锻造操作机夹持界面接触力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造生产是在高温和动载荷条件下进行的,由于生产条件复杂,操作机夹持界面的接触状态容易发生改变,会影响夹持稳定性。因此对锻造操作机夹持界面的力学性能进行研究显得尤为重要。
     本文通过数值计算,对锻造操作机夹持界面的静动态力学特性进行了研究。重点对钳口与锻件接触界面的力学行为进行了探讨,为解决夹持稳定性问题及锻造操作机的结构设计和运动控制提供参考依据。
     本文主要工作有:
     (1)首先,建立了二维夹持界面有限元模型,利用静力隐式算法,探讨了接触压力沿锻件周向的分布形式;并对材料本构模型、锻件不圆度、夹持界面摩擦系数、钳口角度、锻件大小等系列参数进行了研究分析,确定这些参数对接触压力分布和接触力大小的影响;考虑到锻件重力会对钳口中心产生较大的力矩,在二维研究的基础上,讨论了三维夹持界面在锻件位姿变换时接触压力沿锻件长度方向的分布形式。
     (2)其次,考虑到操作机整机在锻锤冲击作用下将受到影响,夹钳会产生回弹趋势,钳口夹持力也会发生改变,本文对锻造过程中夹持界面的动态力学特性进行了探讨分析。在对整机物理模型分析简化的基础上,利用动力显式算法重点研究了锻打速度、弹簧刚度、锻锤质量对夹钳回弹量、锻件最大塑性应变的影响;探讨了钳口夹持力在锻打作用下的变化情况,为进一步研究近恒力输出夹持系统的驱动策略提供参考。
Forging manufacturing is conducted in dynamic loads cases and under high temperatures. For the complex manufacturing conditions, the contact mechanical behavior between clamps and workpiece is changeable, and subsequently affecting the stability of the interface. It is necessary and significant to analyze the mechanical properties for those contact mechanical behavior.
     Accordingly, this thesis mainly concerns with both the static and dynamic mechanical properties between clamps and workpiece through numerical analysis. It provides practical guidelines for the structure design and motion control of forging manipulator; also it gives useful suggestions for solving the stability problem.
     This thesis mainly concerns with the following areas:
     Firstly, the circumferential distribution of contact pressure along the workpiece was discussed by using the implicit algorithm for the established 2-D grasping FE model. Also, series factors that would influence the contact mechanical properties, such as the constitutive model, the roundness and size of the work piece, friction coefficient of the contact interface, the angle of clamps were investigated. In addition, as the gravity of the work piece will generate large moment for the clamp center, based on the 2-D model analysis, the axial distribution of contact pressure along work piece in 3-D model under different conditions was discussed in detail.
     Secondly, since the manipulator will have a rebound behavior for the forging impact, and thus the clamping force will change accordingly as well, the dynamic contact mechanics during the forging operation is studied. Based on the simplified physical model, the influence of velocity, mass of the forging hammer, the stiffness of the manipulator, the spring back of clamp and maximum plastic strain of work piece have been discussed by using explicit dynamic algorithm. Moreover, from the grasping stability perspective, the change of contact force between the contact interfaces under forging impact is discussed. The discussion can provide with useful suggestions for the study of constant force output grasping system.
引文
[1]万胜狄,王运赣等.锻造机械化与自动化.北京:机械工业出版社, 1983
    [2] Johnson K.L. Contact Mechanics. UK: Cambridge University Press, 1985
    [3] Johnson K.L. Deformation of a plastic wedge by a rigid flat die under the action of a tangential force. Journal of Mechanics and Physics of Solids, 1968,16(6): 395-402
    [4] A.F.Bower, Johnson K.L. The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. Journal of the Mechanics and Physics of Solids. 1989,37(4):471-493
    [5] Johnson K.L. Contact mechanics and the wear of metals. Wear, 1995, 190(2):162-170
    [6] Johnson K.L. Mechanics of adhesion. Tribology International, 1998, 31(8): 413- 418
    [7] Byung C.L. and Byung, M.K. A computational method for elasto-plastic contact problems. Comput. Struct, 1984,18:757-765
    [8] Sinisa Dj. Mesarovic, K.L.Johnson. Adhesive contact of elastic-plastic spheres. Journal of the Mechanics and Physics of Solids, 2000,48(10):2009-2033
    [9]陈曼琪.用拟弹性叠加、双重迭代法解弹塑性接触问题.固体力学学报, 1983, 3: 365-374
    [10]李润方,陈晓南.弹塑性接触有限元混合法及其在齿轮传动中的应用.工程力学学报, 1985, 6(2):87-97
    [11]肖宏,申光宪,相泽龙彦等.考虑摩擦三维弹塑性接触边界元法.计算力学学报, 1998, 15(1):32-37
    [12]黄庆学,肖宏,申光宪等.用有摩擦弹塑性接触边界元法模拟板带轧制过程.第一届国际机械工程学术会议, 2000,1:417-423
    [13] E.C.De Meter, Wei Xie, Shabbir Choudhuri, ect. A model to predict minimumrequired clamp pre-loads in light of fixture workpiece compliance. Machine tools and Manufacture, 2001,41:1031-1054
    [14] E.C.De Meter, Wei Xie, M.W.Trethewey. An experimental evaluation of coeffiecients of static friction of common workpiece fixture element pairs. International Journal of Machine Tools and Manufacture, 2000,40:467-488
    [15] Haiyan Deng, Shreyes N.Melkote. Determination of minimum clamping forces for dynamically stable fixturing. Machine tools and Manufacture, 2006,46:847-8571
    [16] N.Kaya, F.Ozturk. The application of chip removal and frictional contact analysis for workpiece-fixture layout verification. Advanced Manufacturing Technology, 2003, 21:411-419
    [17] R.T.Meyer, F.W. Liou. Fixture analysis under dynamic machining. International Journal of Production Research , 1997,35:1471-1489
    [18] R.O.Mittal, P.H.Cohen, B.J. Gilmore. Dynamic modeling of the fixture-workpiece system. Robotics and Computer-Integrated Manufacturing, 1991,8: 201–217
    [19] James N.Asante. A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system. Int Adv Manuf Technol, 2008,39:578-588
    [20] J.H.Yeh, F.W.Liou. Contact condition modelling for machining fixture setup processes. Machine tools and Manufacture, 1999,39:787-803
    [21]孟宪国,冯长儒.锻造操作机钳口夹紧力和夹紧缸能力的计算.一重技术, 2006, 2:1-3
    [22]权修华.操作机承载状态分析与计算.锻压机械, 1988, 5:41-45
    [23]权修华.锻造操作机动载荷分析与计算.锻压机械, 1987, 10:26-29
    [24]蒋孝康.锻造操作机钳口夹紧力的确定.重型机械, 1981, 5:31-32
    [25]姜桂莲. DYH-2锻造操作机液压系统的改进与钳头夹紧机构的设计计算.鞍钢技术, 1990,2:16-31
    [26]王艾伦,刘云.重型构件夹持机构驱动力与夹持力关联模型研究.机械设计与制造, 2008, 6:120-122
    [27]王艾伦,刘云.大尺度重型构件夹持机构近恒力优化设计.机械设计与制造,2008,4:18-20
    [28]杨文玉,杨楠.重载操作机夹持装置性能分析.锻压装备与技术制造, 2008, 2:44-17
    [29]闻邦椿,张国忠,柳洪义.面向产品广义质量的综合设计理论与方法.北京:科学出版社,2006
    [30]任云鹏,张天侠.锻造操作机的可视化刚体动力学仿真.中国工程机械学报, 2008,6(2):127-132
    [31]任云鹏,张天侠,陈希红等.基于虚拟样机技术的万吨压机锻造操作机的运动学仿真分析.工程设计学报, 2008,15(2):101-104
    [32]任云鹏,张天侠,韩清凯等.锻造操作机机械结构的模态匹配分析.机械设计与制造, 2008,12:186-187
    [33]刘海柱,雷秀,李扬等.基于ADAMS锻造操作机钳杆机构的优化设计.锻压技术, 2008,33(3):106-108
    [34]崔振山,徐秉夜,刘才.金属热成形过程的综合数值模拟.工程力学, 2002,19(1): 42-46
    [35]崔振山,徐秉夜,任广升.大锻件空洞的局部效应与锻合压下率研究.工程力学, 2003, 20(2): 55-59
    [36]许飞霞,崔振山,陈文等.大型圆筒形锻件高温锻造过程数值模拟.锻压装备与技术制造, 2008,2: 55-57
    [37] Yong-Ming Guo. Analyses of forging processes by a rigid-plastic finite-boundary element method. Materials Processing Technology, 1998,84: 13-19
    [38]小飒工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社, 2004
    [39]张亚欧,谷志飞,宋勇. ANSYS7.0有限元分析实用教程.北京:清华大学出版社, 2004
    [40]李裕春,时党勇,赵远. ANSYS 10.0/LS-DYNA基础理论与工程实践.北京:水利水电出版社, 2006
    [41]秦敏,曲周德,刘建生等.大型锻造过程数值模拟中摩擦模型的研究动态.大型铸锻件, 2008,2:42-44
    [42]刘土光,张涛.弹塑性力学基本理论及应用.武汉:华中科技大学出版社, 2006
    [43]何宜柱,陈大宏,雷廷权.热变形动态软化本构模型.钢铁, 1999, 34(9): 29-33
    [44]丁发兴,余志武.恒高温下混凝土及钢管混凝土受压力学性能研究.铁道科学与工程学报, 2005,6:11-12
    [45]工程材料实用手册.结构钢-不锈钢.北京:工程材料实用手册编辑委员会, 1988
    [46]宋跃辉,朱军辉,李仙丽.圆度误差算法的研究现状.黑龙江科技信息, 2007, 18:46