锶及其卤化物蒸气激光机理和工作特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高重复率脉冲放电激励的锶蒸气激光是激光领域的研究热点之一,具有多种机制、丰富的谱线和较高的激光功率和效率等特点,能在430.5nm-6.45μm光谱范围输出多条瓦级以上功率的激光谱线,在微电子技术、材料处理、激光医疗和红外技术等领域具有广泛的应用前景。长期以来,人们对脉冲锶蒸气激光产生极大的兴趣和深入持续地研究并取得重要进展,但有关脉冲放电锶及其卤化锶蒸气激光中的微观动力学过程、激光机理和工作特性等还有待深入研究,结合国家自然科学基金项目的研究内容,论文较系统地开展了脉冲锶蒸气激光理论和实验研究工作,取得了一些创新成果,具有重要的学术和应用价值。
     论文第一章综述了金属蒸气激光尤其是锶蒸气激光的发展历史、研究背景和现状,分析讨论了不同机制中锶蒸气R-M跃迁激光、碰撞复合激光及其M-M跃迁激光的工作原理和技术路线,提出了锶蒸气激光中存在的问题、解决方法及课题的研究意义。
     第二章建立了一个反映高重复率脉冲放电激励的一价锶离子1090nm自终止激光和430.5nm复合激光交替振荡的动力学模型,得到了相关激光能级粒子数密度、电子密度和腔内光子数密度等微观参量的时间演化过程,分析解释了这两种激光交替振荡的发射过程、光电脉冲特性和粒子数反转机理,认为在放电早期和余辉期电子温度的急剧升高和降低是实现两种激光交替振荡的关键所在。
     第三章设计制作了小尺寸电泳式脉冲He-Sr+(Ca+)激光器,利用高重复率脉冲放电的电泳效应实现了金属锶或钙蒸气密度在放电区的均匀分布和稳定的激光输出,得到Sr+(Ca+)复合激光最大输出功率819(136)mW和56(5.9)mW/cm3功率密度的实验结果。分析讨论了脉冲频率、激励电压、氦压和430.5/373.3nm复合激光输出功率之间的关系,获得了一组较好的工作参量,为进一步研制该类激光的实用化器件奠定了基础。
     第四章设计制作了He-SrCl2蒸气激光器,成功地采用了锶的卤化物SrCl2代替金属锶为激光介质,实现了多条锶蒸气激光谱线的高效稳定输出,有效解决了纯金属锶激光工作时发生的锶蒸气和激光放电管之间剧烈的化学反应问题,提高了激光的运转寿命。获得了1.32W多谱线激光总功率和12.46mW/cm3功率密度,其中6.45μm波长占总功率78.1%,研究分析了He-SrCl2蒸气激光的光脉冲和电流脉冲的特性,发现-1μm/-3μm/6.45μm激光脉冲均出现在电流脉冲的下降沿并随着激光功率的增加有继续朝电流脉冲方向移动的趋势,并对此给予合理解释。
     第五章设计制作了可周期性更新缓冲气体后封离运转的金属蒸气激光系统,较系统地测量和分析了铜蒸气578/511nm激光的光谱线型随宏观工作参量的变化关系,发现激励电压、氖压和温度对578nm谱线结构影响较大。采用同样的方法研究了锶蒸气430.5nm复合激光的光谱结构,结果表明430.5nm谱线光谱结构稳定。
The strontium vapor laser excited by HRR(high repetition rate) pulsed discharge is an important hotspot in the laser area, which has many characteristics including multiple laser lines(covering waveband from blue to infrared),with different mechanisms, higher output power and efficiency and so on. These lasers can be widely used in material processing, microelectronic technology, laser medical treatment and infrared technology. Scientists constantly have great interest in working on the output performance and the mechanism of strontium vapor laser, and make a lot of impornant results, however, the micro-kineitc process, the laser mechanism and the characteristics of strontium and strontium halide vapor lasers are still to be deeply investigated. In the paper the pulsed strontium laser is systematically studied whatever on theory or experiment aiming at accomplishing the task of National Natural Science Foundation Program, and some important results are achieved during the research.
     In Chapter 1, the development history, the background and the research state of metal vapour lasers(MVLs) especially the strontium and strontium halide vapor lasers are compendiously introduced. The principle and the technology of strontium vapor laser with different transtion mechanisms including the self-terminating laser, the collisional recombination laser and the metastable-metastable laser are discussed and analyzed. Some suggestions to solve the subsistent problems of strontium vapor laser and the research purpose are given out. In Chapter 2, a self-consistent model is developed to simulate the kinetics of alternate oscillation of self-terminating and recombination lasers(1090/430.5nm) in univalent ions of strontium excited by HRR pulsed discharge. Temporal behaviors of level population densities,the electron density and the cavity photon density are obtained. The emission process of alternate oscillation of the two lasers above, the characteristic of the laser pulse and the population inversion mechanism are also analyzed and explained. It is considered whether the electron temperature can rise up quickly in the early discharge and fall down rapidly during the discharge afterglow is the key to realize the alternate oscillation of self-terminating and recombination lasers in univalent ions of stroantium in experiment. In Chapter 3, a small-scale cataphoresis He-Sr+(Ca+) recombination lasers are made. By means of the cataphoresis effect in HRR pulsed discharge, the axial uniform distribution of metal vapor density and the stable laser output are realized. The maximum laser output power of 819(136)mW and the specific power of 56(5.9)mW/cm3 are obtained for Sr+(Ca+) recombination lasers, respectively. Dependences of working parameters such as the pulsed frequency, the supply voltage and the helium pressure on laser output characteristics are measured and discussed. and a set of optimal work parameters is got. It provides a new way to make a practical device of this kind of laser. In Chaper 4, an investigation of a He-SrCl2 vapor laser excited by Blumlein discharge circuit is made. SrCl2 compound is successfully employed as a lasant in exploring the discharge excitation strontium vapour laser with a novel laser discharge tube, and the laser output at multiple lines(-1μm,-3μm and 6.45μm) in strontium vapor are realized. The problem of the intense chemical reaction between strontium vapor and discharge tube in the metallic strontium laser is effectively solved, which prolongs the lifetime of the laser. Total output power of multiline of 1.32W and the power specific of 12.46mW/cm3 are achieved, in which the component of the 6.45μm laser line accounts for 78.1%.The characteristics of laser and current pulses in a He-SrCl2 vapor laser are measured and analyzed,and the improtant experimental rules are got In Chapter 5, a sealed operation MVL with periodical refreshment of the buffer gas are designed and made. The spectral structures of 578nm and 511nm laser lines, produced by CuBr laser with lower Ne buffer gas pressure are measured and analyzed under different working temperature and exciting voltage. It is found that 578nm laser line is closely dependent on the work temperature and the exciting voltage, but 511nm laser lines not. In the same way the study on the spectral structure of 430.5nm strontium ion recombination laser is done, and it is shown that the line shape of 430.5nm laser is stable and monochromatic.
引文
[1]J. D. Rigden, A. D. white, Optical Maser Action in Iodine and Mercury Discharges Nature,1963,198(5):774-774.
    [2]W. E. Bell, Visible Laser Transitions in Hg+, Appl. Phys. Lett.1964, 4(2):34-35.
    [3]C. E. Little N. V. Sabotinov, In:Introduction. C. E. Little, N. V. Sabotinov. Pulsed metal vapour lasers. NATO Series:Kluwer Akademic Publishers,1996.
    [4]于德利,陶永祥,高功率铜蒸气激光器的发展,激光与光电子学进展,1997(9):1-5.
    [5]N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, UV Cu+Ne-CuBr laser-some problems with the discharge tube resource, Proceedings of the SPIE,2005, 5777:524-527.
    [6]I. G. Ivanov E. L. Latush, M. F. Sem, C. E. Little. Metal vapour ion lasers. Chichester:John Wiley & Sons,1996.
    [7]W. T. Walter, N. Solimene, M. Piltch et al., Pulsed laser action in atomic copper vapor, IEEE J. Quant. Electron.,1966 QE-2:474-481.
    [8]A. V. Platonov et al., Pulsed strontium vapor laser, Sov. J. Quant. Electron. 1978,8(1),120-121.
    [9]T. W. Karras, A Discharge-heated Calcium Vapor Laser, in Proc.Int.Conf.on Laser, McLean, VA, USA:STS Press,1982:871-876.
    [10]V. M. Batenin, S. V. Kalinin, and I. I. Klimovskiy, Superlong pulses of laser oscillation on the 61P1-51D2 transition of the barium atom, Sov. J.Quant. Electron.,1982,43(5):347-349.
    [11]A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Emission of laser pulses due to transitions from a resonance to a metastable level in barium vapor, Sov. J. Quant. Electron,1973,3(4):358-359.
    [12]B. G. Bricks, T. W. Karras and R. S. Anderson, An Investigation of
    discharge-heated Barium Laser, J. Appl. Phys.,1978,49(1):38-41.
    [13]B. L. Pan,G. Chen,Z. X.Yao,B. M. Fang,Simultaneous oscillation of resonance-metastable transition laser in calcium atoms, Acta Phys. Sinica,2000, 50(77):1290-1293.
    [14]Z. X. Yao, B. L. Pan, G. Chen, the M-M transition in strontium laser Acta Phys. Sinica,2001,50(6):1070-1074.
    [15]潘佰良,陈坤,陈钢,姚志欣,锶离子跃迁激光和复合激光的参量研究,物理学报,2004,53(2):445-449.
    [16]J. Tribble, D. C. Lamb, L. Reinisch, and G. S. Edwards, Dynamics of gelatin ablation due to free-electron-laser irradiation, Phys. Rev. E,1997, 55(6):7385-7389.
    [17]M. Copeland, G. P. Cram, G. S. Edwards, D. Ernst, W. Gabella, and E. D. Jansen, First Human Surgery with a Free Electron Laser, SPIE, Plenary Session,2000.
    [18]G. A. Peyman and N. Katoh,Effects of an erbium:YAG laser on ocular structures, Int Ophthalmol,1987,10(4):245-53.
    [19]A. V. Platonov, A. N. Soldatov, A. G. Filonov,Pulsed strontium vapor laser, Sov. J. Quantum electron,1978,8(1):120-121.
    [20]A. N. Soldatov, A. G. Filonov, A. S. Shumeiko, A. E. Kirilow, B. Ivanov, R. Haglun, M. Mendenhall, B. Gabella, I. Kostadinov, A Sealed-Off Strontium Vapor Laser, Proc. SPIE,2004,5483:252-261.
    [21]C. W. Mclucas, A. I. McIntosh, Investigation of laser emission in Sr+and Ca+,J. Phys. D:Appl. Phys.,1986,20(5):591-597.
    [22]A. M. Shukhtin, G. A. Fedotov, and V. G. Mishakov, Lasing with Cu I lines using copper bromide vapor, Optics and spectroscopy,1975,39(6):681-682.
    [23]B. L. Pan, Z. X. Yao, G. Chen, a Discharge-Excited SrBr2 Vapour Laser, Chin. Phys. Lett.,2002,19(7):941-943.
    [24]K. A. Temelkov, N. K. Vuchkov, B. N. Mao, E. P. Atanassov, L. Lyutov, N. V. Sabotinov, High-Power Sr Atom Laser Excited in Nanosecond Pulsed Longitudinal He-SrBr2 Discharge, IEEE J. Quant. Electron.,2009,45(3): 278-281.
    [25]E. L. Latush, M. F. Sem Stimulated emission due to transitions in alkaline-earth metal ions, Sov. J. Quantum Electron,1973,3(3):216-219.
    [26]姚志欣,潘佰良,王军营,放电激励的锶离子复合激光器,中国激光,1996,A23(7):600-602.
    [27]金永兴,姚志欣,潘佰良等,钙离子复合激光的实验研究,中国激光,1997,A24(6):486-488.
    [28]E. L. Latush, G. D. Chebotarev, M. F. Sem,Small-scale recombination He-Sr+(Ca+) lasers, QUANTUM ELECTRON,2000,30(6):471-478.
    [29]D. G. Loveland, D. A. Orchard,A. F. Zerrouk and C. E. Webb, Design of a 1.7 W stable long-lived strontium vapour laser, Meas.Sci. Technol.,1991,2(11): 1083-1088.
    [30]G. D. Alkhazov et al., Effective cross-sections for ionization and excitation of helium by electron impact, Sov. Phys.-Tech. Phys.,1970,15(1):66-73.
    [31]E. L. Latush, G. D. Chebotarev, and A. V. Vasilchenko, Strontium and cadmium pulsed cataphoretic lasers, Proc. SPIE,1998,3403:141-144.
    [32]G. R. Fowles and W. T. Silfvast, High-Gain Laser Transition in Lead Vapor, Appl. Phys. Lett.,1965,6(12):236-237.
    [33]W. T. Silfvast, Pulsed Metal Vapor Lasers:Past and Future, Ed. C. E. Little & N. V. Sabotinov, Pulsed Metal Vapour Lasers, Kluwer Akademic Publishers,1996: 3-13.
    [34]楼祺洪等,脉冲放电气体激光器,北京,科学出版社,1993.
    [35]方本民,姚志欣,潘佰良等,碱土金属蒸气中两种不同机理的高重复率脉冲激光交替振荡现象,物理学报,2000,49(81):552-1655.
    [36]Z. X. Yao et al., The Further Validation of G-Criterion for Metal Vapor Lasers, ACTA PHYSIC A SINICA,2002,52(9):2011-2014.
    [37]Z. X. Yao, B. L. Pan, The Recombination Laser in Strontium ion,Chinese J.Quantum Electron.,1994,12(24):80-81.
    [38]Y. J. Wang, B.L. Pan, L. Chen, B. N. Mao, Output characteristics of a cataphoresis He-Sr+ recombination laser,Opt. commun.,2008,281(21): 5401-5405.
    [39]E. L. Latush, M. F. Sem, L. M.Bukshpun,Yu. V. Koptev, S. N.Atamas, Gas-discharge recombination lasers based on strontium and calcium vapors, A review, Opt. Spectrosc.,1992,72(56):72-680.
    [40]P. A. Bokhan, and V. D. Burlakov, mechanism of laser action due to 4d 3D1.2-5p 3P0.2 transitions in a strontium atom, Sov. J. Quantum Electron,1979,9: 374-376.
    [41]O. Svelto, Principles of Lasers, second edition, Plenum, New York,1982.
    [1]B. L. Pan, G. Chen,Z. X. Yao and B. M. Fang,simultaneous oscillation of resonance-metastable transition laser in calcium atoms and ions, Acta Phys. Sin., 2001,50(7):1290-1293.
    [2]B. L. Pan, Z. X. Yao, G. Chen, A Discharge-Excited SrBr2 Vapour Laser, Chin. Phys. Lett.,2002,19(7):941-943.
    [3]G. Chen,J. Feng,B. L. Pan and Z. X. Yao, a kinetics model for metastable-metastable transition laser in Sr atom vapor, Acta Phys. Sin.,2005, 54(9):93149-3153.
    [4]J. S. Deech and J. H. Sanders, New self-terminating laser transitions in calcium and strontium, IEEE J. Quantum Electron,1968,4(7):474-474.
    [5]E. L. Latush, M. F. Sem,Stimulated emission due to transitions in alkaline-earth metal ions, Sov. J. Quantum Electron,1973,3(3):216-219.
    [6]C. E. Little and J. A. Piper, Average-power scaling of self-heated Sr+afterglow recombination lasers,IEEE J. Quantum Electron,1990,2:903-910.
    [7]E. L. Latush, G. D. Chebotarev, M. F. Sem,Small-scale recombination He-Sr+(Ca+) lasers, QUANTUM ELECTRON,2000,30(6):471-478.
    [8]R. J. Carman, A self-consistent model for a longitudinal discharge excited He-Sr recombination laser, IEEE J. Quantum Electron,1990,26(9):1588-1607.
    [9]潘佰良,陈坤,陈钢,姚志欣,锶离子跃迁激光和复合激光的参量研究,物理学报,2004,53(2):445-449.
    [10]G. D. Alkhazov et al., Effective cross-sections for ionization and excitation of helium by electron impact, Sov. Phys.-Tech. Phys.,1970,15(1):66-73.
    [11]D. R. Long and R.Geballe, Electron-impact ionization of He(2s3S), Phys. Rev. A,1970,1(2):260-265.
    [12]K. A.Berrington et al.,Electron excitation from the 11S,23S and 21S states of helium, An eleven-state R-matrix calculation, J. Phys. B.,1985,18:4135-4147.
    [13]A. P. Garrett, E. L. Mark,L. W. Anderson, et.al., Cross section for electron excitation of the 2S3 metastable level of He into higher triplet levels, Physical Review A,1997,55(4):2842-2856.
    [14]V. P. Starodub et al., Electron-impact excition of alkaline earth atoms. Part2:Strontium singlets, Opt. Spectrosc.,1973,35(6):603-606.
    [15]S. N. Chatterjee and B.N. Roy, Electron impact double ionization of Ca and Sr, J. Phys. B.,1984,17:2527-2534.
    [16]S. Okudaira et al., Multiple ionization of Ca, Sr and Ba by electron impact, J. Phys. Soc. Japan,1970,29:409-415.
    [17]I. S. Aleksakhin and I.I. Shafranyosh, Study of electron impact ionization from the excited states of strontium atoms, Ukr. Fiz. Zh. (U.S.S.R.),1974,19(11): 1843-1947.
    [18]M. C. Chidichimo, Electron impact excitation cross-section of Ca+at low energies, J. Phys. B.,1981,14:4149-4164.
    [19]M. K. Gailitis,Calculation of the excitation of ions by electrons using Coulombic wave-functions, Opt. Spectrosc.,1963,14:249-251.
    [20]D. H. Crandall et al., Electron-impact of the Ba+ion, Phys. Rev. A,1974,10(1): 141-157.
    [21]M. C. Chidichmo, Electron-impact excitation of optically forbidden and resonant transitions in Mg+ at low and medium energies,Phys. Rev. A.,1988, 37:4097-4106.
    [22]A. Burgess and V. P. Sheorey, Electron impact excitation of the resonance lines of alkali-like positive ions., J. Phys. B.,1974,7(17):2403-2416.
    [23]I. P. Zapesochnyi et.al., Excitation of the Mg+, Ca+, Sr+ and Ba+ resonance levels in electron-ion collisions, Sov. Phys.-JETP,1976,42:989-992.
    [24]A. M. Samson and K. A. Berrington,Electron impact excitation cross sections and rates from the ground state of atomic Calcium, Atomic Data and Nuclear Data Tables 2001,77:87-95.
    [25]B. E. Cherrington,Gaseous Electronics and Gas Lasers,Oxford:Pergamon,1979.
    [26]L. M. Biberman et al., Kinetics of impact-radiation ionization and recombination, Sov. Phys.-Usp.,1973,15:375-531.
    [27]E. Hinnov and J.G. Hirshberg, Electron-ion recombination in dense plasma, Phys. Rev.,1962,125:795-801.
    [28]D. R. Bates et al.,Excited atoms in decaying optically thick plasmas, Proc. Phys. Soc.,1967,91:288-299.
    [29]R. W. Motley and A. F. Kuckes, in Proc.5th Int. Conf. Ioniz. In Gases, Munich 1962, Amsterdam:North Holland. Amsterdam,The Netherlands:North Holland, 1961.
    [30]I. S.Veselovskii, Electron recombination coefficient with three-body collisions in a plasma, Sov. Phys.-Tech. Phys.,1969,14:193-197.
    [31]F. Emmert, et al., Reaction kinectics of the He(2p) and the He*2 states in high-density helium, J. Phys. D.,1988,21:667-674.
    [32]R. Deloche et al., High-pressure helium afterglow at room temperture, Phys. Rev.A,1976,13:1140-1176.
    [33]R. W. Crompton et al., The momentum transfer cross-section for electrons in helium derived from drift velocities at 77K, Austral. J. Phys.,1970,23:667-681.
    [34]M. michener and C. H. Kruger,in Partially Ionized gases, New York:Wiley, 1973.
    [35]F. E. Niles and W.W. Robertson, Temperture dependence of the rate of conversion of He+ into He+2, J. Chem. Phys.,1965,42:3277-3280.
    [36]J. Stevefelt, Analysis of the reaction He(23S)+2He→He2(a3 E)+He, in Proc.
    41st Ann. Gaseous Electron. Conf.,Minncaplis, MN,1988. paper E-27.
    [37]E. L. Latush and M. F. Sem, Stimulated emission due to transitions in alkali-earth metal ions, Sov. J. Quantum Electron.,1973,3:216-219.
    [38]E. L. Latush dt al., Metal vapor recombination laser research, in Proc. Int. Conf. Lasers'81, New Orleans, LA:STA,1982,1121-1128.
    [39]F. M. Kelly et al.,Lifetimes and oscillator strengths in singlet levels of strontium, Canad. J. Phys.,1974,52:795-802.
    [40]A. Gallagher,Oscillator strengths of Ca+,Sr+,and Ba+, phys. Rev.,1967,157: 24-30.
    [4.1]W. L. Weise and G. A. Martin, Wavelengths and transition probabilities for atoms and atomic ions, part 2, Nat. Bur. Stand.,1980, Rep. NSRDS-NBS'68.
    [42]T. Holstein, Imprisonment of resonance radiation in gasesⅡ,Phys. Rev.,1951,83: 1159-1168.
    [43]J. T. Verdeyen, Laser Electronics, Englewood Cliffs, NJ:Prentice-Hall,1981.
    [44]E. M. McDaniel,Collision Phenomena in Ionized Gases,New York:Wiley,1964, p.39,
    [45]American Institute of Physics Handbook,D. E.Gray, Ed., New York: McGraw-Hill,1972,Table 7a-3.
    [46]CRC Handbook of Chemistry and Physics, R.C. Weast, Ed. Boca Raton, FL: CRC Press,1988, E-4.
    [47]B. L. Pan, X. Chen, T. Ma et al.,Experimental study of discharge circuits used in Sr+(Ca+) recombination laser, Applied Laser Tech.,1998,18(2):53-54.
    [48]H. M. Pask, J.A. Piper,Average-power scaling of the pulsed barium vapour laser, SPIE,1990,1225:248-259.
    [1]S. V. Markova and G. G. Petrash, Ion r-m transition lasers:possible transitions, Proc.SPIE,1993,2110:165-190.
    [2]V. V. Zhukov,E. L. Latush,V. S. Mikhalevskii,M. F. Sem, Recombination lasers utilizing vapors of chemical elements:Principles of achieving stimulated emission under recombination conditions,Sov. J. Quantum Electron,1977,7(6):704-708.
    [3]S. P. Zinchenko,E. L. Latush, M. F. Sem,R. A. Tikidzhi-Khambur'yan, Dye laser pumped by an He-Sr recombination laser,Sov. J. Quantum Electron,1992,22(9): 798-799.
    [4]M. A. Mackanos,B. Ivanov,A. N. Soldatov, I. Kostadinov,M. H. Mendenhall,D. W. Piston, R. F. Haglund, E. D. Jansen, Ablation of soft tissue at 6.45 μm using a strontium vapor laser, Proc. SPIE,2004,5319:201-208.
    [5]J. S. Deech and J. H. Sanders,IEEE J. Quantum Electron,1968,4:474.
    [6]E. L. Latush,M. F. Sem, Stimulated emission due to transitions in alkaline-earth metal ions,Sov. J. Quantum Electron,1973,3 (3):216-219.
    [7]J. W. Bethel and C. E. Little, Forced-air cooled strontium-ion recombination laser Opt. Commun.84(5-6):317-322.
    [8]R. J. CARMAN,A self-consistent model for a longitudinal discharge excited He-Sr recombination laser, IEEE Journal of Quantum Electronics,1990,26:1588-1608.
    [9]R. M. Hentschel,J. A. Piper,Repetition-rate scaling of a rectangular bore discharge-excited Sr+ recombination laser, Opt. Commun.,1994,113(1-3):91-98.
    [10]E. L. Latush, G. D. Chebotarev, M. F. Sem,Small-scale recombination He-Sr+(Ca+) lasers,QUANTUM ELECTRON,2000,30(6):471-478.
    [11]D. G Loveland,D. A. Orchard, A. F. Zerrouk and C. E. Webb, Design of a 1.7 W stable long-lived strontium vapour laser, Meas. Sci. Technol,1991,2(11): 1083-1088.
    [12]T. W. Karras, A Discharge-heated Calcium Vapor Laser, in Proc.Int.Conf.on Laser, McLean, VA, USA:STS Press,1982:871-876.
    [13]夏婷婷,钟建伟,毛邦宁,陈钢,姚志欣,潘佰良,高重复率脉冲放电金属蒸气激光中电泳对金属蒸气分布的影响,物理学报,2006,55(1):202-205.
    [14]潘佰良,陈坤,陈钢,姚志欣,锶离子跃迁激光和复合激光的参量研究,物理学报,2004,53(2):445-449.
    [15]B. L. Pan, G. Chen, X.Chen and Z. X. Yao., Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium, J. Appl. Phys.,2004,96(1):34-39.
    [16](美)G.贝克菲等著,庄国良,褚成译,激光等离子体原理,上海科学技术出版社,1981:3.
    [17]C. E. Little, J. A. Piper,Average-power Scaling of Self-heated Sr+ Afterglow Recombination Lasers, IEEE.J.Quantum Electronic,1990, QE-26(5):903-910.
    [18]G.赫兹堡,原子光谱和原子结构,北京:科学出版社,1959:132.
    [19]W. T. Walter, etc., Efficient Pulse Gas Discharge Lasers, IEEE Journal of Quantum Electronics,1966, QE-2(9):474-479.
    [20]姚志欣,潘佰良,王军营,金永兴,放电激励的锶离子复合激光器,1996,23(7):600-602.
    [21]E. L. Latush, G. D. Chebotarev and A. N. Vasilchenko, Strontium and cadmium pulsed cataphoretic lasers SPIE.,1998,3141:1.
    [1]M. F. Sem,I. G, Ivanov, Pulsed metal vapor ion lasers, Proc.SPIE,1998,3403: 120-129.
    [2]B. L. Pan, G. Chen, X. Chen. and Z. X. Yao, Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium, J. Appl. Phys.,2004,96(1):34-39.
    [3]M. S. Butler, J. A. Piper,High-power transverse-discharge Ca+ recombination laser, Appl. Phys. Lett.,1983,43(9):823-825.
    [4]B. L. Pan, G Chen, J. W. Zhong, Z. X. Yao, Emission of laser pulses due to transitions from metastable to metastable levels in strontium vapor, Appl. Phys. B,2003,76 (4):371-374.
    [5]L. Chen, B. N. Mao, Y. B. Wang, L. M. Wang, B. L. Pan, A kinetic model for alternate oscillation of self-terminating and recombination lasers in strontium ions, Opt. Commun.,2008,281(5):1211-1216.
    [6]Y. J. Wang, B. L. Pan, L. Chen, B.N. Mao, Output characteristics of a cataphoresis He-Sr+ recombination laser, Opt. commun.,2008,281(21): 5401-5405.
    [7]A. N. Soldatov, Y. P. Polunin, Scaling of strontium-vapor laser active volume, Proc. SPIE 6938,2007,69380N:1-5.
    [8]A. V. Platonov, A. N. Soldatov, A. G Filonov, Pulsed strontium vapor laser, Sov. J. Quantum electron,1978,8 (1):120-121.
    [9]A. N. Soldatov,A. G. Filonov, A. S. Shumeiko, A.E. Kirilow, B. Ivanov, R. Haglun, M. Mendenhall, B. Gabella, I. Kostadinov, A Sealed-Off Strontium Vapor Laser, Proc. SPIE,2004,5483:252-261.
    [10]C. W. Mclucas, A. I. McIntosh,Investigation of laser emission in Sr+ and Ca+, J. Phys. D:Appl. Phys.,1986,20(5):591-597.
    [11]B. L. Pan, Z. X. Yao, G. Chen,A Discharge-Excited SrBr2 Vapour Laser, Chin. Phys. Lett.2002,19(7):941-943.
    [12]K. A. Temelkov, N. K. Vuchkov, B. N. Mao, E. P. Atanassov, L. Lyutov, N. V. Sabotinov, High-Power Sr Atom Laser Excited in Nanosecond Pulsed Longitudinal He-SrBr2 Discharge, IEEE J Quant. Electron,2009,45 (3): 278-281.
    [13]I. K. Kikoin, Atomizdat, Tables of Physical Constants, Moscow,1976,206.
    [14]陈立,王煜博,潘佰良,毛邦宁,具有捕俘杂质作用的放电电极,中国,发明专利,ZL200610053244.1.,2008.
    [15]B. N. Mao, L. M. Wang,L. Chen, Z. X. Yao, B. L. Pan, Analysis of Radial Temperature Field for a Metal-Vapor Laser Tube with an Axial Temperature controller, Acta Opt. Sin.,2008,28 (3):512-515.
    [16]G Chen and C. Cheng, Temporal Characteristic of M-M Transition Lasers in Strontium Atom Vapour, Chin. Phys. Lett.,2008,25(10):3666-3670.
    [1]C. M. Liu, Investigation on magnetic pulse compressor used for copper halide laser, Acta Phys.Sin.,2003,52(7):1818-1821.
    [2]D. N. Astadjov and K. D. Dimitrov, Copper bromide laser of 120W average output power, IEEE J. Quantum Electron.,1997,33(5):705-709.
    [3]J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin,G Erez and S. Lavi, Structure of 510.6 and 578.2 nm copper laser lines, Opt. Commun.,1980,32(3):473-477.
    [4]Y. J. Wang, S. P. Shen, T. J. Xia and Z. H. Wu, Appl.Phys.B,1988,46:191.
    [5]C. J. Chen, Phys. Rev. A,1978,18:2193.
    [6]M. J. Kushner and B. E. Warner, Large bore-copper-vapor lasers:Kinetics and scaling issues, Appl.,1983, Phys.54:2970-2972.
    [7]毛邦宁,潘佰良,王煜博,陈立,一种多功能气体掺杂真空装置,实用新型专利,中国,专利号:CN200620107329.9,2007.
    [8]Z. W.Wang, D. Yang,M. H. Hu, Q. J. Han and J. Y. Li, Transition energy and oscillator strength of Sc18+ ion, Chin. Phys.,2005,14(8):1559-1566.
    [9]K. F. Scheibner and A. U. Hazi, Electron-impact excitation cross sections for transitions in atomic copper, Phys. Rev. A,1987,35(11):4889-4872.
    [10]马洪良,汤家镛,142-146,148,150Nd+同位素位移的共线快离子束-激光光学实验研究,物理学报,2001,50(3):0453-0456.
    [11]马洪良,陆江,141Pr+波长569.08nm谱线超精细结构测量,物理学报,2003,52(3):566-569.
    [12]姚志欣,钱育军,铜激光放电管内气体温度径向分布的研究,中国激光,1995,22(4):333-336.
    [13]D. N. Astadjov,N. K. Vuchkov and N. V. Sabotinov, Parametric study of the CuBr laser with hydrogen additives, IEEE J. Quantum Electron,1988 24(9): 1927-1935.
    [14]L. Chen, B. N. Mao, Y. B. Wang, L. M. Wang, B. L. Pan, A kinetic model for alternate oscillation of self-terminating and recombination lasers in strontium ions, Optics Communications,2008,281(5):1211-1216.
    [15]Y. J. Wang, B. L. Pan, X. D. Ding, Y. J.Qian and S. Y. Shi, SPIE,1991,60 :2141-2144.
    [16]B. L. Pan and B. N. Mao and G. Chen, influence of hydrogen additive and excitation circuits on the output performance of barium vapor laser, Acta Phys.Sin.,2004,53(11):3748-3753.