重载夹持装置承载能力评价及拓扑构型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,针对重载夹持机构承载能力的研究只局限于分析个别因素对其影响,并未系统的评价夹钳承载能力,因此各影响因素对夹钳承载能力的影响权重不分明。这就使得设计者无法找出影响权重较大的影响因子,进而不能明确的提高其承载能力。因此系统的分析影响夹钳承载能力的所有影响因子,并针对重点影响因子进行详细研究对提高夹持装置承载能力有着十分重要意义。论文的主要研究内容如下:
     文中系统的分析了影响夹钳承载能力的各种因素,提出了评价重载夹钳承载能力的新方法——改进层次分析法,并针对夹钳设计、生产和应用过程中所涉及的承载能力影响参数做了细致研究,建立一套完整的夹钳承载能力评价体系。
     在评价研究成果之上,针对重点影响重载夹持装置承载能力的拓扑新机构,以原始模型为基础进行基于拓扑图的同构演化,然后对以减小整体转化装置自由度、提高整体力封闭性能为目的重载夹持装置拓扑变元优化方法进行了研究,并对新旧机构在垂直位置的夹持力封闭性能进行了分析判断。
     根据不同构型夹持装置的特点及实验要求,本文以常用的压杆式夹持机构为雏形,通过MATLAB结构参数优化,设计出承载能力1T,夹持力矩为2T/M的夹持装置,根据MATLAB优化出的参数结果建立理论仿真模型,并对优化前后夹持装置在是否考虑摩擦的情况下的承载能力进行理论分析计算。
     利用ADAMS虚拟样机仿真软件,对拓扑变元优化前后的夹持装置在是否考虑摩擦的情况下的承载能力进行虚拟仿真分析,最后对拓扑变元优化前后的夹持装置推杆推力进行现场测试实验。通过对比分析现场实验结果与仿真结果,发现两种结论基本吻合,表明变元优化后的夹持装置在垂直位置的承载能力的确有了很大的提高,进一步验证了采用改进层次分析法对夹钳承载能力进行评价结果的合理性和可行性,也为重载夹持装置构型设计及优选提供了可靠的理论基础。
At present, there are few studies about the influence factors for carrying capability of heavy clamping device. The existed research confine to analysis of individual factors for the carrying capability of heavy clamping device, which didn't evaluate the carrying capability systematically. Therefore, the weight of various factors influent carrying capability is not clear. This makes the designers unable to consider all factors to improve the carrying capability systematically, thus can not be increase their carrying capability clearly. Therefore, there is a great significance to analysis all the influence factors and study of the key factors to improve the carrying capability of heavy clamping device systematically. The main contents are as follows:
     All factors that influent the carrying capability systematically are analyzed, proposes a new method to evaluate the carrying capability of heavy clamping device—improved AHP, and studies about the parameters delicately which influent the carrying capability in the design process of clamping production and application, establishing a complete set evaluation system about clamps'carrying capability of clamps.
     In the evaluation of the research results, by working on the topology of new agency that have influenced the carrying capability of heavy clamping device, the homogeneous evolution is made which base on the topological graph theory from original model. At the same time several isomorphism of special-shaped clamping devices is gotten, and the characteristics of the respective was analyzed. In order to minimize the freedom and enhance the carrying capability of heavy clamping device, this dissertation has presented a topology optimization method by changing the elements, establishing the topology of the new agency after optimization, and making a judgment about the jaw performance in force closure situation for the old and new institutions in the vertical position.
     According to the experimental requirements and the characteristics of different clamping devices, the author uses the typical compression bar-style clamping devices as the rudiment, depends on structural parameters that optimized by MATLAB, designs a 1T carrying capacity, 2T/M clamping torque of the clamping device, according MATLAB optimizes results to establish the theoretical simulation model, then the carrying capability of heavy clamping device before and after optimization is calculated in the case to consider fiction or not.
     The carrying capability of heavy clamping device is simulated by ADAMS before and after optimization under the condition of whether to consider fiction. In the end, experiments have been done to test the thrust of push rod about heavy clamping device before and after optimization. Through the comparative analysis experiment results and virtual simulation results, it includes that the two results are basically consistent, shows that the optimized heavy clamping device can improve the carrying capability when the clamping device is in the vertical position, and the result further verified the rationality and feasibility of using the improved AHP to evaluate the carrying capability of heavy clamping device, and also provide a reliable theoretical basis for configuration design and optimization of heavy clamping device.
引文
[1]王凤喜.锻造液压机与操作机的发展[J].锻压机械,1998(6):3-5
    [2]王凤喜.大锻件生产与锻造技术发展[J].重型机械科技,1999,(3):8—12
    [3]王凤喜.大锻件生产行业与锻造技术发展[J].锻压机械,2002,(4):3—6
    [4]辛向阳,刘方红等.大锻件锻造方法综述[J].大型铸锻件,1999,(1):43-48
    [5]郭会光,曲宗实.我国大锻件制造业的发展[J].大型铸锻件,2003,(1):42-45
    [6]蔡墉.我国自由锻液压机和大型锻件生产的发展历程[J].大型铸锻件,2007(1):37-44
    [7]底学晋,李建华.我国大锻件生产行业建设发展回眸[J].重型机械,2000,(1):1-3
    [8]余发国,高峰.锻造操作机的回顾与展望[J].机械设计与研究,2007:12-15
    [9]万胜狄,王运赣.锻造机械化与自动化[M].北京:机械工业出版社,1983:169-242
    [10]本书第二版编辑委员会.机械工程手册(第二版)[M].北京:机械工业出版社,2000:259-266
    [11]中国机械工程学会锻压学会.锻压车间设备[M].北京:机械工业出版社,1993:122-134
    [12]梁音赵绪平王驰.大型锻造操作机研究进展[J].科技成果纵览,2010(2):55-57
    [13]聂荣光.转动副摩擦对巨型重载夹持机构承载能力影响研究:[硕士学位论文].长沙:中南大学,2008:1-69
    [14]陈艳,何竞飞.巨型重载夹持装置反作用力响应盲区和承载能力的研究[J].机械设计,2009,(2):55-58
    [15]傅炜康.基于图论的重载夹持装置构型及其优化:[硕士学位论文].长沙:中南大学,2010:1-69
    [16]陈艳.含运动副干摩擦巨型重载夹持机构弹性力学研究:[硕士学位论文].长沙:中南大学,2009:1-69
    [17]刘松柏.重载夹持机构动态夹持力建模及夹持过程控制研究:[硕士学位论文].长沙:中南大学,2009:1-69
    [18]高丹.重载锻造操作机夹持系统夹持接触力建模及优化研究:[硕士学位论文].长沙:中南大学,2008:1-69
    [19]杜义贤.机械产品性能评价研究:[硕士学位论文].武汉:三峡大学,2004: 20-50
    [20]杜栋,庞庆华.现代综合评价方法与案例精选[M].清华大学出版社,2005:12-52
    [21]曹利军.可持续发展评价指标体系建立原理与方法研究[J].北京:环境科学学报,1998:11-14
    [22]曾发儒.港口大型起重机械性能评估系统研究:[硕士学位论文].上海:上海海运学院,1998:20-40
    [23]田启华,杜义贤.基于熵权模糊综合评判法的机械产品性能评价研究[J].武汉:现代设计与技术,2004(3).97-99
    [24]Wang.M.J.J, et al. Fuzzy Set Evaluation of Inspection Performance International [J]. Journal of Man Machine Studies,1991,35 (4):587-596
    [25]Nicole Adler, Boaz Volany. Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe[J]. European Journal of Operational Research,2001, 132 (1):260-273
    [26]马达.基于组合评价方法的绿色焊接工艺规划评价及系统:[硕士学位论文].武汉:武汉科技大学,2010:10-60
    [27]费成良.组合评价方法及其应用研究:[硕士学位论文].长沙:中南大学,2008:5-50
    [28]ZHAO Yong, LIN Zhongqin, WANG Hao. Manipulation Performance Analysis of Heavy Manipulators[J]. JOURNAL OF MECHANICAL ENGINEERING, 2010,46(10):69-75
    [29]梁保松,曹殿立.模糊数学及应用[M].科学出版社,2007:12-100
    [30]夏正洪,王俊峰.一种改进到层次分析法及其在效能评估中的应用.四川大学学报(自然科学版)[J],2010(1):71-76
    [31]Saaty T L. The analytic hierarchy process [M]. M c Vraw -H ill Inc. N ew Yo rk,2000:2-59
    [32]BO Ruifeng, LI Ruiqin. Application of Utility Value Ranking Based Fuzzy AHP Method in EvaluatinV Mechanical Kinematic Schemes[J]. CHINA MECHANICAL ENGINEERING,2007 (18):2174-2178
    [33]许泽水.关于层次分析法中几种标度的模拟评估[J].系统工程理论与实践,2000,20(7):58-62
    [34]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社,1998:60-79
    [35]刘松柏,邓华,何竞飞.重载夹持装置动态提供的夹持力建模与承载能力分析[J].现代制造工程,2009,(10):107-111
    [36]何竞飞,陈艳.巨型重载夹持机构反作用力响应盲区和承载能力的研究[J].机械设计,2009,(2):55-58
    [37]He Jinfei, Deng Hua, Fu Weikang, Lou Bingmin.The transform of the topological structure of the huge heavy loading gripper device and its optimization[J].MME10.2010(7):514-525
    [38]刘世豪,叶文华,唐敦兵,陈蔚芳.基于层次分析法的数控机床性能模糊综合评判[J].山东大学报(工学版),2010(2):68-72
    [39]B. Paul. A unified criterion for the degree of constraint of plane kinematics chain[J]. ASME Trans,1960:196-200
    [40]F. Freudenstein, L. Dobrjanskyj. On a theory of type synthesis of mechanisms[J]. Proceedings of 11th International Congress of Applied Mechanics, Springer, Berlin,1964:420-428
    [41]N.I. Manolescu. A unitary method for construction of the kinematics plane chains and plane mechanisms with different degrees of mobility[J]. Springer, Berlin, pp.1964:1263-1313
    [42]L. Dobrjanskyj and F. Freudenstein.Some applications of graph theory to structural analysis of mechanisms[J]. ASME Trans,1967:153-158
    [43]L.V. Assur. Investigation of plane hinged mechanisms with lower pairs from the point of view of their structure and classification[J]. Petrograd Polytech. Inst, 1913:329-386.
    [44]W. J. Sohn, F. Freudenstein. An application of dual graphs to automatic Veneration of kinematics structures of mechanisms[J], ASME,1960:86-90
    [45]A.C. Rao and D. Varada Raju. Application of the Hamming number technique to detect isomorphism among kinematics chains and inversions[J]. Mech. Mach,1991: 55-75
    [46]Tischler C R, Samuel A E, Hunt K H. Kinematic chains for robot hands. h Orderly number synthesis[J]. Mech. Mach. Theory,1995,1193-1215
    [47]颜鸿森.颜氏创作性机构设计(一)设计方法[J].机械设计,1995,(10):39-41
    [48]颜鸿森.颜氏创作性机构设计(二)机构的一般化[J].机械设计,1995,(11):44-47
    [49]颜鸿森.颜氏创作性机构设计(三)运动链的数综合[J].机械设计,1995,12:30-34
    [50]颜鸿森.颜氏创作性机构设计(四)机构的特定化[J].机械设计,1996,4:37-40
    [51]颜鸿森.颜氏创作性机构设计(五)应用实例[J].机械设计,1996,5: 38-41
    [52]Warnaar D B,Chew M.Kinematic synthesis of deployable-foldable truss structures using graph theory.Part 1:Vraph Veneration [J]. ASME Trans,1995,112-116
    [53]Murphy M D, Midha A,Howell L.The topological synthesis of compfiant mechanisms[J].Mech.Mach.Theory,1996:185-199
    [54]YangT L. Structural analysis and number synthesis of spatial mechanisms [J]. Proc. of the 6th world conV. On the theory of machines and mechanisms. New Delhi. 1983:280-283
    [55]Hua Jian. Creative Design of a Turning Joint Clamping Mechanism[J]. Journal of China Textile University.1991(17):172-177
    [56]左炳然,钱文瀚.机器人多指抓取力封闭分析的非线性规划算法[J].机械工程学报,1999,(2):1-10
    [57]秦志强,赵锡芳.机器人多指操作的抓取力分析和实时优化[J].机械工程学报,2000,(3):8-12
    [58]Autonio Bicchi. On the Closure Properties of Robotic grasping[J].J of Robotics Research.1994(7):1-24
    [59]刘庆运.机器人多指手抓取运动学研究:[硕士学位论文].南京:东南大学,2007:12-71
    [60]张玉茹,李继婷,李剑锋.机器人灵巧手:建模、规划与仿真[M].北京:机械工业出版社,2007:36-71
    [61]王艾伦,刘云.大尺度重型构件夹持机构近恒力优化设计[J].机械设计与制造,2008,(4):18-21
    [62]詹友刚.Pro/ENVINEER中文野火版4.0高级应用教程[M].北京:机械工业出版社,2008:10-164
    [63]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003:69-75
    [64]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2007:23-154
    [65]田永利,邹慧君,郭为忠.机电一体化系统建模技术与仿真软件的研究与分析[J].机械设计与研究,2003,19(4):15-19
    [66]郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2002:55-63
    [67]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:71-89
    [68]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2003:67-88
    [69]Kane T R, Levinson D A. The use of Kane's dynamical equations in robotics[J]. The International Journal of Robotics Research,1983,2(3):78-84.
    [70]李军,邢俊文.ADAMS实例教程[M].北京:北京理工大学出版社,2002:45-51
    [71]谭志飞,辉先.基于Pro/E和ADAMS的机械手运动学仿真[J].仿真与有限元,2007,(4):129-130
    [72]McConville, McVrath. Introduction to ADAMS Theory [M]. New York:MDI, 1997:7-9
    [73]Shabana. Computational Dynamics [M]. New York:Wiley & Sons,2001:21-22
    [74]Dyja, Banaszek, Mroz, Berski. ModellinV of shape anvils in free hot forVinV of lonV products [J]. Materials ProcessinV TechnoloVy,2004,(1):131-137
    [75]刘伟达,刘剑雄,毕世英.基于ADAMS的夹钳动力学仿真分析[J].机械设计与制造,2005,(11):52-54