胞霉产木素过氧化物酶的影响[J].生物学杂志, 1997, 14(5): 23-26.
    [21] Frederick S. A New Assay for Lignin-type Peroxidase Employing the Dye Azure B [J]. Appl. Environ. Microbiol.1992, 58(9): 3110-3116.
    [22] Field J A. Acryl alcohols in the physiology of ligninolytic Fungus [J]. FEMS Micro. Rev. 1994, 13: 153-158.
    [23] Masaaki K. Purification and characterization of two lignin peroxidase isoezymes produced Bjerkandera sp.strain Bos55[J].FEBS Lett. 1998, 422(3): 391-394.
    [24]周金燕.真菌产生的锰过氧化物酶和漆酶的研究[J].微生物学报, 1993, 33 (5): 387-391.
    [25]方自若.几种担子菌胞外漆酶同工酶的研究[J].真菌学报,1985 ,4(3)∶147-157.
    [26]秦小琼.红栓菌胞外漆酶的诱导[J].微生物学报,1996, 36(5): 358-368.
    [27] Brown J A,Alic M,Gold M H. Manganese Peroxidase Gene Transcription in Phanerochaete chrysosporium: Activation by Manganese [J]. J.Bacteriol, 1991, 173: 4101-4106.
    [28]闫章才,李越中.木素过氧化物酶的营养调控过程机理[J].微生物学报,1996,58(1): 12-16.
    [29] Paszccynski A, Crawford R L, Huynh V B.Manganese Peroxidase of Phanerochaete chrysosporium: Purification [J]. Methods Enzymol, 1998,161(B): 264-274.
    [30] Ming T, Kirk T K. Optimization of Lip production from phanetochaete chrysosporium using response surface methodology [J]·Bioprocess.Eng. 1999,21: 456-468.
    [31]邓耀杰,林鹿,詹怀宇.白腐菌对芳香化合物的降解及其机制[J].环境科学与技术,1999,86(3): 8-12.
    [32]张建军,罗勤慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001,8(5): 470-477.
    [33]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理[J].环境污染治理与设备,2000,1(3): 51-54.
    [34] Ming T ,Kent K. Lignin Peroxidase of Phanerochaete chrysosporium [J]. Methods Enzymol, 1988, 161B: 238-249.
    [35]崔黎,赵岩,冯朴荪.云芝深层培养生产木质素降解酶的研究[J].生物工程学报, 1994, 10(2): 190-193.
    [36] Fenn P, Choi S, Kirk T K. Ligninolytic activity of Phanerochaete Chrysosporium Physiology of suppression by NH4+ and Lglutamate [J]. Archives of Microbiology, 1981, 130: 66-71.
    [37]管筱武,张甲耀,郑连爽.嗜碱性木素降解菌降解能力的初步研究[J].中国造纸, 1999, 6: 19-22.
    [38] Tuomela M V.Biodegradation of lignin in a compost environment [J].Bioresource Technology, 2000, 72:169 -183.
    [39]黄丹莲,曾光明,黄国等.白腐菌的研究现状及其在堆肥中的应用展望[J].微生物学通报,2004,31(2):112-116.
    [40] Servili M, DeStefano G, Piacquadio P. A novel method for removing phenols from grape must [J]. Am. J. Enol. Vitic. 2000, 51: 357-361.
    [41] Bauer C G , Kuehn A, Gajovic N, et al. New sensors for morphine and codeine base on morphine dehydrogenase and laccase [J]. Fresenius J. Anal. Chem. 1999, 364: 179-183.
    [42]周金燕,张发群.真菌产生的锰过氧化物酶和漆酶的研究[J].微生物学报,1993,33(5):387-391.
    [43]史伯安,雷福厚.酸度对漆树酶活性的影响[J].中国生漆,1996,15:8-11.
    [44]王佳玲,余惠生,付时雨等.白腐菌漆酶的研究进展[J].微生物学通报, 1998, 25(4): 233-236.
    [45]王宜磊.侧耳液体培养特性及胞外酶活性研究[J].中国食用菌,2000,19(4):33-34.
    [46]胡平平,付时雨,李光日.贝壳状革耳菌漆酶酶活测定方法分析[J].广州化学,2001,26(4):22-27.
    [47]吴涓,肖亚中,王怡平等.蜜环菌胞外漆酶酶活力的分光光度法测定[J].厦门大学学报,2001,40(4):893-897.
    [48]康从宝,刘巧,李清心等.白腐菌产漆酶的纯化及部分酶学性质[J].中国生物化学与分子生物学报,2002,18(5):638-642.
    [49]刘淑珍,钱世钧.担子菌漆酶的分离纯化及其性质研究[J].微生物学报,2003,43(1):73-77.
    [50]黄慧艳,张晓昱.漆酶测定过程中缓存体系的影响研究[J].工业微生物,2005,35(4):29-31.
    [51]张玉,洪枫.优化培养条件对提高香菇漆酶产量的影响[J].林产化学与工业,2006,26(2): 74-78.
    [52] Bourbonnais R,Paice M G.Oxidation of non-phenolic substrates An expanded role for laccase in lignin biodegradation [J]. FEBS Lett,1990,267:99-102.
    [53] Youn H D,Hah Y C.Role of laccase in lignin degradation by white rot fungi[J].FEMS Microbiology Letters, 1995,132(3):183-188.
    [54]陈文强,邓百万.两种食用菌液体发酵培养基筛选的初步研究[J].氨基酸和生物资源2000.22(3):29-32.
    [55]李云雁.试验设计与数据处理[M].北京:化学工业出版社. 2004.
    [56]方开泰.均匀设计与均匀设计表[M].北京:科学出版社. 1984.
    [57]江体乾.化工数据处理[M].北京:化学工业出版社. 1984.
    [58]胡良平.Windows SAS 6.1实用统计分析教程[M].北京:军事医学出版社,2001.
    [59] Gawande B N,PatKan A Y.Application of factorial designs for optimization of Cyclodextrin Glycosy trasferase production from Klebsilla Pneumoniae AS-22[J].Biotechnology and Bio-engineering,1999,64 (2) :168-173.
    [60] Ismail A, Linder M, Ghoul M.Optimization of butylgalactoside synthesis by B-galactosidase from Aspergilusoryzae [J].Enzyme and Microbial Technology,1999,25:208-213.
    [61]陈魁.试验设计与分析[ M].北京:清华几学出版社. 1996:94-180.
    [62]贾士儒.生物工艺与工程实验技术[M].中国轻工出版社,2002.
    [63]俞俊棠,苏云金.金杆菌摇瓶发酵工艺与工程参数[J].化学工程. 1996, 24(6): 26-29.
    [64]陈斌,尚龙安.红霉素发酵工艺优化研究[J].生物工程学报.1999,15(1):104-108.
    [65]李宝璋.西洋参细胞液体培养及动力学研究[J].生物工程学报.1993, 9(4): 361-366.
    [66]俞俊棠,顾其丰,叶勤.生物化学工程[M].北京:化学工业出版社,1991.
    [67]陈守文.酶工程[M].北京:科学出版社,2008.
    [68]罗贵民.酶工程[M].北京:化学工业出版社,2003.