型模锻液压机典型组合结构的承载与变形特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型模锻液压机是生产大型高强度铝合金、钛合金、高温合金、模锻件的关键设备。在国防和航空工业的大型模锻件生产中有着不可替代的作用。
     巨型模锻液压机为解决可制造性问题,大量采用组合结构。这种大型组合结构突出的问题是工作载荷在结构中局部聚集,在某些部位产生较大的应力集中,甚至导致组合件之间局部开缝。论文在对比分析模锻压力机本体结构的基本形式基础上,选择压力机主传力方向上的三类典型关键部件,采用有限元法,运用Marc软件进行分析研究,着重分析影响载荷局部聚集和开缝的因素,从而为巨型模锻液压机结构设计提供依据。
     论文的主要研究内容包括以下几个方面:
     1、针对预紧螺栓组连接多层叠板的垫板组合结构,分析叠层板组合结构板间的接触应力分布规律,以及影响板间接触应力分布、开缝变形的因素。
     2、针对由预紧螺栓、箱型梁和垫板组成的复合横梁结构,选择铸造箱型组合活动横梁为对象,分析确定组合箱型组合横梁结构开缝的原因以及结构优化设计。
     3、针对由拉杆螺栓预紧的并联主机架,以C形板组合主机架为对象,分析影响机架整体强度和刚度的因素,着重讨论联接件对强度和刚度的影响。
     通过对上述典型结构分析,指出解决巨型装备结构可制造性而派生出来的特殊组合结构,这类特殊结构常由于承载体间变形不协调而导致载荷传递过程中在局部聚集。为使其满足装备寿命、功能与运行精度的要求,应该以基于组合结构变形协调的刚度设计为准则,以巨大载荷流传递过程中在承载组合体的均匀释放为目标。
Large-scale die forging hydraulic pressure which is used to produce high strength aluminum alloys、titanium alloys and high temperature alloys die forging parts is a critical equipment. It is irreplaceable in the field of defense and aviation for production of large-scale die forging parts.
     In order to resolve the manufacture problem, in the Large-scale die forging hydraulic pressure design, lots of combined structure are adopted. The outstanding problem in the large combined structure is that work load congregates at local region, so that it results in stress concentration and gap among the components.
     This thesis studies three typical key components of the Large-scale die forging hydraulic pressure under Marc software platform, which distribute along the main transfer direction of load, base on the analysis of pattern of die forging hydraulic pressure structure. It emphasizes on analyzing the factors which effect on local load concentration and gap among parts. It is expected that this thesis can be contribute some basis to the Large-scale die forging hydraulic pressure design.
     This thesis includes the following main aspects:
     1. Aimed at the combination spacer plates structure, which tied by preload bolts, disciplinarian of contact stress distribution among different plates, effect factors which effect on contact stress distribution and gap between the components are analyzed.
     2. Aimed at complex beam which is made up of the box-like beam, preload bolts and spacer plates, casting combination box-like moving beam is chosen as the analysis object. Reasons result in gap between box-like moving beam is found out, accordingly structure optimization design is carried out.
     3. Aimed at parallel main frame, combined C-plate frame is chosen as the analysis object. Effect factors which effect on the integral strength and stiffness of the frame are analyzed. It emphasizes on analyzing effect on the strength and stiffness which arise from connection components.
     Based on the analysis of the typical key components above -mentioned, it points out that special combined structure which derive from solving the manufacture problem during the heavy duty equipment design ,often exist load concentration caused by the Deformation disagree among the components. In order to meet with the request of equipment life unction and precision, stiffness design method based on deformation compatibility of combined structure is preferred. The final goal ensures the load transfers among the parts uniformly.
引文
[1]王春喜,张玉水.航空工业的发展与模锻件的需求[J].锻压机械,1997,5:3-5;
    [2]第一机械工业部重型机械研究所.国内外重型锻压设备图册[M].第一机械工业部重型机械研究所,1964;
    [3]S.A.Losev.Study of thousand-ton hydraulic press designed by UZTM[J].Refractories and Industrial Ceramics,1962,3(3):102-104;
    [4]E.M.Men,N.P.Sheverdyaev.Automation of a hydraulic four-column press[J]Glass and Ceramics,1960,14(5):170-173;
    [5]V.G.Attaryan.Modernization of the 1500-ton hydraulic press[J].Metallurgist.1959.(8):353-355;
    [6]田会然.800MN多向模锻液压机本体结构设计与分析[硕士论文]河北:燕山大学,2005;
    [7]陈尚其.锻造液压机本体结构发展述评[J].重机制造,1990,22:23-30;
    [8]孙彩丽.20MN快锻液压机设计及整体工作性能分析[硕士论文].河北:燕山大学,2007;
    [9]韩伦,60MN锻造水压机本体关键件结构分析[硕士论文].河北:燕山大学,2006;
    [10]吴先文.120MN水压机技术改造研究[硕士论文].西川:西南交通大学,2006
    [11]刘广军.液压锻造机的本体结构分析与优化[硕士论文].河北:燕山大学,2006;
    [12]张胜华.快锻液压机机架的有限元分析[硕士论文].陕西:西北工业大学,2004;
    [13]别洛夫等著,靳辅安等译.水压机模锻[M].北京:国防工业出版社,1981;
    [14]俞新陆.液压机[M].北京:机械工业出版社,1982;
    [15]俞新陆.现代液压机设计理论[M].北京:机械工业出版社,1987;
    [16]李范坤,钟掘.300MN锻造水压机侧推力研究[J].有色金属学报,1992,5(3):134-137;
    [17]赵长财,袁荣娟.法兰支承液压缸缸底弹性力学强度分析[J].机械设计,1997,4:12-17;
    [18]赵长财,袁荣娟.液压缸法兰应力集中的研究[J].锻压技术,1994,3:50-52;
    [19]贾薇,郭宝峰,任运来.液压缸内法兰计算的支承刚度系数法[J].沈阳工业学 院学报,1994,13(4):73-76;
    [20]杨秀萍,曹晓顿.液压缸结构设计的有限元法[J].机床与液压,2004,1:108-109;
    [21]康达昌,方刚,朱信等.水压机垫板对载荷发散传递的有限元分析.锻压设备,1998,(4):44-45;
    [22]张立华.300MN水压机垫板组力学行为研究.机械强度,2000,22(2):113-116;
    [23]张庆等.液压机模具与支承部件的三维接触分析[J].锻压技术,2002,2:53-56;
    [24]张东峻,汪文颖,徐苏阳等.液压机垫板的试验应力分析[J].天津轻工业学院学报,2001,3:53-56;
    [25]程安宁.水压机活动横梁弹塑性分析[J].重型机械,200l,6:49-51;
    [26]秦东晨,祁建中,张明成等.液压机横梁结构的优化设计[J].锻压技术,2004,2:49-52:
    [27]方刚,大型水压机横梁结构优化及补强理论的研究[博士论文].沈阳:哈尔滨工业大学,1999;
    [28]赵希禄,聂绍珉,刘建民等.预紧组合式压力机机身的结构优化设计[J].锻压设备,1994,(1):48-52;
    [29]吴生富,聂绍珉,金淼等.大型锻造液压机全预紧机架的整机分析[J],燕山大学学报.2006,30(2):134-146;
    [30]吴生富,金淼,聂绍珉等.液压机全预紧组合机架的整体性分析[J].锻压技术,2006,3:111-114;
    [31]吴生富,金淼,聂绍珉等.大型锻造液压机全预紧组合机架的整体性及影响因素分析[J].塑性工程学报,2006,13(2):110-113;
    [32]22MN液压机整体板框架式机身的有限元分析[J].塑性工程学报,1995,2(3):55-62;
    [33]林秀安,聂绍珉.液压机组合板机架的整体工作性能分析[J].机械工程学报,1984,20(2):58-68:
    [34]张允真,曹富新.弹性力学及其有限单元法[M].北京:中国铁道出版社,1983;
    [35]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004;
    [36]杨骊先.弹性力学及其有限单元法[M].浙江:浙江大学出版社,2002;
    [37]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002;
    [38]徐秉业,黄炎等.弹塑性力学及其应用[M].北京:机械工业出版社,1984;
    [39]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆 大学出版社,1991;
    [40]孙汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990;
    [41]G.M.L.GLADWELL著,范天若译.经典弹性理论中的接触问题[M].北京:北京理工大学出版社,1989;
    [42]Q.H.Jiang,M.R.Yeung.A Model of Point-to-Face Contact for Three-Dimensional Discontinuous Deformation Analysis[J].Rock Mechanics and Rock Engineering;
    [43]Msc.Software(中国).MSC.MARC材料非线性分析培训教程[M].MSC中国办事处,2001;
    [44]Msc.Software(中国).MSC.MARC接触分析培训教程[M].MSC中国办事处.2001;
    [45]陈火红,于军泉,席源山.Msc.Marc/mentat 2003基础与应用实例[M].北京:科学出版社,2004;
    [46]Li,X.W.,Soh,A.K.,Chen,W.J.A new non-smooth model for three dimensionalfrictional contact problems[J].ComputMech,2000,26:528-535.
    [47]Rahman,M.U.,Rowlands,R.E.,Cook,R.D.An iterative procedure for finite element stress analysis of frictional contact problems[J].Comput Struct.1984,18:947-954.
    [48]Klarbring,A.A mathematical programming approach to three-dimensional contact problems with friction[J].Comput Methods ApplMech,Engng,1986.58:175-200.
    [49]Fischer,U.,Melosh,R.J.Solving discretized contact problems using linear programming[J].Comput.Struct,1987,25:661-664;
    [50]李会勋,胡迎春,李健中.利用ANSYS模拟螺栓预紧力的研究[J].山东科技大学学报,2006,25(1):57-59
    [51]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社.2003
    [52]Msc.Software.Msc.Marc2005(Volume A):Theory and User Information.[M]MSC.Software.2005;
    [53]梁清香,张根全.有限元与MARC实现[M].北京:机械工业出版社,2003;
    [54]陈火红,祁鹏.MSC.Patran/Marc培训教程和实例[M].北京:科学出版社,2004;
    [55]孙仁昌,陈秀娟,崔红伟.150MN水压机活动横梁的铸造[J].大型铸锻件,2006,4:24-26;
    [56]闫伟光.五千吨水压机活动横梁的焊接修复[J].焊接,2001,9:29-31;
    [57]李连清.1 250 T水压机活动横梁开裂的修复[J].焊接,2001,8:41
    [58]姜鸣峰,沈良梁.万吨水压机活动横梁的焊接及变形控制[J].重型机械,1995,1:57-59;
    [59]黄海全.万吨水压机下横梁断裂原因分析以及焊接修补[J].设备管理与维修,1998,11:10-11;
    [60]刘玉珍,邹立河,金福然.万吨水压机下横梁焊接修复[J].有色金属,2000,4:17-23;
    [61]方刚,康达昌,郭红海等.万吨水压机下横梁修复与补强[J].重型机械,1998,6:48-50;
    [62]方刚,康达昌,朱信等.万吨水压机下横梁强度有限元分析[J].塑性工程学报,1999,6(2):78-81;
    [63]潘紫微,邵韦循,王彪.80MN水压机下梁有限元分析[J].安徽工业大学学报,2005,22(2):145-146;
    [64]王炳乐,刘开,刘龙泉.四柱液压机上横梁静力分析[J].机械,2002,29(4):23-24;