葡萄枝条木质素降解菌的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄修剪枝条是葡萄园管理中产生的一种有机副产物。近年来,随着我国葡萄栽培面积的不断扩大,产生了大量的葡萄修剪枝条,尤其是葡萄冬剪枝条。由于葡萄冬剪枝条木质化较为严重,难于被降解,传统上这些枝条被随意堆放或焚烧,造成资源的严重浪费和环境污染。自然界中存在一些木质素降解微生物,可以实现葡萄枝条木质素的高效降解及转化,如白腐真菌。因此,筛选出高效的枝条木质素降解菌,为提高葡萄枝条木质素的降解效率,促进葡萄枝条的综合利用,具有重要的应用研究价值。
     本研究从葡萄园中腐烂的葡萄枝条上,进行分离纯化出木质素降解真菌,再通过愈创木酚平板显色法和苯胺蓝平板退色法初步筛选出产木质素降解酶类(漆酶、锰过氧化物酶等)较高的菌株,并对此筛选出的菌株进行液体产酶试验和固态降解实验,以进一步筛选出产木质素降解酶活高和枝条木质素降解能力强的高效菌株,然后分别研究培养温度和pH值对高效菌株固态降解作用的影响,以对高效菌株的固态降解条件进行初步优化,最后从形态学上对高效菌株进行菌种鉴定。研究结果表明:
     1.直接从腐烂的葡萄枝条上,分离纯化到24株在愈创木酚培养基平板上产生红棕色变色圈的木质素降解真菌。以此24菌株分别进行PDA-愈创木酚显色反应和PDA-苯胺蓝退色反应试验,初步筛选出产漆酶和锰过氧化物酶活较高的5个菌株,即A-11、A-02、A-40-1、A-21和A-51-1。
     2.以初筛到的5个菌株进行液态产酶试验,结果表明,5个菌株均能在第6 d和8 d分别达到漆酶和锰过氧化物酶的最大产酶高峰,其中菌株A-51-1表现出最强的产漆酶和锰过氧化物酶能力,其最大酶活分别为9.20 U·ml-1和21.60 U·ml-1。
     3.以初筛到的5个菌株进行固态降解试验,结果表明,菌株A-51-1的木质素降解能力最强,在30 d和50 d后的木质素降解率分别高达32.53%和63.51%。此外,A-51-1还表现出较强的纤维素和半纤维素的降解能力,以及在固态发酵过程中表现出对木质素、纤维素和半纤维素降解的阶段性和选择性。在发酵前期30 d,菌株A-51-1表现出半纤维素和纤维素的降解速度较快,但在发酵后期木质素的降解速率增强,表现出对木质素降解的较强选择性。
     4.酶能力和枝条木质素降解能力,为枝条木质素降解的高效菌株。
     5.分别在不同的pH(5.0、6.0、7.0、8.0、9.0)和温度(20℃、25℃、30℃、35℃、40℃)条件下,研究了高效菌株A-51-1对葡萄枝条木质纤维素的降解作用,结果表明,在pH为7.0时,温度为30℃时A-51-1对枝条木质素、纤维素和半纤维素的降解效果最佳。
     6.依据《真菌鉴定手册》(魏景超,1979),从菌落、菌丝和分生孢子的形态特征上,将菌株A-51-1鉴别为半知菌类(Fungi Imperfecti)丛梗孢目(Moniliales)丛梗孢科(Moniliaceae)卵形孢霉族(Oosporeae)地霉属(Geotrichum LK.)菌。
Vineyard pruning residues are organic by-products from vineyards management. In recent years, with gradually enlargement of the grape cultivation area in our country, a great quantity vineyard pruning residues are produced, especially vineyard winter pruning residues. Since the greater lignification of vineyard pruning and hardly to be degraded, the vineyard pruning residues were stacked in disorder and burned traditionally, which caused serious waste of resources and environment pollution. There are some lignin-degrading microorganisms which can achieve bio-degradation and microbial conversion efficiently, such as white-rot fungi. Therefore, screening of excellent lignin-degrading fungi, is helpful to improve degradation rate of vineyard pruning lignin and to promote the comprehensive utilization of the vineyard prunings, which has very important application research values.
     In this study, lignin-degrading fungi were isolated and purified from the decayed prunings collected in a vineyard. The strains which showed higher lignin-degrading enzymes activities, including laccase and manganese peroxidase enzymes activities, were selected by both colorful reactions of guaiacol plates and decolorizations of Aniline bule plates. By fermentation test in liquid producing enzymes activities and solid pruning degradation test, the excellent strain were selected, with the highest lignin-degrading enzymes activities and the strongest ability of pruning lignin-degradation. And then, the effect of pruning degradation by the excellent strain in different cultivated pH and temperatures of solid fermentation respectively were studied, in order to get a preliminary optimization of solid fermentation conditions. Finally, the excellent strain was identified in morphology. The results show that:
     1, Twenty-four lignin-degrading fungi strains which showed color zones on the guaiacol culture plates were obtained directly from decayed prunings by isolation and purification. Through both the colorful reactions test of PDA-guaiacol plates and the decolorizations test of PDA-Aniline bule plates respectively, among the twenty-four strains, five strains with higher Lac and MnP enzymes activities were screened, that were A-11、A-02、A-40-1、A-21 and A-51-1.
     2, The liquid fermentation test were carried out by five strains, the results showed that five strains reached the highest peak of producing Lac and MnP enzymes respectively at 6 d and 8 d. Among them, A-51-1 strain showed the strongest ability to produce laccase and manganese peroxidase enzymes, of which the largest enzymes activities were 9.20 U·ml-1 and 21.60 U·ml-1 respectively.
     3, The solid fermentation test were carried out by five strains, the results showed that A-51-1 strain had the strongest lignin-degrading ability, and its lignin-degradation rates after 30 d and 50 d were up to 32.53% and 63.51% respectively.In addition, strong cellulose and hemicellulose degrading abilities were showed to A-51-1, and in the process of solid fermentation, the process of lignin, cellulose and hemicellulose degradation by strain were staged and selective. In the prophase 30 d of solid fermentation, A-51-1 strain was showed with higher degradation rate of cellulose and hemicellulose than lignin, while the degradation rate of lignin increased in the late fermentation, which showed strong lignin-degradation selectivity.
     4, According to the results of liquid fermentation test and solid fermentation test, it showed that A-51-1 strain was viewed as the excellent lignin-degrading strain, with the strongest abilities of both producing lignin-degrading enzymes activities and vineyard pruning lignin-degradation.
     5, In different cultivated pH values including 5.0、6.0、7.0、8.0、9.0 and temperatures of solid fermentation from 20℃to 40℃respectively, the lignocellulose degradation of vineyard prunings by the excellent strain A-51-1 were studied, the results showed that in pH 7.0 or 30℃, the degradations of lignin, cellulose and hemicellulose by A-51-1 strain showed the highest efficiency.
     6, Based on the identification of Fungus Handbook by Wei Jingchao, by morphological characteristics of colony, mycelium and conidia,A-51-1 strain was identified as Geotrichum LK., Oosporeae, Moniliaceae, Moniliales, Fungi Imperfecti.
引文
[1]艾尼瓦尔,付时雨,詹怀宇.白腐菌Cyathus stercoreus预处理芦苇制浆的研究[J].纤维素科学与技术,2002,10(3):16-24.
    [2]蔡磊,尹峻峰,杨丽萍,等.几种简便的木质素降解真菌定性筛选方法[J].微生物学通报,2002,29 (1):67-69.
    [3]陈芙蓉,谢更新,郁红艳,等.基于木质素生物降解的堆肥化接种剂开发[J].生态与农村环境学报,2008,24(2):84-87.
    [4]陈今朝,戴玄,王庆.桑枝屑栽培平菇试验研究[J].北方园艺,2008(12):178-179.
    [5]陈金华,程文亮,顾新伟,等.果桑枝条栽培香菇研究[J].浙江农业科学,2006,(02):131-133.
    [6]陈克利,任承霞,石淑兰,等.桦木硫酸盐木质素的分离及结构分析[J].中国造纸学报,1999,14:9-14.
    [7]池玉杰,伊洪伟.木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J].菌物学报,2007,26(1):153-160.
    [8]崔艳红,张海棠,孟庆辉,等.白腐真菌产木质素降解酶的条件及酶学性质的研究[J].吉林农业科学,2008,33(2):43-47.
    [9]丁少军,王传槐,叶汉玲,等.云芝(Coriolus versicolor)高木质素降解活性菌株筛选的研究[J].纤维素科学与技术,1994,2(1):32-38.
    [10]杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究[J].生物技术,2004,14(5):46-48.
    [11]杜海萍,宋瑞清,王钰祺.几种真菌产木质素降解酶的比较研究[J].林业科技,2006,31(4):20-24.
    [12]非常规饲料资源的开发与利用研究组编著.非常规饲料资源的开发与利用[M].北京:中国农业出版社,1996.
    [13]管筱武,张甲耀,罗宇煊.木质素降解酶及其调控机理研究的进展[J].上海环境科学,1998,17(12):46-49.
    [14]贺普超.葡萄学[M].北京:中国农业出版社,1999.
    [15]洪树楠,刘明华,范娟,等.木质素吸附剂研究现状及进展[J].造纸科学与技术,2004,23(2):38-43
    [16]胡惠仁,张盆,王玉峰,等.杨木生物预处理机械浆的研究[J].中国造纸,2006,25(08):1-4.
    [17]胡建宏,丁海荣,王立强.利用白腐真菌开发农作物秸秆饲料的研究[J].饲料工业,2005,26(11):57-59.
    [18]胡明,卢雪梅,高培基,等.锰过氧化物酶的结构与功能[J].中国生物工程杂志,2003,23(3):30-34.
    [19]黄丹莲,曾光明,黄国和,等.微生物接种技术应用于堆肥化中的研究进展[J].微生物学杂志,2005,25(2):60-64.
    [20]黄红丽,曾光明,黄国和,等.堆肥中木质素降解微生物对腐殖质形成的作用[J].中国生物工程杂志,2004,24(8):29-31.
    [21]季金梅,谭长雪.葡萄夏季修剪技术[J].中国南方果树,2006,35(4):62.
    [22]荚荣,汤必奎,张晓宾,等.藜芦醇和吐温-80对白腐菌产木质素降解酶的影响及在偶氮染料脱色中的作用[J].生物工程学报,2004,20(2):302-305.
    [23]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [24]鞠洪波,郎子健.食用菌对山杨木质素及纤维素的降解[J].东北林业大学学报,2007,35(12):41-42.
    [25]鞠洪波.9种食用菌对云杉木质素及纤维素降解的研究[J].林业科技,2008,33(3):22-24.
    [26]康从宝,李清心,刘瑞田,等.一株白腐菌产生的漆酶对RB亮蓝的脱色作用[J].应用与环境生物学报,2002,8(3):298-301.
    [27]雷德柱,龙嘉欣,田长恩.产漆酶的草菇菌株的筛选[J].工业微生物,2008,38(3):51-55.
    [28]黎小军,林陈水,许明,等.白腐菌ZJ-6的筛选及对合成染料的脱色研究[J].江西师范大学学报(自然科学版),2006,30(6):543-546.
    [29]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [30]李海龙,陈嘉川,杨桂花,等.木聚糖酶处理对NaOH-AQ麦草浆HD漂白的影响[J].中国造纸学报,2005,20(02):48-51.
    [31]李慧蓉.白腐真菌的研究进展[J].环境科学进展,1996,4(6):69-77.
    [32]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005.
    [33]李进杰,蒋明琴.平菇菌转化秸秆蛋白饲料研究与应用[J].当代畜牧,2007,(1):26-28.
    [34]李峻志,吴亚召,雷萍.渭北地区梨枣枝条栽培滑菇技术初探[J].食用菌,2004,(3):19.
    [35]李蒙英,孟祥勋,倪建国,等.真菌和细菌对染料吸附脱色的高效共培养体系研究[J].环境污染治理技术与设备,2002,3(11):15-19.
    [36]李鸣雷,梁连友,呼有贤,等.“渭香一号”的特征特性及栽培技术要点[J].食用菌,2007,(3):15-17.
    [37]李日强,张峰.不同菌株固态发酵玉米秸秆生产饲料蛋白的比较研究[J].生态学报,2001,21(9):1512-1518.
    [38]李雪芝,赵建,阎飞,等.白腐菌处理草浆造纸废水研究[J].中国造纸学报,2005,20(01):88-91
    [39]梁连友,呼有贤,李鸣雷.渭北果区果-菇高效生态农业模式研究[J].陕西林业科学,2006,(1):18-20.
    [40]林海,陆钢,张庆娜,等.降解造纸废水木质素菌种的筛选鉴定及应用[J].北京科技大学学报,2007,29(6):569-573.
    [41]刘敏,张明.一株产漆酶菌株的筛选鉴定和发酵条件的研究[J].生物学杂志,2008,25(3):40-43.
    [42]刘尚旭.P.ostreatus 8101菌株木质素降解酶的研究[J].重庆教育学院学报,2002,15(6):45-47,87,100.
    [43]刘淑珍,钱世钓.担子菌漆酶的分离纯化及其性质研究[J].微生物学报,2003,43(1):73-78.
    [44]刘效梅,辛宝平,李玮,等.开放系统中4株丝状真菌的成球生长及其对染料的吸附脱色[J].环境科学,2005,26(04):143-146.
    [45]卢庆萍等.秸秆处理技术研究进展[J].中国饲料,1999,(2):7-9.
    [46]卢雪梅,刘紫鹃,高培基.木质素生物降解的化学反应机制[J].林产化学与工业,1996,16(2):75-82.
    [47]马登波,刘紫鹃,高培基,等.木素生物降解的研究进展[J].纤维素科学与技术,1996,4(1):1-12.
    [48]马凯,刘光全,李金霞,等.基于26S rDNA D1/D2区序列分析的15株白地霉分子分类学研究[J].微生物学报,2007,47(2):359-362.
    [49]马丽萍,孔子林,张晓翰,等.利用伐桑枝条栽培金针菇技术[J].中国食用菌,2000,19(6):30-31.
    [50]闵晓梅,孟庆翔.白腐真菌处理秸秆的研究[J].饲料研究,2000,(9):7-9.
    [51]莫佳琳,詹怀宇,付时雨.一种产漆酶真菌的鉴定及其漆酶在生物漂白中的应用[J].中国造纸学报,2008,23(02):10-14.
    [52]潘迎捷,郑志仁.木质纤维素的降解和五种酶的活性对香菇子实体形成的影响[J].食用菌学报,1996,3(3):25-30.
    [53]潘迎捷.香菇生长过程中木质纤维素的生物降解规律[J].食用菌学报,1995,2(2):18-22.
    [54]钱亚鹏,钱世钓.真菌漆酶及其应用[J].生物工程进展,2001,21(5):23-28.
    [55]秦特夫.“I-214杨”心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究[J].林业科学研究,2001,14(4):375-382.
    [56]秦特夫.杉木和“三北”一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3): 69-75.
    [57]邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14(1):52-59.
    [58]史央,戴传超,吴耀春.植物内生真菌强化还田秸秆降解的研究[J].环境科学学报,2004,24(1): 144-149.
    [59]宋安东,周利霞,胡渝,等.产木质素降解酶类香菇菌株的筛选[J].河南农业大学学报,2006,40(3):307-310.
    [60]苏寿承.木质素的化学结构和利用[J].浙江林学院学报,1990,7(1):87-96.
    [61]孙先锋,张志杰,崔红军.造纸黑液木质素降解微生物的分离和降解特性研究[J].环境工程,2002,20(3):78-80.
    [62]谭东.木质素的提取及应用[J].广西化工,1994,23(4):6-13.
    [63]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [64]涂正顺,吴莹,王甲佳,等.世界葡萄与葡萄酒概况(Ⅰ) [J].中外葡萄与葡萄酒,2009,(1):73-75.
    [65]王德源,刘可春,党立,等.利用果树枝条木屑栽培鲍鱼菇技术[J].陕西农业科学,2007,(3):174-175.
    [66]王敦球,张学洪,龙腾锐,等.利用城市固体废弃物生产有机复合肥施用效果研究[J].给水排水,2003,29(5):34-37.
    [67]王海磊,李宗义.三种重要木质素降解酶研究进展[J].生物学杂志,2003,20(5):9-12.
    [68]王华,李志勇,陈敏,等.苹果枝木屑春栽袋料香菇菌株试验[J].食用菌,2006,(1):17-18.
    [69]王剑锋,刘建玲,王璋.从土壤中筛选产漆酶微生物菌株的研究[J].食品与发酵工业,2007,33(10):35-39.
    [70]王仁佑,曾光明,郁红艳,等.木质素的微生物降解机制[J].微生物学杂志,2008,28(3):59-63.
    [71]王伟东,崔宗均,王小芬,等.快速木质纤维素分解菌复合系MC1对秸秆的分解能力及稳定性[J].环境科学,2005,26(5):156-160.
    [72]王伟东,刘建斌,牛俊玲,等.堆肥化过程中微生物群落的动态及接菌剂的应用效果[J].农业工程学报,2006,22(4):148-152.
    [73]王伟东,王小芬,王彦杰,等.接种木质纤维素分解复合菌系对堆肥发酵进程的影响[J].农业工程学报,2008,24(7):193-198.
    [74]王宜磊,朱陶,邓振旭.愈创木酚法快速筛选漆酶产生菌[J].生物技术,2007,17(4):40-42.
    [75]王宜磊,朱陶.漆酶高产菌株的筛选及产酶条件研究[J].生态学杂志,2002,21(2):27-29.
    [76]王毅,刘云国,习兴梅等.枯草芽胞杆菌降解木质纤维素能力及产酶研究[J].微生物学杂志,2008,28(4):1-6.
    [77]王引权,Frank Schuchardt,张仁陟,等.葡萄枝条堆肥化过程中的生物化学变化和物质转化特征[J].果树学报,2005,22(2):115-120.
    [78]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报,1987,14(2):81?84.
    [79]韦朝海,任源.淮河流域酿造业生产与环境污染的损益分析[J].食品与发酵工业,1998,24(5):64.
    [80]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
    [81]魏源送,王敏健,王菊思.堆肥技术及进展[J].环境科学进展,1999,7(3):11-23.
    [82]吴坤,朱显峰,张世敏,等.杂色云芝产漆酶的发酵条件研究[J].菌物系统,2001,20(2):207-213.
    [83]吴涓,肖亚中,王怡平.挂膜生长的白腐真菌处理草浆造纸黑液废水[J].应用与环境生物学报2004,10(3):370-374.
    [84]习兴梅,曾光明,郁红艳,等.黑曲霉Aspergillus niger木质纤维素降解能力及产酶研究[J].农业环境科学学报,2007,26(4):1506-1511.
    [85]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,3(3):19-23.
    [86]谢君,黄乾明,冯蕾,等.白腐菌液体和固体培养产生木质纤维素降解酶的比较研究[J].菌物学报,2007,26(2):266-272.
    [87]徐春燕,王宏勋,张晓昱,等.白腐菌选择性降解竹基质中木质纤维素的研究[J].微生物学杂志,2006,26(2):14-18.
    [88]许颖,兰进.真菌漆酶研究进展[J].食用菌学报,2005,12(1):57-64.
    [89]颜克亮,田媛,王宏勋,等.白腐菌菌体对染料的生物吸附脱色及机理研究[J].生物技术,2007,17(5):68-71.
    [90]杨金水,刘葳,倪晋仁.木质素降解菌的分离鉴定及木素过氧化物酶的纯化[J].环境科学,2006,27(5):981-985.
    [91]杨胜.饲料分析及饲料质量检测技术(第一版)[M].北京:北京农业大学出版社,1993,58-63.
    [92]尹亮,陈章和,赵树进,等.固定化白地霉对偶氮染料脱色的研究(英文)[J].陕西科技大学学报,2007,25(5):6-9,15.
    [93]尹亮,陈章和,赵树进.白地霉产漆酶条件优化及对偶氮染料的脱色[J].华南理工大学学报(自然科学版),2008,36(12):85-90.
    [94]尤纪雪,叶汉林,童国林,等.白腐菌预处理对杨木化学制浆性能的影响[J].中国造纸,2004,23(03):12-15.
    [95]余惠生,付时雨.白腐菌Panus conchatus降解稻草木素机理研究[J].纤维素科学与技术,1998,6(4):41-49.
    [96]郁红艳,曾光明,黄国和,等.木质素降解真菌的筛选及产酶特性[J].应用与环境生物学报,2004,10(5):639-642.
    [97]詹怀宇.酶催化介体在纸浆LMS生物漂白中的作用[J].中国造纸学报,2002,17(1):107-113.
    [98]张红,王纯利,冯蕾,等.影响木素过氧化物酶合成和活性的因素研究[J].新疆农业大学学报,2005,28(4):56-60.
    [99]张敏,肖亚中,龚为民.真菌漆酶的结构与功能[J].生物学杂志,2003,20(5):6-8.
    [100]张小武.利用猕猴桃枝条培殖香菇试验初报[J].中国水土保持,1991,(09):38-39.
    [101]张晓昱,杜甫佑,王宏勋,等.不同木质纤维素基质上白腐菌降解特性的研究[J].微生物学杂志,2004,24(6):4-7.
    [102]张晓昱,王宏勋,罗希杰,等.造纸废液的白腐菌处理及特性研究[J].华中科技大学学报(自然科学版),2002,30(3):110-113.
    [103]张业录,赵华,孙希雯,等.木素降解菌的筛选和氯酚生物降解研究[J].天津轻工业学院学报,2000,(04):17-20,35.
    [104]张振文,惠竹梅,范永峰.酿酒葡萄冬季修剪反应的研究[J].西北农业大学学报,1999,27(6):64-68.
    [105]赵大鹏,张伟周,薛燕芬.一个产木质素酶的嗜碱细菌新种[J].微生物学报,2004,44(6):720-723
    [106]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工,2005,22(4):249-252.
    [107]中国科学院微生物研究所.常见与常用真菌[M].北京:科学出版社,1973.251.
    [108]中华人民共和国农业部编.中国农业统计资料(2001)[M].北京:中国农业出版社,2002.
    [109]中华人民共和国农业部编.中国农业统计资料(2005)[M].北京:中国农业出版社,2006.
    [110]中华人民共和国农业部编.中国农业统计资料(2007)[M].北京:中国农业出版社,2008.
    [111]中野准三.木质素的化学——基础与应用[M].北京:轻工业出版社,1988.
    [112]周建,曾荣,罗学刚.木质素化学改性的研究现状[J].纤维素科学与技术,2006,14(3):59-66.
    [113]朱海潇,黄桂英,王霖,等.凤尾菇漆酶性质及应用的研究[J].福建农业学报,2008,23(1):48-52.
    [114] A Leonowicz,A Matuszewska,J Luterek,et al. Biodegradation of Lignin by White Rot Fungi [J]. Fungal Genetics and Biology,1999,27(2-3):75-185.
    [115] A.Pardo,M.A.Perona,J. Pardo. Indoor composting of vine by-products to produce substrates for mushroom cultivation [J]. Spanish Journal of Agricultural Research,2007,5(3):417-424.
    [116] Aitken MD, Irvine RL. Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium [J].Archives of biochemistry and biophysics,1990, 276(2):405-414
    [117] Amann M. The lignozym process-coming closer to the mill [C]. Proceedings of 9th International Sympsium on Wood and Pulping Chemisry,Montreal,Canada,1997.
    [118] Amir S,Hafidi M,Lemee L,et al. Structural characterization of humic acids, extracted from aewage aludge during composting, by thermochrmolysis-gas chromatography-mass spectrometry [J]. Process Biochemistry,2006,41:410-422.
    [119] Antai S.P.,Crawford D.L. Degradation of softwood hardwood and grass lignocellulose by two Streptomyces strains [J].Appllied Environment Microbiology,1981,42:378-380.
    [120] Augenstein,D.,Wise,DL.,Xuan Dat,N.,et al. Composting of municipal solid waste and sewage sludge: Potential for fuel gas production in a developing country [J]. Resources,Conservation and Recycling,1996,16(1-4):265-279.
    [121] B Rivas,A Torrado,S Rivas,et al. Simultaneous lactic acid and xylitol production from vine trimming wastes [J]. Journal of the Science of Food and Agri- culture,2007,87(8):1603-1612.
    [122] Bertran E,Sort X,Soliva M,et al. Composting winery waste:sludges and grape stalks [J]. Bioresource Technology,2004,95(2):203-208.
    [123] B Vacher,G Louvet,P Guilbaud,et al. Survival of Fungi Associated with Grapevine Decline in Pruned Wood after Composting [J]. Phytopathologia Mediterranea,2006,45:127-130.
    [124] Blanchette R A. Selection of white-rot fungi for biolpulping [J].Biomass,1998,15:93
    [125] Blanchette,R.A. Degradation of lignocellulose complex in wood [J]. Can. J. Bot.,1995, 73:999-1010.
    [126] Bourbonnais R,Paice M G. Demethylation and delignification of kraft pulp by Tramtetes versicolor laccase in the presence of 2,2’-azino-bis-(3-ethylbenzthiazoline- 6-sulphonate) [J].Appl.Microbio. Biotechnol.,1992,6:823.
    [127] Bourbonnais R,Paice M G. Oxidation of non-phenolic substrates, an expanded role for laccase in lignin biodegradation [J]. FEBS Letters,1990,267:99-102.
    [128] Brinton R.Compost conference: the german approach [J].Wastes Management,1993,26-28
    [129] Buswell J A.,Odier E. Lignin biodegradation [J]. CRC Crit Rev Biotechnol,1987,17(11):46-49.
    [130] Corcho-Corral B,Olivares-Marín M,Valdes-Sánchez,et al. Development of activated carbon using vine shoots (Vitis vinifera) and its use for wine treatment [J]. Journal of agricultural and food chemistry,2005,53(3):644-560.
    [131] Dimitris P,Komilis,Robert K H. The effect of lignin and sugars to the aerobic decomposition of solid wastes [J]. Waste Management,2003,23:419-423.
    [132] E Sláviková,B Kosíková,M Mikulásová. Biot-rans-formation of waste lignin products by the soilinhabiting yeast Trichasporon pullulans [J]. Can J Microbiol,2002,48:200-203.
    [133] Ferrer J,Páez G,Mármol Z,et al. Agronomic use of biotechnologically processed grape wastes [J]. Bioresource technology,2001,76(1):39-44.
    [134] Fischer A. Verwertung von Rebholz-konventionell oder alternative [J]. Der Deutsche Weinbau,1982, 11:486-490.
    [135] Glenn J K, Gold M H. Effect of various media and supplements on production by some white rot fungi Bioresour [J]. Technol,2001,77(1):89-91.
    [136] Goldstein N,Struteville R. Biosolids composting makes healthy progress [J]. Biocycle,1993,(12): 48-57.
    [137] H Fukui, MJ Abuhasan, T Joyce,et al. Biodelignification of secondary fiber by Phanerochaete chrysosporium improvement of culture and treatment conditions [J]. 6th International Symposium on Wood and Pulping Chemistry,1991,277.
    [138] Harris-Valle C,Esqueda M,Sánchez A,et al. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures [J]. Canadian Journal of Microbiology, 2007,53(10):1150-1157.
    [139] Hatakka A.Biodegradation of lignin. In: Hofrichter M, Steinbüchel A eds. Biopolymers.,Vol.1- Lignin, humic substances andcoal [M]. Weinheim, Germany: Wiley-VCH., 2001.129-180.
    [140] Hildén L,Johansson G,Pettersson LJ,et al. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation [J]. FEBS Letters,2000, 477(1):79-83.
    [141] I Horlings . Policy Conditions for Sustainable Agriculture in The Netherlands [J] . Ihe Enviromentalist,1994,14(3):193-199.
    [142] John A. Buswell, Etienne Odier, T. Kent Kirk. Lignin Biodegradation [J]. Critical Reviews in Biotechnology, 1987,6(1):1-60.
    [143] KE Eriksson,RA Blanchette,P Ander. Microbial and enzymatic degradation of wood and wood components [M]. New York: Springer-Verlag,1990.
    [144] Kersten P J. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase [J]. Proc Natl Acad Sci USA,1990,87:2936-2940.
    [145] Kirk T K,Farrell R. L. Enzymatic“combustion”: the microbial degradation of lignin [J]. Ann Rev Microbiol,1987,41:465-505.
    [146] Kishi K,Wariishi H,Marquez L,et al. Mechanism of manganese peroxidaseⅡreduction. Effect of organic acid and chelators and pH [J]. Biochemistry,1994,33(29):8694-8701.
    [147] Kukolya JD. Isolation and identification of the rmophilic cellulolytic actinomycetes [J]. Acta Phytopathologicaet Entomologica Hungarica,1997,32(1):97-107.
    [148] Kulcu R,Yaldiz O. Composting dynamics and optimum mixture ratio of chicken manure and vineyard wastes [J]. Waste Management & Research,2005,23(2):101-105.
    [149] Kuwahara M,Glenn J,Morgan M,et al. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium [J]. FEBS Letters,1984,169(2):247-250.
    [150] Lange, P.W. The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods [J]. Svensk Papperstidning,57,525.
    [151] Leisola M.S. A.,Garoia S. The mechanization of lignin degradation, Lignocellulose: Science, Technology, Development and Use Great Britain [C]. In: Kennedy J F, Philips G O, Williams P A, ed. Ellis Horwood L td,1992,89-99.
    [152] LF Diaz, GM Savage, LL Eggerth. composting and recycling municipal solid waste [J]. Boca Raton, Lewis Publishers,1993.
    [153] LOKESH K V. 14C lignin lignocellulose biogradation by bacteria isolated from polluted soil [J]. Indian Journal of Experimental Biology,2001,39(6):584-589.
    [154] Luque-Rodríguez JM,Pérez-Juan P,Luque de Castro MD. Extraction of polyphenols from vine shoots of Vitis vinifera by superheated ethanol-water mixtures [J]. Journal of agricultural and food chemistry,2007,55(11):4481-4486.
    [155] M Hernández,MJ Hernández-Coronado,AS Ball,et al. Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes [J]. Biodegradation,2001,12(4):219-223.
    [156] M Benito,A Masaguer,R De Antonio,et al.Use of pruning waste compost as a component in soilless growing media [J]. Bioresource Technology,2005,96(5):597-603.
    [157] Miki,K,Renganathan,V,Mayfield,MB,et al. Aromatic ring cleavage of a beta-biphenyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysosporium [J]. FEBS Letters,1987,210(2): 199-203.
    [158] Mino T. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Wat. Res,1997,32:3193-3207.
    [159] Moldes AB,Torrado AM,Barral MT,et al. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus [J]. Journal of agricultural and food chemistry,2007, 55(11):4481-4486.
    [160] Nina H,Laura-Leena K,Kristiina K,et al. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site [J]. Nat Struct Biol,2002,9(8):601-605
    [161] Orlandi,M.,Canevali, C.,Rindone,B.,et al. Biomimetic approach to lignin degradation: A mechanistic study of Metallosolen catalysed oxidation of lignin and lignin model compounds [C]. 7th European Workshop on Lignocellulosics and Pulp,2002.369-373.
    [162] Paszcynski A, Huynh V B,Crawford R. Enzymatic activities of an extracellular, manganese- dependent peroxidase from Phanerochaete chrysosporium [J]. FEMS Microbiology letters,1985, 29:37-41.
    [163] P Baborova,P Baldrian,M M?der,et al. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus,and degradation of polycyclic aromatic hydrocarbons by the enzyme [J]. Res. Microbiol.,2006,157(3):248-253.
    [164] P Bajpai. Biological bleaching of chemical pulps [J]. Crit. Rev.Biotechnol., 2004,24(1):1-58.
    [165] R C Sun,X F Sun,P Fowler,et al. Structural and physico-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw [J]. European Polymer Journal,2002, 38:1399-1407.
    [166] R.J.A. Gosselink,M.H.B. Snijder,A. Kranenbarg,et al. Characterisation and application of NovaFiber lignin [J]. Industrial Crops and Products,2004,20:191-203.
    [167] Richard P Chandra. Modification of high lignin content kraft pulps with laccase to improve paper strength properties. 1. laccase treatment in the presence of gallic acid [J]. Biotechnol. Progr.,2004, 20:255-261.
    [168] R T Haug,H T Haug. The Practical Handbook of Compost Engineering [M]. Lewis Publishers,1993,USA.
    [169] Sakamoto,K.,Aoyama,M..Comparison of coarsely shredded and finely shredded apple prunings in composting with poultry manure and calcium cyanamide [J].Japanese Journal of Soil Science and Plant Nutrition,2004,75(5):583-591.
    [170] Sánchez A,Ysunza F,Beltrán-García MJ,et al. Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding [J]. Journal of agricultural and food chemistry,2002,50(9):2537-2542.
    [171] Schmidt,J.A.,Rye,C.S.,Gurnagul,N. Lignin inhibits autoxidative degradation of cellulose [J]. Polym.Degrad. Stab.,1995,49:291-297.
    [172] S J Kim, K Ishikawa, M Hirai,et al. Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes [J]. Journal of Fermentation and Bioengineering,1995,79(6):601-607.
    [173] T. Manios. The composting potential of different organic solid wastes: experience from the island of Crete [J]. Environment international,2004,29(8):1079-1089.
    [174] T H,Roger. Compost engineering: principles and practice [M]. Lancaster, PA (EUA). Technomic Publishing,1980.
    [175] Tuomela M,Vikman M,Hatakka A,et al. Biodegradation of lignin in a compost environment a review [J]. Bioresource Technology,2000,72:169-183.
    [176] Tuor U,Wariishi H,Schoemaker H E,et al. Oxidation of phenolic arylglycerolβ-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of anα-carbonyl model compound [J]. Biochemistry,1992,31:4986-4995.
    [177] Umezawa T,Higuchi T. Cleavages of aromatic ring and beta-O-4 bond of synthetic lignin (DHP) by lignin peroxidase [J]. FEBS letters,1989,242(2):325-329.
    [178] Veeken A,Nierop K. Characterisation of NaOH-extracted humic acids during composting of a biowaste [J]. Bioresource technology,2000,72:33-41.
    [179] Wang W D,Wang X F,Liu J B,et al. Effect of oxygen concentration on the composting process and maturity[J]. Compost Science and Utilization,2007,15(3):184-190.
    [180] Wariishi H,Akaleswaran L, Gold M H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of oxidized states and the catalytic cycle [J]. Biochemistry,1988,27:5365-5370.
    [181] Wariishi H,Valli K,Gold M H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium-kinetic mechanism and role of chelators [J]. J Biol Chem,1992,267(33):23688-23695.
    [182] Wariishi H,Valli K,Gold MH. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium [J]. Biochem Biophys Res Comm,1991,176(1):269-275.
    [183] Zheng,GD,Chen,TB,Gao,D,et al. Dynamic of lead speciation in sewage sludge composting [J]. Water Science and Technology,2004,50(9):75-82.