造纸工业用菌株的选育和相关酶的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用固体平板法分离纯化得到多株白腐菌菌株。通过分析不同白腐菌的产酶特性,选育得到了可高产纤维二糖脱氢酶(CDH)的菌株W14和高产漆酶的菌株LZ-8。初步研究表明菌株W14产CDH的最佳碳源和氮源分别为棉花和尿素。利用优化后的碳源和氮源,菌株W14发酵第17天时,酶活达到208.4 U/L,达到国内外报道的较高水平。菌株LZ-8具有较高的产漆酶能力,并具有生长迅速、产酶周期较短等特点,具有良好的开发价值。
     对菌株LZ-8产漆酶的最适培养基组成和最佳培养条件进行了优化。表明菌株LZ-8产漆酶时,最佳的碳源和氮源分别是土豆和豆饼粉。培养基中加入表面活性剂PEG4000以及同时添加Cu~(2+)和Mn~(2+)时均有利于促进漆酶产生。菌株LZ-8较佳的产漆酶培养基为(单位:L~-):土豆150g;豆饼粉10g;NaH_2PO_4 1.5g;K_2HPO_4 3g;MgSO_4.7H_2O 0.2g;PEG4000 3g;CuSO_4·5H_2O 0.0025g;MnSO_4.H_2O 0.05mg;NaCl0.1g;CaCl_2 0.01g;VA 1g;pH 6.0-7.0。较佳的培养条件为:300ml三角瓶装80ml培养基,30℃,150rpm条件下培养。采用优化后的培养基和培养条件,在第9天时漆酶酶活达到10.86 U/ml,是优化前酶活的9.74倍。
     对LZ-8所产漆酶粗酶液的酶学性质进行了初步研究。结果表明,其较适宜的缓冲体系为柠檬酸-柠檬酸钠缓冲体系,最适pH值和最适温度分别为pH 4和40℃。在pH值3-9和30℃~40℃的范围内,该漆酶有较好的稳定性。缓冲液中加入Ag~+或Zn~(2+)可以显著提高LZ-8漆酶的酶活,但Fe~(2+)和Fe~(3+)对漆酶酶活有明显的抑制作用。
     以不同浓度的造纸中段废水为底物,采用逐级驯化定向选育方法,从上述分离的菌株和实验室保藏的菌株中,筛选出了抗造纸中段废水毒性的优良菌株。利用其中的多株菌株处理造纸中段废水,均可以降低废水的COD含量,但对废水色度的影响有所不同。其中选育的菌株Z-1和白腐菌L02可直接应用于造纸废水处理,在有效降低废水COD含量的同时,也有效地降低了废水的色度和pH值。例如,采用菌株Z-1处理造纸中段废水,处理4天后,废水色度降低82.61%,处理6天,COD含量降低63.44%,废水pH值从中性下降到pH 2左右的水平;菌株L02处理可使中段废水COD含量降低84%以上,废水的色度降低93%以上。采用白腐菌L02处理造纸废水(包括中段废水和次氯酸盐漂白废水)时,处理工艺条件如处理时间和温度、废水的初始pH值和浓度、通氧量等对最终的处理效果将产生一定的影响,因此,在应用时需要在处理成本和处理效果之间进行综合考虑。
Some fungi were isolated , properties of enzymes produced by these fungi and the stock cultures in our laboratory were analyzed. In which, the fungus W-14 and fungus LZ-8 were selected because of their high abilities to produce cellobiose dehydrogenase (CDH) and laccase respectively. Preliminary experiments showed that the optimum carbon source and nitrogen source for CDH production by fungus W-14 were dewaxed cotton powder and urea respectively. The activity of CDH was 208.4 U/L after 17 days cultivation when fungus W-14 was grown in the medium with the suitable carbon source and nitrogen source.
    The culture components and fermentation conditions for laccase production in flasks by fungus LZ-8 were investigated in the paper. The results showed that the optimum carbon source was potato and nitrogen source was bean cake powder. The addition of surfactant PEG4000, metal ion Cu~(2+) and Mn~(2+) to basal media enhanced the enzyme production. The suitable culture were as follows: potato 150 g/L, bean cake powder 10 g/L, NaH_2PO_4 1.5 g/L, K_2HPO_4 3 g/L, MgSO_47·H_2O 0.2 g/L, PEG4000 3 g/L, CuSO_45·H2O 0.0025 g/L, MnSO_4·H_2O 0.05 mg/L, NaCl 0.1 g/L, CaCl_2 0.01 g/L, veratryl alcohol 1 g/L, and pH 6.0-7.0. The activity of laccase reach 10.86U/ml when fungus LZ-8 was cultured at 30℃ for 9 days with shaking at 150 rpm in the suitable laccase production medium (50 ml in 300 ml conical flask).
    The properties of laccase produced by fungus LZ-8 were studied. The results showed that the suitable buffer was citric acid-sodium citrate buffer system and the optimum pH and temperature of laccase were pH 4.0 and 40℃ . The enzyme was stable in the range of pH 3.0-9.0 and below 50℃. The activity of laccase was enhanced by Ag~+ and Zn~(2+), but was strongly inhibited by Fe~(2+) and Fe~(3+).
    Strains suitable for pulp and paper mill waster water treatment were screened from more than 10 white-rot fungi from the isolated fungi and the stock cultures in our laboratory by cultivating continuously in a series waste water-contained mediums which had increased gradually amount of waster water. Several strains were obtained which were waste water toxicity-resistance and could decrease COD(Chemical oxygen demand) content of waste water effectively. In which, fungus Z-1 and fungus L02 could be used directly for treating middle-stage effluent from pulp and paper mill and led to COD
引文
1 王鸿文.试谈中国造纸工业的发展,中华纸业,2006,27(1):22-24
    2 刘勇.我国造纸工业布局和结构的现状、问题及对策,中国经贸导刊,2005,(12):22-23
    3 李忠正.禾草类纤维制浆特性及进一步发展我国非木材纤维造纸的对策.中华纸业,2006,27(2):6-11
    4 中国造纸学会.中国造纸工业2004年度报告,中华纸业,2005,26(5):6-11
    5 何瑛.什么是二恶英,西南造纸,2000:N06:37
    6 陈嘉川.二恶英与制浆造纸工业,中华纸业,2000:No4:50-51
    7 罗少初.二恶英污染—发展造纸工业必须解决的战略性问题,中华纸业,2000:21(12):17-20
    8 顾民达.关于加快发展木材造纸的几点看法,中华纸业,1999:20(4):5-9
    9 蔡志坚、任启芳.中国造纸工业竞争力提升的基本思路,中华纸业;21(2):41-43
    10 加快发展木材制浆造纸研讨会会议纪要,国际造纸,2000:19(5):63-64
    11 陈奇志.造纸原料林基地建设,国际造纸,2000:19(3):6-13
    12 吴福骞.促进林业一体化,实现林业纸的可持续发展,中华纸业:22(1):14
    13 张珂 王苹.我国造纸工业的污染与防治,第九届中国造纸学会学术会议论文集,1999,P154
    14 王向阳.我国草浆碱回收现状与发展前景,第九届中国造纸学会学术会议论文集,1999,P167
    15 赵叔浙.1999年全国碱回收简况,中华纸业,2000:21(5):29-31
    16 赵叔浙.晨鸣集团麦草浆碱回收又上新台阶,中华纸业,1999;20(4):69
    17 杨建强等.晨鸣纸业集团股份有限公司碱回收和中段废水的运行实践,中华纸业,1999:20(4):54-55
    18 张珂等.造纸工业蒸煮废液的综合利用与污染防治技术,中国轻工业出版社 1992
    19 杜秉海.造纸厂纤维废渣固态发酵生产纤维素酶和酒精的研究,山东大学硕士论文
    20 姚光裕.酶法处理原木以利剥皮,中华纸业,1999:20(5):72
    21 姚光裕.生物法处理木片减少贮存损失,中华纸业,1999:20(5):72
    22 秦梦华.纸浆中的树脂及其障碍控制,中国轻工业出版社 1998
    23 卢雪梅,胡明,王蔚,高培基.黄孢原毛平革菌LiP-14酶液抑制CMP返黄的研究,中国造纸学报,2002,17(1):21-25
    24 王雄波.腐浆障碍的防治,中华纸业,2000:21(3):42-44
    25 R W.Barnes.杀虫剂的现代化,PPI(中文版),1985.7,5(1):
    26 周志艺.台湾林业试验所研究开发基因转殖“赤桉树苗”技术获成功,中华纸业,2000;21(5):57
    27 姚光裕.生物技术在造纸用材基地林中的应用,中华纸业,1999:20(3):38-39
    28 吴谦.育林技术的突破,中华纸业,1999:20(6):64
    29 Yang,J.-L. et al. Development of bioassay for he characterization of pulp fiber surfaces Ⅱ characterization of various mechanical pulp fiber surfaces by a lignin specific peroxidase, Holzforschung, 1988; 42: 319-322
    30 Thut R. N., In: Hammer, D. A.(ed) Constructed wetlands for wastewater treatment, Lewis Publishers, Chelsea. MI, 1989; p239
    31 Cole, D., Henry, C. and Nutter, W. (eds) The forest alternative for treatment and utilization of municipal and industrial wasters, Univ. of WA Press, Seattle, WA (1986)
    32 高风菊,李春香.真菌与细菌纤维素酶研究进展,唐山师范学院学报,2005,27(2):7-10
    33 谢占玲,吴润.纤维素酶的研究进展,草业科学,2004,21(4):72-76
    34 李燕红,赵辅昆.纤维素酶的研究进展,生命科学,2005,17(5):392-397
    35 陆燕华,刘忠.纤维素酶及其在造纸工业中的应用,西南造纸,2005,34(4):40-42
    36 Biely P et al. Acetylxylan esterases in fungal xylanolytic systems. FEBS. 1985, 186: 80
    37 MacKenzie CR et al. Ferulic acid esterase activity from Schizophyllum commune, Appl. Environ. Microbiol., 1998, 54: 1170
    38 Poutanen K et al. An acetyl esterese of Trichoderma reesi and its role in the hydrolysis of acetyl xylans. Appl. Microbiol Biotechnol.. 1988, 28: 419
    39 Lee H. et al. Some properties of extraceluler acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl. Environ. Microbilo.. 1987, 53: 2831
    40 McDermid KP et al. Esterase activities of Fibrobacter succinogenes subsp Succinogenes S85. Appl. Environ. Microbiol., 1990, 56: 127
    41 Kaji A. L-Arabinosidases. Adv. Carbohyd. Chem. Biochem., 1984, 42: 383
    42 Kormlink FJM et al. (1,4)-β-D-arabinoxylan arabinofuranohydrolase: a'novel enzyme in the bioconversion of arabinoxylan. Appl Microbiol Biotechnol.. 1991, 35: 231
    43 Kormlink FJM et al. puification and characterization of a (1,4)-β-D-arabinoxylan arabinofuranohydrolase from Aspergillus awamori. Appl. Microbiol Biotechnol. 1991, 35: 753
    44 Puls J et al. α-Glucuronidase in two microbial xylanolytic systems. Enzyme Microb. Technol. 1987, 9: 83
    45 Ishihara M et al. α-(1,2)-glucuronidase in the enzymatic saccharification of hardwood xylan Screening of α-glucuronidase producing fungi. Mokuzai Gakkaishi. 1988, 34: 58
    46 Biely P. Microbial xylanolytic systems. Trends Biotechnol., 1985,3:286
    
    47 Khasin A et al. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6 , Appl. Environ.Microbiol., 1993,59(6): 1725
    
    48 Winterhalter C, et al. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol., 1995, 61 (5): 1810
    
    49 Bergquist PL etal. Hemicellulolytic enzymes from extremely thermophilic bacteria applications of molecular genetics to pulp bleaching. 8th ISWPC, 1995, Helsinki. Finland. 263
    
    50 Ratto M etal. Application of thermostable xylanases of Dictyoglomus sp. in enzymatic treatment of kraft pulps, Appl. Microb. Biotechnol., 1994;41:130
    
    51 邬义明主编:植物纤维化学 中国轻工业出版社,1991
    
    52 Buswell J A, et al. CRC critical Reviews in Biotechnology, 1987; 6(1):1
    
    53 Raynet A D M, et al. Fungal Decomposition of Wood(Its Biology an Ecology), A Wiley- Interscience Publication, Chichester, 1988:37-40
    
    54 Antai SP. Crawford DL. Degradation of softwood, hardwood.and grass ligninocelluloses by two Streptomyces strains. Appl.Envir.Microbiol.,1981;42(2):378
    
    55 Crawford DL et al. Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol., 1983, 45:898
    
    56 Crawford DL. Production of useful modified lignin polymers by bioconversion of lignocellulose with Streptomyces. Biotech. Adv., 1984;2:217
    
    57 Deobald LE. Crawford DL. Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl. Microbiol. Biotechnol., 1987; 26: 158
    
    58 Ramachandra M.Crawford DL et al. Extrecellular enzyme activities during lignocellulose degradatin by Streptomyces sp.:a comparative study of wild-type and genetically manipulated strains. Appl. Environ.Microbiol., 1987;53:2754
    
    59 Remachandra M. Crawford DL et al. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol., 1988; 54:3057
    
    60 Donnelly PK. Crawford DL. Production by Streptomyces viridosporus T7A of an enzyme which cleaves aromatic acids from lignocellulose. Appl. Environ. Microbiol., 1988; 54:2237
    
    61 Adhi TP et al. Production of major extracellular enzymes during lignocellulose degradation by two Streptomyces in agitated submerged culture. Appl. Environ. Microbiol., 1989; 55:1165
    
    62 Ammer E et al. Biodegradation of ammonium sulphite spent liquor by pure bacterial cultures. Appl. Microb. Biotech., 1986; 24:122
    63 Haider K et al. Intermediate steps of microbial lignin degradation as elucidated by ~(13)CNMR spectroscopy of specifically ~(13)C-enriched DHP-Lignins. Holzforschung. 1985; 39: 23
    64 Janshekar H et al., On the bacierial degradation of lignin. Eur. J. Appl. Microbiol., 1982; 14: 47
    65 Kalayama Y. et al. The metabolism of biphenl structures in lignin by the soil bacterium(Pseudomonas paucimobilis SYK-6). FEBS Lett., 1988; 233: 129
    66 Kern HW et al. Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl. Environ. Microbol., 1987; 53(9): 2242
    67 Kerr TJ et al. Isolation of a bacteriun capable of degrading peanut hull lignin. Appl. Enuiron. Microbiol., 1983; 46(5): 1201
    68 陈嘉翔.生物技术在制浆工业中的应用前景,中国造纸,1993:12(6):50
    69 Eriksson, K-E.L. Journal of Biotechnology, 1993; Vol. 30: 149-158
    70 王海磊,李宗义.三种重要木质素降解酶研究进展,生物学杂志,2003,20(5):9-12
    71 Susan C ,et al. Description of a versatile peroxidase involved in the natural degradation of lignin that has both Manganese peroxidase and lignin peroxidase substrate interaction sites. Biol Chem, 1999, 274 (15): 10324~10330.
    72 梁园园 张朝晖 周晓云.黄孢原毛平革菌木素降解酶系的研究进展,工业微生物,2003,33(4):42-49
    73 Tien M, Kirk TK. Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science, 1983, 221: 661-663
    74 杨金水,袁红莉,陈文新.锰过氧化物酶(MnP)的研究进展,生物技术,2003,13(2):445-47
    75 花建丽,张力,王光辉.漆树漆酶的催化氧化作用,江西师范大学学报(自然科学版),1996,20(4):209-231
    76 季立才,胡培植,汤贵生.漆酶的活性测定及催人单取代Fc-R氧化反应,武汉大学学报(自然科学版),1995,42(4):443-448
    77 季立才,胡培植.漆酶催化氧化反应研究院进展,林产化学与工业,1997,17(1):79-94
    78 花建立,宁才生,王光辉.ESR自旋稳定性化技术在漆酶化学中的应用,物理化学学报,1999,2:173-177
    79 王佳玲,余惠生,付时雨.白腐菌漆酶的研究进展,微生物学通报,1998,25(4):233-235
    80 付时雨,詹怀宁,余惠生.漆酶/介体系统漂白尾叶桉硫酸盐浆的初步研究,中国造纸,2000,2:8-12
    81 方靖,高培基.纤维二糖氧化还原酶降解木质纤维素研究进展,纤维素科学与技术,1996,4(4):1-8
    82 Fang J ,Qu Y B, Gao P J. Wide distribution of cellobioseoxidizing enzymes indicates a physiological role in lignocellulosics degradation. Biotechnol Techniques, 1997, 11: 195~197
    83 Eriksson K E L, Habu N, Samejima M. Recent advances in fungai cellobiose oxidoreductase. Enzyme Microbiol Technol, 1993, 15: 1002~1008
    84 Ander P. The cellobiose-oxidizing enzymes CBQ and CBO as related to lignin and cellulose degradationa review. FEMS Microbiol Rev, 1994, 13: 297~311
    85 Bao W, Usha S, Renganathan V. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys, 1993, 300: 705~713
    86 Archibald F. S., Bourbonnais R., Jurasek L., Paice M. G., Reid I. D. Kraft pulp bleaching and delignification by Trametes versicolor, Journal of Biotechnology, 1997(53): 215-236
    87 顾琪萍,尤纪雪,勇强,余世袁.脂肪酶和纤维素酶/木聚糖酶混合用于NOP脱墨,中国造纸,2004,23(2):7-9
    88 宋德龙 邝仕均编译:脂肪酶在机械浆生产中的应用,国际造纸,2000;19 (6) 56-58
    89 Yashimori, K., Tomoaki, N., Yoshimasa, T., Koki, E., Kuychiro, K., Kokki, S. Biomechanical pulping using white-rot fungus IZU154. Tappi J., 1993, 76(12): 167-171.
    90 Sabharwai, H. S., Akhtar, M., Blanchette, R. A. Young, R. A., Biomechanical pulping of kenaf. Tappi J. 1994, 77 (12), 105-
    91 Akhtar, M., Attridge, M. C., Myers, G. C., Blanchette, R. A.. Biochemical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung, 1993, 47, 36-40.
    92 Bhandari, K. S., Srivastava, A. Biochemical pulping of Eucalyptus globules. Cellulose Chem. Technol. 1992, 26, 99-105.
    93 Patel, R. N., Thakker, G. D., Rao, K. K. Potential use of a white-rot fungus Antrodiella sp. RK1 for biopulping. J. Biotechnol. 1994, 36: 19-23.
    94 Leatham, G. F., et al. Biomechanical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi J. 1990; 73: 197-200
    95 Setliff, E. C. et al. Biomechanical pulping with white-rot fungi, Tappi J. 1990; 73: 141-147
    96. Scott GM et al. New technology for paper making: commercializing biopulping, Tappi J. 1998; 81(11): 220
    97 余惠生.白腐菌对稻草的生物降解规律及在生物制浆上的潜在应用,中国造纸,1989:8(1):16-20
    98 姚光裕.红麻的生物化学制浆,中华纸业,2000:21(2):53
    99 Camarero, S., Barrasa, J. M., Pelayo, M., Martinez, A. T. Evaluation of Pleurotus species for wheat straw biopulping. J. Pulp Paper Sci. 1998, 24 (7), 197-203.
    100 Sabharwal, H.S., Akhtar, M., Blanchette, R. A., Young, R. A. Refiner mechanical and biomechanical pulping of jute. Holzforschung, 1995, 49: 537-544.
    101 Kuhn, S. et al. Straw biopulping: Selective Delignification with Pleurotus eryngii, 5th ICBPPI, Kyoto Japan, May27-30, 1992, P15
    102 Messner, K. et al. Fungal pretreatment of wood chips for chemical pulping, 5th ICBPPI, Kyoto Japan, May27-30, 1992, P9
    103 Zhao J, Li X-Z, Qu Y-B, et al. Xylanase pretreatment leads to enhanced soda pulping of wheat straw [J]. Enzyme Microb. Technol., 2002, 30(6): 734-740
    104 Jacobs-Young, C. J., Venditti, R. A., Joyce, T. W. Effect of enzyme pre-treatment on conventional kraft pulping. Tappi J. 1998, 81, 143-147.
    105 Jacobs-Young, C. J., Venditti, R. A., Joyce, T. W. Effect of enzymatic pretreatment on the diffusion of sodium hydroxide in wood. Tappi J. 1998, 81, 260-266.
    106 Jacobs-Young, C. J., Gustafson, R. R., Heitmann, J. A. Conventional kraft pulping using enzyme pretreatment technology: role of diffusivity in enhancing pulp uniformity. Paperi ja Puu-Paper and Timber, 2000, 82: 114-118.
    107 陈洪章等.麦草蒸汽爆碎处理的研究Ⅰ影响麦草蒸汽爆碎处理因素及其过程分析,纤维素科学与技术,1999:7(2):60-67
    108 陈洪章等.麦草蒸汽爆碎处理的研究Ⅱ麦草蒸汽爆碎处理作用机制分析,纤维素科学与技术,1999:7(4):14-22
    109 Viikari, I., Ranua, M., Kantelinen, A., Sundquist, J., Lino, M. Bleaching with enzymes. In: 3rd International Conference on Biotechnology in the Pulp and Paper Industry, Stockholm, Sweden, 1986, pp. 67-69.
    110 Wong, K. K. Y., de Jong, E., Saddler, J. N., Allison, R. W. Mechanisms of xylanase-aided bleaching of kraft pulp. Appita J. 1997, 50: 415-422.
    111 Hortling B et al. The leachability of lignin from kraft pulps after xylanase treatment. Holzforschung, 1994; 48: 441
    112 Jiang J. et al. Characterization of residual lignin isolated from unbleached and semibleached softwood kraft pulps. J. Wood Chem. Technol., 1987, 7(1): 81
    112 Paice MG et al. Viscosity-enhancing bleaching Of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol. bioeng., 1988; 32: 235
    114 Yang JL et al. Use of hemicellulolytic enzymes as one stage in bleaching of kraft pulps. Holzforschung, 1992; 46: 481
    115 Shoham et al. Partial decoiorization of kraft pulp at high temperature and at high pH values with an extracellular xylanase from Bacillus stearothermophilus. J. Biotechnol., 1993; 30: 123
    116 Viikari L et al. Mannanases and xylanases in bleaching of softwood kraft pulps. 1995; 8th Int. Sym. Wood Pulp Chemi. Helsinki, Finlend, 255-262
    117 Suurnakki A et al. Enzyme-aided bleaching of industrial softwood kraft pulps. Tappi J., 1994; 77(11): 111
    118 Suurnakki A et al., Location of xylanase and manmamase action in kraft fibres. JPPS., 1996; 22(3): 178
    119 Buchert J et al. The role of Trichoderma reesei xylanase and marmanase in the treatment of softwood kraft pulp prior to bleaching. Holzforschung, 1993; 47: 473
    120 Kirk TK et al. Partial delignification of unbleached kraft pulp with ligninolytic fungi. Biotechnol. Lett., 1979; 1: 347
    121 Paice MG et al. Enzymology of kraft pulp bleaching by Tramtes versicolor In: Enzymes for pulp and paper processing. ACS Symposium Series, 1996; 151-164
    122 Tien M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Critical Reviews in Microbiology, 1987; 15(2): 141
    123 Kondo R et al. Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl. Environ. Microbiol., 1994; 60: 4359
    124 Clark TA et al. Improved bleachability of radiata pine kraft pulps following treatment with hemicellulolytic enzymes. Appita. 1991; 44(6): 389
    125 Suurnakki A, et al. Effects of Enzymatic Removal of Xylan and Glucomannan on the Pore Size Distribution of Kraft Fibres, Holzforschung, 1997; 51(1): 27
    126.颜尚华等.SBR生物技术处理竹浆造纸黑液的研究,环境科学,1997;18(3):30-33
    127.陈鸣钏等.生物酶法催化氧化碱回收研究—造纸黑液处理,环境科学学报,1997:No2:236-239
    128.林鹿等.白腐菌对制浆黑液中硫酸盐木素的降解,环境科学,1997;18 (1) 23-25
    129.艾育明等.固定化白腐菌处理氯漂碱抽提段废水的研究,纤维素科学与技术,1999;7(2):27
    130.秦文娟等.固定化白腐菌处理苇浆氯漂碱抽提段废水的研究,纤维素科学与技术,1999;7(4):23-28
    131.尹萍等.麦芽糖假丝酵母10-4降解酚类化合物的研究,环境科学,1997;18(1):10-13
    132.张春桂等.五氯酚的微生物降解与光解,生态学杂志,1997:16 (3) 19-22
    133.张晓健等.易降解有机物对氯代芳香化合物好氧生物降解性能的影响,环境科学,1998;19(5):25-28
    134 张彤等.辣根过氧化物酶处理酚和氯酚的催化特性研究,环境科学,1998:19(1):25-29
    135 张国平等.辣根过氧化物酶处理五氯酚过程的毒性特征,科学通报,2000;No.12:1267-1271
    136 瞿福平等.氯代芳香化合物生物降解性能与其化学结构的相关性,环境科学,1998;19 (6) 26-28
    137 Eriksson,K-E., et al. Microbial degradation of chlorolignins, Environ. Sci. Technol. 1985, 19: 1086-1089
    138 Bollag, J.-M., et al. Laccase-mediated detoxification of phenolic compounds, Appl. Environ. Microbiol., 1988; 54(12): 3086-3091
    139 Roy-Arcand, L., et al. Direct dechlorination of chlorophenolic compounds by laccases from Trametes versicolor, Enzyme Microb. Technol., 1991; 13(3): 194-202
    140 Kadhim, H. et al. Removal of phenolic compounds in water using Coriolus versicolor grown on wheat bran, Enzyme Microb. Technol., 1999; 24: 303-307
    141 Reddy, G. B. B. et al. Degradation of 2,4,6-Trichlorophenol by Phanerochaete chrysosporium: Involvement of reductive dechlorination,, J. of bacteriology, 1998, 180(9): 5159-5164
    142 Atlow S C, Bonadonna-Aparo L, Klibanov A M. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnol Bioeng, 1984, 26: 599-603.
    143 Aggelis G, Ehaliotis C, Nerud F, et al. Evaluation of white-rot fungi for detoxification and decoiorization of effluents from the green olive debittering process. Applied Microbiology and Biotechnology, 2002, 59: 353-360
    144 陈元彩,肖锦,詹怀宇.絮凝法处理纸浆漂白废水的研究.中国造纸学报,1999,14:68-73
    145 Karam J, Nicell J A. Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol, 1997, 69: 141.
    146 Duran, Nelson, Esposito, et al. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 2000, 28 (2): 83-99
    147 Caza Nicole, Bewtra, J K, Biswas N, et al. Removal of phenolic compounds from synthetic waste water using soybean peroxidase. Water Research, 1999, 33 (13): 3012-3018
    148 Gianfreda L, Sannino F, Rao M A, et al. Oxidative transformation of phenols in aqueous mixtures. Water Research, 2003, 37 (13): 3205-3215
    149 Zhang Tong, Zhao Qingxiang, Huang Hui,et al. Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase Chemosphere, 1997, 34 (4) : 893-903
    
    150 Godjevargova T, Ivanova D, Alexieva Z, et al. Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57. Process Biochemistry. 2003,38 (6) : 915-920
    
    151 Gonzalez G, Herrera G, Garcia Ma T,et al. Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology, 2001,80 (2) : 137-142
    
    152 Trejo-Hernandez M R, Lopez-Munguia A, Quintero Ramirez R. Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochemistry, 2001,36:635-639
    
    153 Klibanov A M. Enzymatic removal of toxic phenols and anilines from wastewaters. Journal Of Applied Biochemistry, 1980, 2: 414-421