磁性液体热磁对流与传热机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度敏感型磁流体的饱和磁化强度会随温度的升高而显著减小,因此其热磁对流现象十分明显:处于外磁场中和非等温状态下的温度敏感型磁流体内部会产生磁力的不平衡状态,驱动流体做宏观对流运动。通过调节外磁场和温度场的协同作用,可以实现对这种流体运动的控制。如果将热磁对流控制在密闭回路中,同时保持稳定的外磁场和温度场,温度敏感型磁流体会在回路中持续稳定地循环流动,实现能量的传递。由于无须外加机械驱动部件,热磁对流回路是一种能量自主传递系统,在热能工程领域有一定的应用前景,对温度敏感型磁流体热磁对流回路特性的研究具有重要的意义。但热磁对流回路的相关研究报道还是比较少,仍有一些问题亟待解决。本学位论文研究主要包括以下几个方面的研究内容:
     (1)热磁对流回路内的流场可视化研究和流速测量
     为深入研究热磁对流回路中流体的流动与传热特征,需要对回路中磁流体流场进行测量,这个问题至今没有很好解决。本文利用粒子图像测速技术(PIV),针对磁流体可见光透过率小的特点,采用非经典的光路设置,实现了回路中磁流体的流场可视化,研究了热磁对流回路的流场特性,对充分发展段的流体进行了不同工况下的速度测量,定量分析了热磁对流的强度及其随主要影响因素的变化关系。对流速的测量有利于深入研究热磁对流回路的运行特性。
     (2)温度敏感型磁流体热磁对流回路运行特性的实验研究
     搭建了温度敏感型磁流体为工质的小型热磁对流回路实验系统,利用NdFeB永磁体提供外磁场,同时对回路的不同部分施加热源和冷源,使流体内部产生温度差异,发现回路中形成循环不断的热磁对流。分析了热源位置,永磁体位置,加热功率,冷却段温度等因素对回路流动和换热特性的影响,探索回路流动与传热的基本特征,研究了外加磁场和流体温度场的优化协同方式。
     (3)温敏型能量自主传递装置的设计方法
     在流体动力学、传热学和电磁学的一些重要理论基础上,结合磁流体的基本特性建立了包含磁、热和流动之间耦合特性的描述热磁对流的宏观数学模型。根据此数学模型,对温度敏感型磁流体热磁对流回路的运行状况进行数值模拟,建立了温敏能量自主传递系统的设计方法。将计算结果和实验结果进行对比,验证了理论模型和方法的合理性。
     (4)多热磁泵串联或并联回路的运行特性研究
     在合适的外磁场和温度场的作用下,回路中的磁流体持续循环流动,驱动力来自于外磁场和温度场的协同作用,它相当于一个“泵”为流体提供动力。迄今为止,热磁对流回路的相关研究针对的是一个热磁泵的系统。在前述的理论模型基础上,建立了多个热磁泵串联的回路模型和多泵并联回路模型,数值模拟了这些多泵系统的工作特点,并与单泵的回路系统进行了对比,以研究多泵系统中流体的流动与换热特性以及热磁动力的相互影响。
     (5)探索热磁对流在热能工程领域的应用前景。
     利用热磁对流原理建立了完整的小型热磁对流回路散热装置,通过对磁场的屏蔽减小了对外界的不良影响。研究了使用不同结构的散热回路针对模拟发热体的散热特点,结合散热能力和回路结构分析它们的应用价值和前景。
A temperature-sensitive magnetic fluid means that its magnetization remarkably decreases with the increase in temperature, so that strong thermomagnetic convection can be seen to take place in the fluid:When this type of magnetic fluid experiences a temperature variation in the presence of an external magnetic field, a magnetic force will arise to drive the magnetic fluid flow. This field-induced flow may be controlled by the synergy function between the external magnetic field and the temperature difference in the fluid. If the thermomagnetic convection takes place in a loop shape channel, a continuous circulation flow can be maintained inside the loop, transferring heat from heat source to the heat sink. Since no mechanical moving part is needed in the whole device, it has application potentials in the field of thermal engineering and is worthy of deep research. However, the research efforts to the thermomagnetic convection loop are relatively sparse, and there were still some problems to be resolved. This paper is focused on the following aspects:
     (1) Visualization of the fluid inside the thermomagnetic convection loop and measurements of the flow velocity
     The flow measurement of the magnetic fluid inside a thermomagnetic convection loop is still a challenge, which is important for deep research of the flow and heat transfer feature of the loop. In this paper, a particle image velocimetry (PIV) system has been put up, and due to the small transparency of the fluid to light a non- conventional light path was introduced to realize the visualization of the magnetic fluid inside the loop. The flow patterns of the magnetic fluid in the loop were observed and the velocity of fully-developed flow under main factors was measured. The measurement of velocity is helpful to further research of the operation characteristics of the thermomagnetic convection loop.
     (2) Experimental investigation on operational characteristics of the thermomagnetic convection loop using temperature-sensitive magnetic fluid
     A small thermomagnetic convection loop using a temperature-sensitive magnetic fluid was made. A permanent NdFeB magnet was used in the device to produce magnetic field. Heat sources and a heat sink were arranged at different parts of the loop, resulting in temperature difference in the fluid. It can be concluded that a circulation flow is formed inside the loop due to the thermomagnetic effect. The influences of heat source position, position of magnet, power of heat source and temperature of heat sink on the flow and heat transfer feature of the loop were discussed, in order to get insight into the mechanism of the operation characteristics of the loop and find out fine synergy between the magnetic field and thermal field.
     (3) Design method of automatic energy transport device using temperature-sensitive magnetic fluid
     Based on the knowledge of fluid dynamics, heat transfer, electromagnetics and the feature of magnetic fluid, a model for describing thermomagnetic convection of a temperature-sensitive magnetic fluid is established, which includes the coupling of the three fundamental phenomena, i.e., magnetic, thermal, and fluid dynamic features. The flow and heat transfer features of the fluid in the thermomagnetic convection loop were numerically simulated by using the CFD software. The design method for the temperature-sensitive automatic energy transport device is proven to be credible by the approving coincidence between the numerical values and experimental data.
     (4) Investigation on the operation features of thermomagnetic convection loop containing series-wound and shunt-wound multi thermomagnetic pumps
     When the thermomagnetic convection of a temperature-sensitive magnetic fluid takes place in a loop, a continuous circulation of the fluid may be maintained due to the magnetic force resulting from the synergy of external magnetic field and the temperature gradient in the fluid, which plays as a thermomagnetic "pump". Researches on such thermomagnetic convection cooling loop have been limited to the "single-pump" situation. In this paper, mathematical models of series-wound and shunt-wound "multi-pump" thermomagnetic convection loops were established based on the above-mentioned mathematical model. The operation feature of these "multi-pump" systems were numerically investigated, which were then compared with those in the conventional "single-pump" loop, in order to find out the flow and heat transport features of these "multi-pump" systems and the influence between these thermomagnetic "pumps"
     (5) To explore the application potentials of the thermomagnetic convection loop in the field of thermal engineering
     Small heat transport devices are created based on the thermomagnetic effect. The magnetic field was shielded to minimize the field intensity in the surrounding area. The cooling performances of the devices with different strctures were investigated, and their application potentials were discussed by considering the cooling capacity and the configuration.
引文
1 Rosensweig R E. Ferrohydrodynamics. Cambridge:Cambridge University Press,1985
    2 Berkovsky B M. Magnetic fluids engineering applications. New York:Oxford University press,1993
    3 Odenbach, S. Ferrofluids. Berlin:Springer,2002
    4 李德才.磁性液体理论及应用.北京:科学出版社,2003
    5 Raj. K, Moskowitz. B, Casciari. R. Advances in ferrofluid technology. Journal of Magnetism and Magnetic Materials.1995,149:174-180
    6 Parka S, Kimb J, Kim C. Preparation of photosensitizer-coated magnetic fluid for treatment of tumor. Journal of Magnetism and Magnetic Materials.2004,272-276: 2340-2342
    7 Muraoka H, Shoji T, Watanabe I, et.al. Recording characteristics of perpendicular media deposited on a ferrite disk substrate. Journal of Magnetism and Magnetic Materials.1999, 193:55-58
    8 Adam B, Roman S. The possibility of utilizing the high permeability magnetic materials in construction of magnetoelastic stress and force sensors. Sensors and Actuators A,2004, 113:270-276
    9 Litte R, et al. Office Viscous Damper Using Mangetic ferrofluid. United States Ptent,1970: 3538469
    10 Olkera T V, Blumsb E, Odenbach S. Thermodiffusion in magnetic fluids. Journal of Magnetism and Magnetic Materials.2002,252:218-220
    11 Liu J H, Gu J M, Lian Z W, et al. Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid. Heat Mass Transfer,2004, 41:170-175
    12李春辉,王补宣,彭晓峰.添加铁磁性微颗粒对沸腾传热的影响.热科学与技术.2003.2(1):30-33
    13马重芳,王建波等,雷道亨,等.小尺寸传热面对磁性液体的强化自然对流换热.工程热物理学报.1998,19(6):749-752
    14 Andersson H I. Valnes O A. Trondheim. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mechanica.1998,128:39-47
    15 Auernhammera G K, Brand H R. Thermal convection in a rotating layer of a magnetic fluid. European Physical Journal B.2000,16:157-168
    16 Jeyadevan B, Chinnasamy C N, Shinoda K, et.al. Mn-Zn ferrite with higher magnetization for temperature sensitive magnetic fluid. Journal of Applied Physics.2003, 93(10):8450-8452
    17 Upadhyay T, Upadhyay R V, Mehta R V, et. al. Characterization of a temperature-sensitive magnetic fluid. Physical Review B.1997,55(9):5585-5588
    18 Ku J, Kroliczek E. J, Taylor W. J. Functional and Performance Tests of Two Capillary Pumped Loop Engineering Models. AIAA,1986
    19 Jentung K. Recent Advances in Capillary Pumped Loop Technology. AIAA,1997
    20钱吉裕.毛细泵回路流动与换热机理研究.博士学位论文.南京:南京理工大学,2005
    21 Qian J Y, Xuan Y M, Li Q. Numerical Investigation on Evaporator for Capillary Pumped loops.7th IHPS. Korea,2003
    22 Swanson T D, Birur G C. NASA Thermal Control Technologies for Robotic Spacecraft. Applied Thermal Engineering.2003(23):1055-1065
    23 Chalmers D, Fredley J, Kurtz M. A new era of instrument thermal management with capillary heat transport systems.51th International Astronautical Congress. Brazil,2000.
    24 Mutlu S, Yu C, Selvaganapathy P, et al, Micromachined porous polymer for bubblefree electro-osmotic pump. Proceedings of 15th IEEE international conference on MEMS, 2002:19-23
    25 Chujo H, Matsumoto K, Shimoyama I. A high flow rateelectro-osmotic pump with small channels in parallel. Proceedingsof the 16th IEEE international conference on MEMS, 2003:351-354
    26 Linnemann R, Woias P, Senfft C D, et al, A selfpriming and bubble-tolerant piezoelectric silicon micropumpfor liquids and gases. Proceedings of the 11th IEEE international workshop on MEMS,1998:532-537
    27 Shinohara J, Suda M, Furuta K, et.al, A high pressure-resistance micropump using active and normally-closed valves. Proceedings of the 13th IEEE international conference on MEMS.2000:86-91
    28 Yang E H. Lee C, Mueller J. Normally-closed, leak-tight piezoelectric microvalve under ultra-high upstream pressure for integrated micropropulsion. Proceedings of the 16th IEEE international conference on MEMS,2003:80-83
    29 Li H Q, Roberts D C, Steyn J L, et al, Fabrication of a microvalve with piezoelectric actuation. Proceedings of the 16th IEEE international conference on MEMS,2003:92-95
    30 Maillefer D, Gamper S, Frehner B, et al, A high-performance silicon micropump for disposable drug delivery systems. Proceedings of the 14th IEEE international conference on MEMS.2001:413-417
    31 Olsson A, Larsson O, Holm J, et.al. Valve-less diffuser micropumps fabricated using thermoplastic replication. Proceedings of the 10th IEEE international workshop on MEMS,1997:305-310
    32刘静,周一欣.以低熔点金属或其合金作流动工质的芯片散热用散热装置.中国发明专利,02131419.5,2002
    33 Liu J. Zhou Y X, Lv Y G, et al. Liquid metalbased miniaturized chip-cooling device driven byelectromagnetic pump. ASME Int. Mech. Eng. Cong & Exp.2005, Orlando
    34 Ma K Q, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. Journal of Physics D:Applied Physics.2007,40:4722-729
    35谢开旺,刘明,刘静,等.电磁泵驱动室温金属流体的数值模拟与试验研究.电子机械工程.2009,25(3):1-5
    36 Moroney R M, White R M, Howe R T. Ultrasonically induced microtransport. Proceedings of IEEE international conference on MEMS,1991:277-282
    37 Gong J, Fan S K, Kim C J. Portable digital microfluidics platform with active but disposable lab-on-chip. Proceedings of the 17th IEEE international conference on MEMS, 2004:355-358
    38 Holmes A S, Hong G, Pullen K R, et.al. Axial-flow microturbine with electromagnetic generator:design, CFD simulation, and prototype demonstration. Proceedings of the 17th IEEE international conference on MEMS,2004:568-571
    39 Neuringger J L, Rosensweig R E. Ferrohydrodynamics. Physics of Fluids.1964,7(12): 1927-1937.
    40 Ganguly R J, Sen S, Puri I K.Heat transfer augmentation using a magnetic fluid under the influence of line dipole. Journal of Magnetism and Magnetic Materials.2004,271:63-73
    41 Nakatsuka K, Hama Y, Takahashi J. Heat Transfer in Temperature-Sensitive Magnetic Fluids. Journal of Magnetism and Magnetic Materials.1990,85:207-209
    42 Yamaguchi H. Kobori I, Kobayashi N. Numerical study of flow state for a magnetic fluid heat transport device. Journal of Magnetism and Magnetic Materials.1999,201:260-263
    43 Shimada K. Kamiyama S. Iwabuchi M. Effect of a magnetic field on the performance of an energy conversion system using magnetic fluid. Journal of Magnetism and Magnetic Materials.1999.201:357-360
    44 Love L J, Jansen J F, McKnight T E, et al. Cunningham. Ferrofluid Field Induced Flow for Microfluidic Applications. Transactions on Mechatronics.2005.10:68-76
    45 Love L J, Jansen J F, McKnight T E, et.al. A Magnetocaloric Pump for Microfluidic Applications. Transactions on Nanobioscience,2004,3:101-110
    46 Matsuki H, Yamasawa K, Murakami K. Experimental considerations on a new automatic cooling device using temperature-sensitive magnetic fluid. IEEE Transactions on Magnetics.1977,13(5):1143-1145
    47 Matsuki H, Murakami K. Performance of an automatic cooling device using a temperature sensitive magnetic fluid. Journal of Magnetism and Magnetic Materials. 1987,65:363-365
    48 Yamaguchi H, Sumiji A, Shuchi S, et al. Characteristics of thermo-magnetic driven motor using magnetic fluid. Journal of Magnetism and Magnetic Materials.2004,272-276: 2362-2364
    49 Fumoto K, Yamagishi H, Ikegawa M. A Mini Heat Transport Device Based on Thermo-Sensitive Magnetic Fluid. Nanoscale and Microscale Thermophysical Engineering.2007,11:201-210.
    50张世远,路权,薛荣华,等.磁性材料基础.北京:科学出版社,1988
    51 Philip J, Gnanaprakash G, Jayakumar T. Three Distinct Scenarios under Polymer, Surfactant, and Colloidal Interaction. Macromolecules.2003,36:9230-9236
    52 Descu R B, Condurache D, Ivaynoiu M. Ferrofuid with modified stabilisant. Journal of Magnetism and Magnetic Materials.1999,202:197-200
    53 Shen L, Stachowiak A, Fateen S K. Structure of Alkanoic Acid Stabilized Magnetic Fluids:A Small-Angle Neutron and Light Scattering Analysis. Langmuir.2001,17: 288-299
    54王瑞金.磁流体技术的应用于发展.新技术新工艺.2001,10:15-18
    55张志焜,崔作林.纳米技术与纳米材料,北京:国防工业出版社,2000
    56洪若瑜.磁性纳米粒和磁性流体制备与应用,北京:化学工业出版社,2009
    57严密,彭晓领.磁学基础与磁性材料,杭州:浙江大学出版社,2006
    58姜寿亭,李卫.凝聚态磁性物理,北京:科学出版社,2003
    59宛德福.马兴隆.磁性物理学,北京:电子工业出版社,1999
    60 McTague J P. Magnetoviscosity of Magnetic Colloids. Journal of Chemical Physics. 1969,51:133-136
    61 Hall W F, Busenberg S N. Viscosity of Magnetic Suspensions. Journal of Chemical Physics.1969,51:137-144
    62 Markus Z, Loretta L P. Ferrofluid flows in AC and traneling wave magnetic fields with effective positive, zero or negative dynamic viscosity. Journal of Magnetism and Magnetic Materials.1999.201:144-148
    63胡海涛,李俊明.王补宣.添加表面活性剂对纳米颗粒悬浮液稳定性及粘度的影响.中国工程热物理学会传热传质学学术会议.2002
    64刘淑艳,赵克强.铁磁流体及其应用.北京理工大学学报.1995,6:246-251
    65 Jangssen J J M, Perenboom J A A J. Magneto-optical phenomena in magnetic fluids:the influence of orientation of anisotropic scatterers. Journal of Magnetism and Magnetic Materials.1989,81(1-2):14-24
    66李国栋.当代磁学.合肥:中国科学技术大学出版社,1999
    67陈湘.电和磁.上海:上海教育出版社,1979
    68叶荣昌.锰锌铁氧体磁流体的研制及其在磁场中粘度测定的研究.博士学位论文.徐州:中国矿业大学,2000
    69孙慧.温度敏感型磁流体自动冷却回路的传热特性研究.硕士学位论文.南京:南京理工大学,2006
    70许孙曲,许菱.第7届国际磁流体会议学术论文综述.磁性材料及器件.1996(2):40-46
    71都有为.铁氧体.南京:江苏科学技术出版社,1996
    72周志刚.铁氧体磁性材料.北京:科学出版社,1981
    73杨岗.锰锌铁氧体磁流体的制备和性能研究.硕士学位论文.南京:南京理工大学,2006
    74冯怀涵译.铁氧体磁芯.北京:科学出版社,1986
    75张有纲等.磁性材料.成都:成都电讯工程学院出版社,1988
    76叶荣昌,刘书进,杨志伊,等.锰锌铁氧体磁流体中Zn2+的作用及其影响机理的研究.功能材料.2003,5(34):515-517
    77北京大学铁磁学编写组.铁磁学.北京:科学出版社,1976
    78 Ott G, Wrba J, Lucke R. Recent developments of Mn-Zn ferrites for high permeability applications. Journal of Magnetism and Magnetic Materials.2003,254-255:535-537
    79 Maiorov M, Blums E, Hanson M. High field magnetization of the colloidal Mn-Zn ferrite. Journal of Magnetism and Magnetic Materials.1999.201:95-97
    80 Li H H, Feng Z K, He H H. Effects of Fe2+ content in raw materials on Mn-Zn ferrite magnetic properties. Journal of Magnetism and Magnetic Materials.2001,237:153-157
    81 Chen S H, Chang S C, Lin I N. The infuence of grain boundary internal stress on permeability:temperature curve for Mn-Zn ferrites. Journal of Magnetism and Magnetic Materials.2000,209:193-196
    82 Massart R, Zins D, Gendron F. Electron spin resonance investigation of Mn-Zn ionic ferrofuid. Journal of Magnetism and Magnetic Materials.1999,201:73-76
    83 Arulmurugana R, Vaidyanathana G, Sendhilnathan S. Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles. Physica B.2005,368:223-230
    84 Jeyadevan B, Chinnasamy C N, Shinoda K. Mn-Zn ferrite with higher magnetization for temperature sensitive magnetic fluid. Journal of Applied Physics.2002,93(10): 8450-8452
    85李伯光,尹光福,查忠勇,等.并加共沉淀制备软磁锰锌铁氧体粉末生产新工艺.化工冶金.1999,20(4):381-384
    86 Auzans E, Zins D, Massart R. Synthesis and properties of Mn-Zn ferrite ferrofluids. Journary of Materials Science.1999,34:1253-1260
    87 Rozman M, Drofenik M. Hydrothermal Synthesis of Manganese Zinc Ferrites. Journal of the American Ceramic Society.1995,78 (9):2449-2455
    88 Rath C, Sahu K K, Anand S, et al. Preparation and Characterization of Nanosize Mn-Zn ferrite. Journal of Magnetism and Magnetic Materials.1999,202:77-84
    89 Fan J W, Frank R S. Analysis of Power Loss on Mn-Zn Ferrites Prepared by Different Processing Routes. IEEE Transactionson Magnetics.1996,32(5):4854-4856
    90 Thakur A, Singh M. Preparation and characterization of nanosize Mno.4Zno.6Fe204 ferrite by citrate precursor method. Ceramics International.2003,29:505-511
    91 Yao Z Q, Wang Q, Zhong B. The Preparation of Ultrafine Powder of Mn-Zn Ferrite by Supercritical Fluid Drying. Magnetic Materials Devices.1998,29(1):6-9
    92 Makovec D, Kosak A, Drofenik M. The preparation of MnZn-ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology.2004,15:160-166
    93王长振,谭维,周甘宇,等.锰锌铁氧体粉制备技术综述.中国锰业.2002,20(3):37-41
    94盛森芝,徐月亭,袁辉靖.日新月异的现代流动测量技术.北京大学特赛流动测量研究中心内部资料.1999
    95 Adiran R J. Particle-image techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics.1991,23:261-304
    96王健,郝鹏飞,何枫.梯形截面微管道内流场的PIV测量.实验流体力学.2005,19(3):94-98
    97 Gui L, Wereley S T. A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation. Experiments in Fluids.2002(32): 506-517
    98郝鹏飞,何枫,王健,等.利用PIV研究超声波引起的微流动现象.机械工程学报.2005,41(3):64-71
    99 Molezzi M J, Dutton J C. Application of Particle Image Velocimetry in High-Speed Separated Flows. A1AA Journal.1993,31(3):438-446
    100 Flow manager software and introduction to PIV instrumentation. Software user's guide. Dantec Dynamics. Ltd.
    101 Alkislar M B, Lourenco L M, Krothapalli A. Stereoscopic PIV Measurements of a Screeching Supersonic Jet. Journal of Visualization.2000,3(2):135-143
    102 Rodriguez M. Ravelet P F, Delfos R. Large eddy simulations and stereoscopic particle image velocimetry measurements in a scraped heat exchanger crystallizer geometry. Chemical Engineering Science.2009,64(9):2127-2135
    103 Tanahashi M, Hirayamaa T, Takaa S. Measurement of fine scale structure in turbulence by time-resolved dual-plane stereoscopic PIV. International Journal of Heat and Fluid Flow.2008,29(3):792-802
    104 Yu X J, Liu B J. Stereoscopic PIV measurement of unsteady flows in an axial compressor stage. Experimental Thermal and Fluid Science.2007,31(81):1049-1060
    105 Yu C I, Kobayashi T, Saga T, et al. Stereoscopic PIV Measurements of Flow in and around Axial Flow Fan. Journal of visualization.2002,5(1):51-57
    106 Hill D F, Adrian R J, Sharp K V. Stereoscopic particle image velocimetry measurements of the flow around a Rushton turbine.2000,29(5):478-485
    107 Prasad A K. Stereoscopic particle image velocimetry. Experiments in Fluids.2000,29(2): 103-116
    108 Li H, Ewoldt R, Olsen M G. Turbulent and transitional velocity measurements in a rectangular microchannel using microscopic particle image velocimetry. Experimental Thermal and Fluid Science,2005 (29):435-446
    109 Santiago J G. A particle image velocimetry system for microfluidics. Eperiments in Fluids.1998(25):316-319
    110 Devasenathipathy S. Particle imaging techniques for microfabricated fluidic systems. Experiments in Fluids.2003(34):504-514
    111 Meinhart C D, Wereley S T, Santiago J G. PIV measurements of a microchannel flow. Experiments in Fluids.1999(27):414-419
    112 Sinton D. Microscale flow visualization. Micro fluid Nanofluid.2004 (1):2-21
    113 Curtin D M. Newport D T, Davies M R, et al. Utilising micro PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel. Experimental Thermal and Fluid Science.2006(30):843-852
    114 Adrian R J. Twenty years of particle image velocimetry. Experiments in Fluids.2005 (39):159-169
    115孙冬,张春梅,吴剑华.几种典型流动测量技术的原理及应用现状.辽宁化工.2007,36(2):131-135
    116阮驰,孙传东,白永林,等.PIV系统水洞流场测量准确度与误差分析.光子学报,2008,37(10):2005-2008
    117黄泽铣.热电偶原理及其检定.北京:中国计量出版社,1993
    118孙秀兰,李吉林.热电偶温度-毫伏对照表.北京:中国计量出版社,1988
    119杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社,1998
    120曹玉璋,邱绪光.实验传热学.第一版.北京:国防工业出版社,1998
    121黄卫星,李建明,肖泽仪.工程流体力学.第二版.北京:化学工业出版社,2009
    122景思睿,张鸣远.流体力学.第一版.西安:西安交通大学出版社,2001
    123谢处方,饶克谨.电磁场与电磁波.第三版.北京:高等教育出版社,1999
    124南京工学院数学教研组编.数学物理方程与特殊函数.第二版.北京:高等教育出版社,1982
    125张学孚,陆怡良.磁通门技术.北京:国防工业出版社,1995
    126 Farahani A V, Konrad A. Demagnetizing factors for nonuniform nonlinear cylinders and rectangular prisms. IEEE Transactions on Magnetics.2008,44(11):3225-3228.
    127 Beleggia M, Vokoun D, Graef M D. Demagnetization factors for cylindrical shells and related shapes. Journal of Magnetism and Magnetic Materials.2009,321(9):1306-1315
    128 Anhalt M, Weidenfeller B, Mattei L J. Inner demagnetization factor in polymer-bonded soft magnetic composites. Journal of Magnetism and Magnetic Materials.2008,320(20): 844-848.
    129 Vislovich A N, Phenomenological equation of static magnetization of magnetic fluids. Magnetohydrodynamics.1990,26:178-183.
    130王健.铁磁流体的制备方法和粘度测量.硕士学位论文.南京理工大学,2005
    131 Chen C Y, Hong C Y, Wang S W, Magnetic flows in a tube with the effects of viscosity variation. Journal of Magnetism and Magnetic Materials.2002,252:253-255
    132 Patel R, Wagh D K, Avashia A. On the viscosity of a magnetic fluid. Journal of Magnetism and Magnetic Materials.1996,153:359-365.
    133 Upadhyay R V, Mehta RV, Viscosity measurements of a ferrofluid:comparison with various hydrodynamic equations. Journal of Colloid and Interface Science.2003,263: 661-664
    134陶文铨.数值传热学.第二版.西安:西安交通大学出版社,2001
    135王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004
    136温正,石良臣,任毅如FLUENT流体计算应用教.北京:清华大学出版社,2009
    137于勇FLUENT入门与进阶教程.北京:北京理工大学出版社,2008
    138江帆,黄鹏Fluent高级应用与实例分析.北京:清华大学出版社,2008
    139 Yamaguchi. H. Study on power generation using electro-conductive polymer and its mixture with magnetic fluid. Journal of Magnetism and Magnetic Materials.2008 (320): 1406-1411
    140杨士元.电磁屏蔽理论与实践.北京:国防工业出版社,2006
    141邹继斌.磁路与磁场.哈尔滨:哈尔滨工业大学出版社,1998
    142高联辉.磁路和铁磁器件.北京:高等教育出版社,1982
    143胡志勇.当今电子设备冷却技术的发展趋势.电子机械工程.1999,2(1):2-5
    144刘思光.电子元器件液体自循环冷却系统的传热特性与实验研究.硕士学位论文.北京工业大学,2005
    145 Belhardj S, Mimouni S, Saidane A, et al. Using microchannels to cool microprocessors:a transmission-line-matrix study. Microelectronics Journal.2003(34):247-253