纳米压痕法表征金属薄膜材料的力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染、能源危机与资源短缺等问题的日益突出,世界各国越来越高度重视高效、清洁、可再生能源以及电动汽车、电动自行车、便携式电动工具等相关技术的发展。目前,电动交通工具用的动力电源主要为铅酸电池和镍氢电池。现在人们已认识到铅的毒害问题,铅酸电池的使用开始受到限制;而镍氢电池的能量密度不能满足快速发展的市场需求。因此,人们必须重新选择与开发新型能源存储器件。
     新兴的绿色动力型储能器件已成为全球高科技产业关注的热点,动力电源作为新型绿色能源受到国内外的广泛关注。动力电源的外壳材料是动力电源的关键组成部分之一,其性能的好坏直接决定着动力电源性能的优劣。由本课题组提出并长期研究的镀镍钢带是一种将电沉积镍薄膜与低碳钢基底紧密结合、具有较好同步延伸率和耐腐蚀性能的新型预镀镍动力电源外壳材料。但是,随着镀镍钢带的产业化进程,许多基础问题也不断呈现出来,这是平时的经验所不能解决的,而基础理论又比较薄弱,鉴于这些因素,给生产过程增加了成本和风险。为了解决这些问题,必须从基础理论入手,找到这些生产过程中出现的问题的本质。有关这些重要问题始终没有得到解决,其主要原因有两个:(1)薄膜的尺度本身比较小,不易操作,而且冲压成型过程中的变形非常复杂,建立相关理论比较复杂;(2)小尺度下的力学性能受多种因素的影响,比如尺度效应、基底效应等,如何正确剔除这些影响因素,得到真实薄膜材料的力学性能是非常困难的。
     基于以上原因,本文旨在通过反推法研究金属薄膜材料的力学性能,取得的主要创新性研究结果如下:
     1、用纳米压痕法研究了金属薄膜材料的应力应变关系,在这一过程中主要考虑了三个方面的问题:①针对反推过程中出现的硬度、弹性模量和屈服强度等出现的尺度效应问题进行了研究;②通过引入塑性区半径成功解决了唯一性问题;③为了得到可靠的压痕实验数据对压痕过程中出现的蠕变问题进行了系统研究。具体结果主要有以下五个部分:
     (1)通过Π定理对纳米压痕问题进行了量纲分析,导出了金属材料基本力学性能同压痕的加卸载参量间的无量纲函数关系,为利用数值方法建立两者之间的具体关系提供了理论指导。
     (2)通过有限元数值模拟的方法,选取合适的指数形式的拟合函数,确定了三种压头的无量纲函数关系的具体表达式,即Berkovich、Conical和Cube corner三种压头。针对这三种压头的载荷位移曲线,分析了压头的几何形状以及摩擦效应对无量纲函数的影响,结果表明,对于大角度的Berkovich的压头,其摩擦效应几乎对无量纲函数没有什么影响;但对于小角度的Conical和Cube corner压头,摩擦效应的影响十分显著,是一个必须考虑的因素。反推结果敏感性的研究表明,我们建立的模型对于不考虑尺度效应的块体材料是非常可靠的。
     (3)将建立的反推模型应用在镍薄膜材料上,将反推结果与拉伸实验结果进行对比,发现存在强烈的尺度效应。通过对压痕实验数据进行深入分析,得到弹性模量也存在尺度效应的结论,将弹性模量的尺度效应与硬度的尺度效应结合起来,得到了镍薄膜材料的真实屈服强度。
     (4)对压痕法表征材料应力应变关系的唯一性问题进行了研究,并找到其根源。通过引入压痕塑性区半径rp来解决这一问题,得到新的反分析模型。通过数值法对上述反推模型的有效性进行了研究,发现得到的反推结果非常可靠,从而证实了该模型的可行性。
     (5)基于Maxwell粘弹性理论模型,讨论了研究压痕蠕变的理论方法,并根据此方法探讨了压痕蠕变对纳米压痕响应测试的影响。为了修正测试弹性模量过程中出现的误差,我们详细讨论了“Nose”(鼻子)效应对压痕响应的干扰。通过修正刚度和接触深度,有效剔除了压痕蠕变带来的误差,得到了材料的真实弹性模量,并找到了压痕过程中“Nose”效应出现的判据,这对实际工程应用具有重要的指导意义。另外,研究了压痕蠕变的尺度效应问题,通过对不同载荷下压痕蠕变实验数据的分析发现,保载阶段的蠕变位移、速率、应变率甚至应力指数等都存在尺度效应,其物理机制可以通过位错攀爬、晶界滑移和晶粒旋转进行解释。
     2、对金属膜/基体系的硬度进行了表征,从压痕复合硬度(综合考虑基底效应和尺度效应的双重贡献)得到了薄膜材料的本征硬度。我们考虑这两种效应对测试硬度的影响,建立了新的理论模型,成功提取出了薄膜和基底的真实硬度。其详细结果如下:
     (1)为了表征金属膜/基体系的硬度,我们综合考虑了基底效应和尺度效应对复合硬度的影响,建立了新的理论模型。我们对于其物理机制进行了探讨,结果表明,在压痕深度比较浅的时候,由于尺度效应不同体系复合硬度变化的物理机制相同,都是随着压痕深度的减小硬度增加;随着压痕深度逐渐增加,基底效应不能忽略,这时不同体系复合硬度变化的物理机制完全不同,对于硬(软)膜/软(硬)基底,其复合硬度随压痕深度的增加而减小(增加)。
     (2)在实验方面,对硬膜/软基底和软膜/硬基底两种体系进行了研究。结果表明,我们建立的模型能够同时刻画这两种体系的实验数据,可以得到薄膜和基底的真实硬度。
     (3)基于低阶应变梯度塑性理论(the Conventional theory of Mechanism-based Strain Gradient plasticity,简称为CMSG理论),用有限元数值模拟对两种膜/基体系进行了压痕研究,并用我们建立的模型对计算的数据进行拟合,证实了模型中确实包含尺度效应。
     3、通过前面建立的反推法理论模型,研究了拉伸应变对镍薄膜力学性能的影响,主要包括弹性模量、屈服强度、硬度和硬化指数等。结果表明,弹性模量和硬化指数与材料的变形程度无关,但是屈服强度的变化在塑性变形阶段遵循指数硬化趋势,在弹性变形阶段没有发生变化(依然为未变形材料的屈服强度)。
     (1)考虑到微纳米测试系统的载物台比较狭小,为了研究拉伸状态下镍薄膜的力学性能,我们设计了一个微小拉伸加载装置,不仅可以方便地对样品进行拉伸加载,还可以将其放入纳米压痕仪直接进行实验。为了排除挠度的干扰,要求试样厚度最少要达到3.7mm。
     (2)通过对压痕过程中出现的堆积效应进行修正,发现反推法得到的弹性模量和硬化指数与拉伸应变无关。
     (3)借助金属材料的应力应变关系,可以推导出加工过程中镍薄膜的屈服强度与拉伸应变的关系。从这一关系可以知道,屈服强度在弹性变形阶段不发生变化;而发生塑性变形以后,材料的屈服强度遵循指数硬化趋势。
     (4)从有限元数值模拟得到的硬度与屈服强度的关系出发,得到了硬度与拉伸应变之间的关系。结果发现,此关系与屈服强度不同,并不遵循硬化指数的趋势。
With environmental pollution, energy crisis and shortage of resources and other issues becoming prominent increasingly, countries around the world attach more importance to efficient, clean, renewable energy and electric cars, electric bicycles, portable power tools and other related technology. The current power supply used in electrical vehicles is mainly lead-acid battery and nickel-metal hydride battery. Now the use of lead-acid battery begin to be restricted due to people’s awareness of lead poisoning; while the energy density of nickel-metal hydride battery can not meet market demand of rapid development, so people must re-select and develop new energy storage device.
     The shell material whose property determines that of the power supply is a key component. Proposed and long-term studied by our group , nickel-plated steel which integrate nickel thin film electrodeposited on the low carbon steel substrate closely is a kind of new pre-shell material of nickel-plated power supply,with good synchronization elongation and corrosion resistance. However, with the industrialization of nickel-plated steel strip, many basic problems arose, not solved by the experience. Production costs and risks increased for the lack of basic theory. To solve these problems, we must start from the basic theory, and find the nature of these problems in the production process. These important issues have not been resolved is due to the two main reasons: (1) film itself is relatively small scale and hard to operate, and the deformation of metal forming process is very complicated to build more complex theories; (2) The mechanical property are influenced by the multi-effects in small-scale, such as the scale effect, substrate effect, etc.. If these negative factors cannot be removed effectively, it will be difficult to obtain the true mechanical properties of thin films.
     For these reasons, this paper aims to study mechanical properties of metallic thin films by anti-analysis, and the achieved main contents and results are as follows:
     1. The stress-strain relationship of metallic thin films was studied by nanoindentation method; and many problems are considered arising in the reverse analysis:①the scale effect problems of the hardness, elastic modulus and yield strength were studied;②the uniqueness issue was solved by introducing the plastic zone radius; and③the creep problem in the process of the indentation and was studied in order to obtain the accurate experimental data. The five main contents are as follows:
     (1) Dimensional analysis were done byΠTheorem for nanoindentation issues, and the dimensionless functions between the same basic mechanical properties of metallic materials and load-displacement curves were obtained, offering theoretical guidance to establish the specific relationship between these two parameters with numerical methods.
     (2) The specific expression of these three dimensionless functions Berkovich, Conical and Cube corner tips were determined by numerical simulation by finite element method and selection of the appropriate fitting function. For the load-displacement curves of the three indenters, the impacts of the indenter geometry and friction effects on nondimensional functions were analysized. The results show that for the wild-angle Berkovich indenter, the friction effect is almost nothing on the dimensionless function; but for small-angle Conical and Cube corner indenters, the friction effect is very significant and is a factor that should be considered. Based on the results of the sensitivity of inverse analysis, it is kown that the model for the non-scale effects of bulk materials is very reliable.
     (3) It was found that there is a strong scale effect when the inversing model used for the Ni thin film material, through comparation between the inverse results and the results of tension tests. There was scale effect for elastic modulus through the experimental data. We combined the scale effects of elastic modulus and hardness together to obtain the real yield strength of Ni thin films.
     (4) The uniqueness problem through the stress-strain relationship characterized by indentation was studied and its root was found. Through introducing the plastic radius rp of indentation, a new reversing model was obtained. The validity of the inverse model was veryfied by the numerical method, and it is found that the reverse results were very reliable, thereby confirmed the feasibility of the model.
     (5) Based on Maxwell visco-elastic model, the theory method of indentation creep was discussed. According to the method, the impact of the indentation creep on nano-indentation response was studied. In order to correct elastic modulus error during the tests, we discussed the "Nose" effect of the indentation response. Through modifying the stiffness and contacting the depth of indentation creep, the error was removed effectively, and the real modulus of the material can be obtained. The real mechanical properties criterion of nickel film was found by the indentation test which has important guiding significance on the practical engineering application. In addition, the scale effect of the indentation creep was studied and its physical mechanism was also discussed. The creep displacement, velocity, strain rate and stress exponent all shown scale effect by analyzing the experimental data of the indentation creep under different load.
     2. The metal film/substrate system hardness was characterized; and from the composite indentation hardness (considering the double contribution of the scale effect and the substrate effect), the intrinsic hardness of thin films has been extracted.
     (1) To characterize the metallic film/substrate system hardness, we took the influence of substrate effect and scale effect on the composite hardness into account, and established a new theoretical model. In order to verify the reliability of the model, we verified the effectiveness by both experiment and simulation.
     (2) The two systems of the hard film/soft substrate and soft film / hard substrate were studied by the experiments. The results show that the model can describe the experimental data of the two systems. In addition, the physical mechanism of composite hardness of different systems was discussed briefly.
     (3) Based on CSMG theory, the indentation responds of the two film/substrate systems were studied by the finite element numerical simulation. The model can fit the calculated data and confirmed that the model does include scale effects.
     3. The influence of tensile strain on mechanical properties of Ni films was studied by the previous theoretical models, including elastic modulus, yield strength, hardness and the hardening exponent. The results show that the values of elastic modulus and hardening exponent didn’t change, but the yield strength increased with the increasing tensile strain for the plastic deformation following the hardening exponent law.
     (1) Considering the small loading platform of micro and nano test system, in order to study mechanical properties of Ni films under tensile, we designed a smile tensile loading device, not only being easily loaded on the tensile samples but also being directly into the nanoindention experiments. In order to exclude the interference of deflection, the sample thickness was required to achieve at least 3.7mm.
     (2) By correcting the accumulation effect appearing in the process of indentation, the elastic modulus and hardening exponent from inverse method were found to be not sensitive to tensile strain.
     (3) Using the stress-strain relationship of metallic materials, the relationship of tensile strain and yield strength can be derived in the process of nickel thin films and. From this relationship, it was found that the yield strength in the elastic deformation stage does not change; and the yield strength follows exponential hardening trend after plastic deformation.
     (4) From the relationship between the hardness and yield strength by the finite element simulation, the relationship between hardness and tensile strain can be obtained. The results showed that of this relationship was different from the yield strength, not comply with the hardening exponent trend.
引文
[1]国务院.《国务院关于加快培育和发展战略性新兴产业的决定》[N].北京:国发(2010)32号, 2010.
    [2] V. Meille. Review on methods to deposit catalysts on structured surfaces [J]. Applied Catalysis A: General, 2006, 315: 1-17.
    [3] L. B. Freund, S. Suresh. Thin film materials: stress, defect formation, and surface evolution [M]. Cambridge University Press, London, 2003: 2-5.
    [4] Y. Huang, S. Qu, K. C. Hwang, M. Li, H. Gao. A conventional theory of mechanism-based strain gradient plasticity [J]. International Journal of Plasticity, 2004, 20: 753-782.
    [5] M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix. Sample dimensions influence strength and crystal plasticity [J]. Science, 2004, 305: 986-989.
    [6] N. A. Fleck, J. W. Hutchinson. A phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids, 1993, 41: 1825-1857.
    [7] B. W. Dodson. Many-body surface strain and surface reconstructions in fcc transition metals [J]. Physical Review Letters, 1988, 60: 2288-2291.
    [8] F. H. Streitz, R. C. Cammarata, K. Sieradzki. Surface-stress effects on elastic properties. I. Thin metal films [J]. Physical Review B, 1994, 49: 10699-10706.
    [9] V. M. Goldschmidt. Crystal structure and chemical correlation [J]. Berichte Der Deutschen Chemischen Gesellschaft, 1927, 60: 1263-1296.
    [10] L. Pauling. Atomic radii and interatomic distances [J]. Journal of the American Chemical Society, 1947, 69: 542-553.
    [11] C. Q. Sun. Size dependence of nanostructures: Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007, 35: 1-159.
    [12] C. Q. Sun, S. Li, C. M. Li. Impact of bond order loss on surface and nanosolid mechanics [J]. The Journal of Physical Chemistry B, 2004, 109: 415-423.
    [13]杨班权,陈光南,张坤,罗耕星,肖京华.涂层/基体材料界面结合强度的表征和测量方法的现状与展望[J].力学进展, 2007, 37: 67-79.
    [14] V. Lazarus. Perturbation approaches of a planar crack in linear elastic fracture mechanics: A review [J]. Journal of the Mechanics and Physics of Solids, 2011, 59: 121-144.
    [15]周兆峰.用于镍基复合薄膜镍纳米线的制备及热稳定性研究[博士学位论文].湖南:湘潭大学材料与光电物理学院, 2009.
    [16] J. K. Denis, T. E. Saatchi.镀镍和镀铬新技术[M].北京:科学技术文献出版社, 1990.
    [17] C. Karakus, D. T. Chin. Metal distribution in jet Plating [J]. Journal of the Electrochemical Society, 1994, 141: 691-697.
    [18] U. Erb. Electrodeposited nanocrystals: synthesis, properties and industrial applications [J]. Nanostructured Materials, 1995, 6: 533-538.
    [19] K. Lu. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties [J]. Materials Science and Engineering R, 1996, 16: 161-221.
    [20] E. Tóth-Kádár, I. Bakonyi, L. Pogány,á. Cziráki. Microstructure and electrical transport properties of pulse-plated nanocrystalline nickel electrodeposits [J]. Surface and Coatings Technology, 1997, 88: 57-65.
    [21] R. Krechetnikov, G. M. Homsy. Experimental study of substrate roughness and surfactant effects on the Landau-Levich law [J]. Physics of Fluids, 2005, 17: 102108-102123.
    [22] J. S. Kim, S. Kim, F. Ma. Topographic effect of surface roughness on thin-film flow [J]. Journal of Applied Physics, 1993, 73: 422-428.
    [23] L. E. Stillwagon, R. G. Larson. Fundamentals of topographic substrate leveling [J]. Journal of Applied Physics, 1988, 63: 5251-5258.
    [24] Z. S. Ma, S. G. Long, Y. C. Zhou, Y. Pan. Indentation scale dependence of tip-in creep behavior in Ni thin films [J]. Scripta Materialia, 2008, 59: 195-198.
    [25]熊毅,荆天辅,张春江.喷射电沉积纳米晶镍的研究[J].电镀与精饰, 2000, 22: 1-4.
    [26]潘勇.用于高性能电池外壳微/纳米晶覆镍深冲钢带的研制[博士学位论文].湖南:湘潭大学材料与光电物理学院, 2007.
    [27] S. C. Tjong, H. Chen. Nanocrystalline materials and coatings [J]. Materials Science and Engineering R, 2004, 45: 1-88.
    [28] T. D. Burleigh, The postulated mechanisms for stress corrosion cracking of aluminum alloys: a review of the literature 1980-1989 [J]. Corrosion, 1991, 47: 89-98.
    [29] J. M. Lee, D. C. Ko, K. S. Lee, B. M. Kim. Identification of the bulk behavior of coatings by nano-indentation test and FE-analysis and its application to forming analysis of the coated steel sheet [J]. Journal of Materials Processing Technology, 2007, 187: 309-313.
    [30]东洋钢钣株式会社.抗腐蚀的镀镍钢板或钢条及其制法[P].中国: CN 1082988A, 1994-03-02.
    [31]东洋钢钣株式会社.电池壳体用表面处理钢板和使用该钢板的电池壳体[P].中国: CN 1681971A, 2005-10-2.
    [32]东洋钢钣株式会社.电池壳体用的表面处理钢板和电池外壳[P].中国: CN 1449588, 2003-20-25.
    [33]东洋钢钣株式会社.电池壳体用表面处理钢板,用表面处理钢板制造的电池外壳,其制备方法和电池[P].中国: CN 1314009, 2001-09-19.
    [34] P. Ratchanee. Air bending of AZ31 magnesium alloy sheets [J]. Journal of Japan Institute of Light Metals, 2005, 53: 181-185.
    [35]龚红英,朱伟,张质良.润滑因素对车用镀锌钢板拉深成形性能的影响[J].润滑与密封, 2005, 3: 54-57.
    [36] E. J. Obermeyer, S. A. Majlessi. A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts [J]. Journal of Materials Processing Technology, 1998, 75: 222-234.
    [37] M. A. Ahmetoglu, T. Altan, G. L. Kinzel. Improvement of part quality in stamping by controlling blank-holder force and pressure [J]. Journal of Materials Processing Technology,1992, 33: 195-214.
    [38] L. B. Shulkin, R. A. Posteraro, M. A. Ahmetoglu, G. L. Kinzel, T. Altan. Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal [J]. Journal of Materials Processing Technology, 2000, 98: 7-16.
    [39]李少平,郑静风,何丹农.板料成形参数对拉深成形性能影响的正交分析[J].锻压技术, 2002, 27: 27-28.
    [40] K. J. Kim, D. Kim, S. H. Choi, K. Chung, K. S. Shin, F. Barlat, K. H. Oh, J. R. Youn. Formability of AA5182/polypropylene/AA5182 sandwich sheets [J]. Journal of Materials Processing Technology, 2003, 139: 1-7.
    [41] S. H. Zhang, K. B. Nielsen, J. Danckert, Z. R. Wang. Numerical simulation of the integral hydro-bulge forming of non-clearance double-layer spherical vessels: deformation analysis [J]. Computers and Structures, 1999, 70: 243-256.
    [42] H. Tokuno, K. Ikeda. Analysis of deformation in extrusion of composite rods [J]. Journal of Materials Processing Technology, 1991, 26: 323-335.
    [43] A. G. Mamalis, D. E. Manolakos, A. K. Baldoukas. On the finite-element modelling of the deep-drawing of square sections of coated steels [J]. Journal of Materials Processing Technology, 1996, 58: 153-159.
    [44]张小兵,龙士国.基于动力显式算法的镍镀层钢带成形模拟[J].机械工程材料, 2007, 12: 83-86.
    [45]梁炳文,陈孝戴,王志恒.板金成形性能[M].北京:机械工业出版社, 1999.
    [46]郑家贤.冲压工艺模具设计实用技术[M].北京:机械工业出版社, 2005.
    [47]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社, 2003.
    [48]汪承濮,冯苏宁,陆匠心.轿车零件应变分析与FLD选材预测[J].钢铁, 1999, 34: 43-46.
    [49] E. Doege, P. Groche. Prediction of cracks in sheet-metal forming with FEM-simulations and FLD's [J]. CIRP Annals - Manufacturing Technology, 1991, 40: 251-253.
    [50] T. B. Stoughton, X. Zhu. Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD [J]. International Journal of Plasticity, 2004, 20: 1463-1486.
    [51] L. Q. Zhou, Y. C. Zhou, Y. Pan. Coating thickness variation during multistep drawing processes [J]. Journal of Materials Science, 2004, 39: 757-760.
    [52]梁旭.镀层金属薄板拉深成形的实验与数值模拟[硕士学位论文].湖南:湘潭大学材料与光电物理学院, 2009.
    [53] E. Chu, Y. Xu. An elastoplastic analysis of flange wrinkling in deep drawing process [J]. International Journal of Mechanical Sciences, 2001, 43: 1421-1440.
    [54] M. R. Morovvati, B. Mollaei-Dariani, M. H. Asadian-Ardakani. A theoretical, numerical, and experimental investigation of plastic wrinkling of circular two-layer sheet metal in the deep drawing [J]. Journal of Materials Processing Technology, 2010, 210: 1738-1747.
    [55] R. Greze, P. Y. Manach, H. Laurent, S. Thuillier, L. F. Menezes. Influence of the temperature on residual stresses and springback effect in an aluminium alloy [J].International Journal of Mechanical Sciences, 2010, 52: 1094-1100.
    [56] T. G. Herold, T. Foecke, H. J. Prask, R. J. Fields. An investigation of springback stresses in AISI-1010 deep drawn cups [J]. Materials Science and Engineering A, 2005, 399: 26-32.
    [57] L. R. Sanchez. Modeling of springback, strain rate and Bauschinger effects for two-dimensional steady state cyclic flow of sheet metal subjected to bending under tension [J]. International Journal of Mechanical Sciences, 2009, 52: 429-439.
    [58] K. J. Hemker. Understanding how nanocrystalline metals deform [J]. Science, 2004, 304: 221-223.
    [59] Z. W. Shan, J. M. K. Wiezorek, E. A. Stach, D. M. Follstaedt, J. A. Knapp, S. X. Mao. Dislocation dynamics in nanocrystalline nickel [J]. Physical Review Letters, 2007, 98: 095502-095507.
    [60] J. Schaufler, K. Durst, O. Massler, M. Goken. In-situ investigation on the deformation and damage behaviour of diamond-like carbon coated thin films under uniaxial loading [J]. Thin Solid Films, 2009, 517: 1681-1685.
    [61] M. Ortiz, G. Gioia. The morphology and folding patterns of buckling-driven thin-film blisters [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 531-559.
    [62] T. Hanabusa, K. Kusaka, O. Sakata. Residual stress and thermal stress observation in thin copper films [J]. Thin Solid Films, 2004, 459: 245-248.
    [63] S. H. Chen, L. Liu, T. C. Wang. Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems [J]. International Journal of Solids and Structures, 2007, 44: 4492-4504.
    [64] A. A. Elmustafa, D. S. Stone. Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 2003, 51: 357-381.
    [65] C. M. A. Brett, A. Cavaleiro. A comparison of the electrochemical behaviour of W-M-N (M=Ni, Ti, Al) thin film coatings on high speed steel [J]. Thin Solid Films, 1998, 322: 263-273.
    [66] S. P. Khedkar, S. Radhakrishnan. Application of dip-coating process for depositing conducting polypyrrole films [J]. Thin Solid Films, 1997, 303: 167-172.
    [67] B. Menaa, M. Takahashi, Y. Tokuda, T. Yoko. Organically modified siloxane glass films prepared via a non-aqueous gel coating process and doped with optically active dyes rhodamine 6G and coumarin 152 [J]. Solid State Sciences, 2008, 10: 1200-1208.
    [68] Y. Sakata, S. Shiraishi, M. Otsuka. A novel white film for pharmaceutical coating formed by interaction of calcium lactate pentahydrate with hydroxypropyl methylcellulose [J]. International Journal of Pharmaceutics, 2006, 317: 120-126.
    [69] H. Zhou, F. Li, B. He, J. Wang, B. Sun. Air plasma sprayed thermal barrier coatings on titanium alloy substrates [J]. Surface and Coatings Technology, 2007, 201: 7360-7367.
    [70] A. M. Rodruez, M. Moevus, P. Reynaud, G. Fantozzi. Strength enhancement of 2D-SiCf/SiC composites after static fatigue at room temperature [J]. Journal of the European Ceramic Society, 2007, 27: 3301-3305.
    [71] A. N. Gent, L. H. Lewandowski. Blow-off pressures for adhering layers [J]. Journal of Applied Polymer Science, 1987, 33: 1567-1577.
    [72] Y. C. Zhou, T. Hashida, C. Y. Jian. Determination of interface fracture toughness in thermal barrier coating system by blister tests [J]. Journal of Engineering Materials and Technology, 2003, 125: 176-182.
    [73] A. A. Volinsky, N. R. Moody, W. W. Gerberich. Interfacial toughness measurements for thin films on substrates [J]. Acta Materialia, 2002, 50: 441-466.
    [74] G. Aldrich-Smith, N. Jennett, J. Housden. Adhesion of thin coatings?the VAMAS (TWA 22-2) interlaboratory exercise [J]. Surface and Coatings Technology, 2005, 197: 336-344.
    [75] P. R. Chalker, S. J. Bull, D. S. Rickerby. A review of the methods for the evaluation of coating-substrate adhesion [J]. Materials Science and Engineering A, 1991, 140: 583-592.
    [76] L. M. Jiang, Y. C. Zhou, Y. G. Liao, C. Q. Sun. A pressurized blister test model for the interface adhesion of dissimilar elastic-plastic materials [J]. Materials Science and Engineering A, 2008, 487: 228-234.
    [77] H. Dannenberg. Measurement of adhesion by a blister method [J]. Journal of Applied Polymer Science, 1961, 5: 125-134.
    [78] L. M. Jiang, Y. C. Zhou, H. X. Hao, Y. G. Liao, C. Lu. Characterization of the interface adhesion of elastic-plastic thin film/rigid substrate systems using a pressurized blister test numerical model [J]. Mechanics of Materials, 2010, 42: 908-915.
    [79] M. A. Haque, M. T. A Saif. Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension [J]. Scripta Materialia, 2002, 47: 863-867.
    [80] Y. R. Jeng, C. M. Tan. Computer simulation of tension experiments of a thin film using an atomic model [J]. Physical Review B, 2002, 65: 174107.
    [81]李家宝,覃明,马素媛,陈昌荣.薄膜几种重要力学性能的评价[J].理化检验?物理分册, 2003, 39: 441-447.
    [82] J. W. Beams. Mechanical properties of thin films of gold and silver [M]. New York: Wiley, 1959.
    [83]刘宝琛,史训清.薄膜应力应变曲线和基本力学性能测试[J].实验力学, 1994, 9: 1-7.
    [84] E. W. Hart. Theory of the tensile test [J]. Acta Metallurgica, 1967, 15: 351-355.
    [85] G. W. Hollenberg, G. R. Terwilliger, R. S. Gordon. Calculation of stresses and strains in four?point bending creep tests [J]. Journal of the American Ceramic Society, 1971, 54: 196-199.
    [86] Y. Xiang, X. Chen, J. J. Vlassak. Plane-strain bulge test for thin films [J]. Journal of Materials Research, 2005, 20: 2360-2370
    [87] L. H. Xiao, X. P. Su, J. H. Wang, Y. C. Zhou. A novel blister test to evaluate the interface strength between nickel coating and low carbon steel substrate [J]. Materials Science and Engineering A, 2009, 501: 235-241.
    [88] Y. Wei, J. W. Hutchinson. Nonlinear delamination mechanics for thin films [J]. Journal of the Mechanics and Physics of Solids, 1997, 45: 1137-1159.
    [89] Y. Wei. Modeling nonlinear peeling of ductile thin films?critical assessment of analyticalbending models using FE simulations [J]. International Journal of Solids and Structures, 2004, 41: 5087-5104.
    [90] X. Li, B. Bhushan. A review of nanoindentation continuous stiffness measurement technique and its applications [J]. Materials Characterization, 2002, 48: 11-36.
    [91] E. Meyer. Vntersuchen ueber haertepruefung und haerte [J]. Zepplin Version Deutsche Ing, 1908, 52: 645-654.
    [92] J. L. Bucaille, S. Stauss, E. Felder, J. Michler. Determination of plastic properties of metals by instrumented indentation using different sharp indenters [J]. Acta Materialia, 2003, 51: 1663-1678.
    [93] E. O. Bernhardt. Uber die mikroharte der feststoffe im grenzbereich des kickschen ahnlichkeitssatzes [J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1945, 33: 135-145.
    [94] S. Suresh, T. G. Nieh, B. W. Choi. Nano-indentation of copper thin films on silicium substrates [J]. Scripta Materialia, 1999, 41: 951-957.
    [95] W. C. Oliver, G. M. Pharr. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7: 1564-1583.
    [96] I. N. Sneddon. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile [J]. International Journal of Engineering Science, 1965, 3: 47-57.
    [97] A. E. Giannakopoulos, S. Suresh. Determination of elastoplastic properties by instrumented sharp indentation [J]. Scripta Materialia, 1999, 40: 1191-1198.
    [98] M. Dao, N. Chollacoop, K. J. V. Vliet, T. A. Venkatesh, S. Suresh. Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Materialia, 2001, 49: 3899-3918.
    [99] Y. P. Cao, J. Lu. A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve [J]. Acta Materialia, 2004, 52: 4023-4032.
    [100] E. G. Herbert, G. M. Pharr, W. C. Oliver, B. N. Lucas, J. L. Hay. On the measurement of stress-strain curves by spherical indentation [J]. Thin Solid Films, 2001, 398-399: 331-335.
    [101] H. Hertz, D. E. Jones, G. A. Schott. Miscellaneous Papers [M]. London: Macmillan and Company, 1896.
    [102] D. Tabor. Indentation hardness and its measurement: some cautionary comments [M]. in: P. J. Blau, B. R. Lawn (Eds.), ASTM STP 889, Microindentation Techniques in Materials Science and Engineering, ASTM, Philadelphia, PA, USA, 1986, 129-159.
    [103] D. Ma, K. Xu, J. He, J. Lu. Evaluation of the mechanical properties of thin metal films [J]. Surface and Coatings Technology, 1999, 116: 128-132.
    [104] C. Poilane, P. Delobelle, L. Bornier, P. Mounaix, X. Melique, D. Lippens. Determination of the mechanical properties of thin polyimide films deposited on a GaAs substrate by bulging and nanoindentation tests [J]. Materials Science and Engineering A, 1999, 262: 101-106.
    [105]马德军.测定金属薄膜及小体积材料屈服强度与硬化指数的连续压入法研究[博士学位论文].西安:西安交通大学材料科学与工程学院, 1999.
    [106] M. Zhao, X. Chen, Y. Xiang, J. J. Vlassak, D. Lee, N. Ogasawara, N. Chiba, Y. X. Gan. Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation [J]. Acta Materialia, 2007, 55: 6260-6274.
    [107]黄勇力.用纳米压痕法表征薄膜的应力?应变关系[硕士学位论文].湖南:湘潭大学材料与光电物理学院, 2006.
    [108] Y. G. Liao, Y. C. Zhou, Y. L. Huang, L. M. Jiang. Measuring elastic-plastic properties of thin films on elastic?plastic substrates by sharp indentation [J]. Mechanics of Materials, 2009, 41: 308-318.
    [109] D. J. Lloyd. Particle reinforced aluminum and magnesium matrix composites [J]. International Materials Reviews, 1994, 39: 1-23.
    [110] J. S. Stolken, A. G. Evans. A microbend test method for measuring the plasticity length scale [J]. Acta Materialia, 1998, 46: 5109-5115.
    [111] W. J. Poole, M. F. Ashby, N. A. Fleck. Micro-hardness of annealed and work-hardened copper polycrystals [J]. Scripta Materialia, 1996, 34: 559-564.
    [112] M. B. Taylor, H. M. Zbib, M. A. Khaleel. Damage and size effect during superplastic deformation [J]. International Journal of Plasticity, 2002, 18: 415-442.
    [113] N. Huber, W. D. Nix, H. Gao. Identification of elastic-plastic material parameters from pyramidal indentation of thin films [M]. London, ROYAUME-UNI: Royal Society of London, 2002.
    [114] N. A. Fleck, J. W. Hutchinson. Strain gradient plasticity [J]. Advances in Applied Mechanics, 1997, 33: 295-361.
    [115] H. Gao, Y. Huang, W. D. Nix, J. W. Hutchinson. Mechanism-based strain gradient plasticity?I. Theory [J]. Journal of the Mechanics and Physics of Solids, 1999, 47: 1239-1263.
    [116] Y. Huang, H. Gao, W. D. Nix, J. W. Hutchinson. Mechanism-based strain gradient plasticity?II. Analysis [J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 99-128.
    [117] W. D. Nix, H. Gao. Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 411-425.
    [118] R. H. Ion, H. M. Pollock, C. R. Carmes. Micron-scale indentation of amorphous and drawn PET surfaces [J]. Journal of Materials Science, 1990, 25: 1444-1454.
    [119] Y. T. Cheng, C. M. Cheng. Scaling, dimensional analysis, and indentation measurements [J]. Materials Science and Engineering R: Reports, 2004, 44: 91-149.
    [120] A. K. Bhattacharya, W. D. Nix. Finite element simulation of indentation experiments [J]. International Journal of Solids and Structures, 1988, 24: 881-891.
    [121] S. M. Myers, J. A. Knapp, D. M. Follstaedt, M. T. Dugger. Mechanical properties of nickel ion-implanted with titanium and carbon and their relation to microstructure [J]. Journal of Applied Physics, 1998, 83: 1256-1264.
    [122] Y. T. Cheng, C. M. Cheng. Can stress–strain relationships be obtained from indentationcurves using conical and pyramidal indenters? [J]. Journal of Materials Research, 1999, 14: 3493-3496
    [123] F. P. Ganneau, G. Constantinides, F. J. Ulm. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials [J]. International Journal of Solids and Structures, 2006, 43: 1727-1745.
    [124] X. Chen, N. Ogasawara, M. Zhao, N. Chiba. On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials [J]. Journal of the Mechanics and Physics of Solids, 2007, 55: 1618-1660.
    [125] G. Hou, F. Wang, K. Xu. Extracting yield strength and strain-hardening exponent of metals with a double-angle indenter [J]. Journal of Materials Research, 2009, 24: 1674-1682.
    [126] S. K. Sharma, G. D. Ko, K. J. Kang. High temperature creep and tensile properties of alumina formed on Fecralloy foils doped with yttrium [J]. Journal of the European Ceramic Society, 2009, 29: 355-362.
    [127] S. C. Hunter. The Hertz problem for a rigid spherical indenter and a viscoelastic half-space [J]. Journal of the Mechanics and Physics of Solids, 1960, 8: 219-234.
    [128] E. H. Lee. Stress analysis in visco-elastic bodies [J]. Quarterly of Applied Mathematics, 1955, 13: 183-190.
    [129] L. Cheng, X. Xia, W. Yu, L. E. Scriven, W. W. Gerberich. Flat-punch indentation of viscoelastic material [J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38: 10-22.
    [130] M. Sakai. Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter [J]. Philosophical Magazine A, 2002, 82: 1841-1849.
    [131] T. Chudoba, F. Richter. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results [J]. Surface and Coatings Technology, 2001, 148: 191-198.
    [132] M. F. Doener, W. D. Nix. A method for interpreting the data from depth-sensing indentation instruments [J]. Journal of Materials Research, 1986, 1: 601-608.
    [133] T. F. Page, S. V. Hainsworth. Using nanoindentation techniques for the characterization of coated systems: a critique [J]. Surface and Coatings Technology, 1993, 61: 201-208.
    [134] A. K. Bhattacharya, W. D. Nix. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates [J]. International Journal of Solids and Structures, 1988, 24: 1287-1298.
    [135] R. Saha, W. D. Nix. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation [J]. Acta Materialia, 2002, 50: 23-38.
    [136] K. P. Wong, K. C. Chan, T. M. Yue. Modeling of electrocrystallization for pulse current electroforming of nickel [J]. Applied Surface Science, 2001, 178: 178-189.
    [137] L. Trahey, C. R. Becker, A. M. Stacy. Electrodeposited bismuth telluride nanowire arrays with uniform growth fronts [J]. Nano Letters, 2007, 7: 2535-2539.
    [138] K. Nielsch, F. Müller, A. P. Li, U. G?sele. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition [J]. Advanced Materials, 2000, 12: 582-586.
    [139] D. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. Ji, Y. B. Jiang, H. Xu, J. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, and Y. Lu. Electrodeposition of metallic nanowire thin films using mesoporous silica templates [J]. Advanced Materials, 2003, 15: 130-133.
    [140] H. Chik, J. M. Xu. Nanometric superlattices: non-lithographic fabrication, materials, and prospects [J]. Materials Science and Engineering R: Reports, 2004, 43: 103-138.
    [141] D. T. Read, Y. W. Cheng, R. Geiss. Morphology, microstructure, and mechanical properties of a copper electrodeposit [J]. Microelectronic Engineering, 2004, 75: 63-70.
    [142] L. N. Mendome, A. Aloufy, J. Eboth, D. Hui, M. E. Messiry. Surface roughening and transport properties in the growth of nano-structured nickel electrodeposits on ITO substrate [J]. Materials Chemistry and Physics, 2009, 115: 551-556.
    [143] A. Gomes, M. I. da Silva Pereira. Pulsed electrodeposition of Zn in the presence of surfactants [J]. Electrochimica Acta, 2006, 51: 1342-1350.
    [144] Z. F. Zhou, Y. C. Zhou, Y. Pan, C. F. Xu. Melting of Ni nanowires with and without oxide capping [J]. Acta Materialia, 2010, 58: 3059-3067.
    [145] Z. F. Zhou, Y. C. Zhou, Y. Pan, W. X. Lei, C. F. Xu. Overheating and undercooling of Ni polycrystalline nanowires [J]. Scripta Materialia, 2009, 60: 512-515.
    [146] L. Z. Ling, S. G. Long, Z. S. Ma, X. Liang. Numerical study on the effects of equi-biaxial residual stress on mechanical properties of nickel film by means of nanoindentation [J]. Journal of materials science and technology, 2010, 26: 1001-1005.
    [147] J. B. J. Fourier. Analytic theory of heat [M]. New York: Cambridge University Press, 1955.
    [148] E. Bukingham. On physically similar systems: illutrations of the use dimensional analysis [J]. Physical Review, 1914, 4: 345-376.
    [149] P. W. Bridgman. Dimensional analysis [M]. New Haven: Yale University Press, 1922.
    [150] M. Zhao, X. Chen, J. Yan, A. M. Karlsson. Determination of uniaxial residual stress and mechanical properties by instrumented indentation [J]. Acta Materialia, 2006, 54: 2823-2832.
    [151]周益春.材料固体力学(上、下册)[M].北京:科学出版社, 2005.
    [152]陈昌麒.材料学科中的固体力学[M].北京:北京航空航天大学出版社, 1994.
    [153] Y. T. Cheng, C. M. Cheng. Effects of 'sinking in' and 'piling up' on estimating the contact area under load in indentation [J]. Philosophical Magazine Letters, 1998, 78: 115-120.
    [154] K. Tunvisut, N. P. O'Dowd, E. P. Busso. Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests [J]. International Journal of Solids and Structures, 2001, 38: 335-351.
    [155] J. Luo, J. Lin. A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters [J]. International Journal of Solids and Structures, 2007, 44: 5803-5817.
    [156] O. Casals, J. Alcal. The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments [J]. Acta Materialia, 2005, 53: 3545-3561.
    [157] A. P. Temovskii, V. P. Alekhin, M. K. Shorshorov. Micromechanical testing of materials by depression [J]. Zavodskaya Laboratoriya, 1973, 39: 1242-1247.
    [158] S. I. Bulychev, V. P. Alekhin. Determination of Young’s modulus from the indenter impression diagram [J]. Zavodskaya Laboratoriya, 1975, 41: 1137-1140.
    [159] P. L. Larsson, A. E. Giannakopoulos, E. S?derlund, D. J. Rowcliffe, R. Vestergaard. Analysis of Berkovich indentation [J]. International Journal of Solids and Structures, 1996, 33: 221-248.
    [160] F. M. Borodich, L. M. Keer. Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation [J]. Proceedings of the Royal Society of London A, 2004, 460: 507-514.
    [161] D. L. Joslin, W. C. Oliver. A new method for analyzing data from continuous depth-sensing microindentation tests [J]. Journal of Materials Research, 1990, 5: 123-126.
    [162] ABAQUS. ABAQUS 6.5 User's Manual [M]. ABAQUS Inc., 2005.
    [163] J. G. Swadener, E. P. George, G. M. Pharr. The correlation of the indentation size effect measured with indenters of various shapes [J]. Journal of the Mechanics and Physics of Solids, 2002, 50: 681-694.
    [164]张帆,黄克智,黄永刚,秦江.摩擦因数对微压痕实验的影响[J].工程力学, 2006, 1: 1-6.
    [165] M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali. Simulation of Berkovich nanoindentation experiments on thin films using finite element method [J]. Thin Solid Films, 1998, 312: 240-248.
    [166] S. H. Chen, A. K. Soh. The capillary force in micro- and nano-indentation with different indenter shapes [J]. International Journal of Solids and Structures, 2008, 45: 3122-3137.
    [167] J. Qin, Y. Huang, K. C. Hwang, J. Song, G. M. Pharr. The effect of indenter angle on the microindentation hardness [J]. Acta Materialia, 2007, 55: 6127-6132.
    [168] K. D. Bouzakis, N. Michailidis. Deviations in determining coatings' and other materials' mechanical properties, when considering different indenter tip geometries and calibration procedures [J]. Surface and Coatings Technology, 2007, 202: 1108-1112.
    [169] Y. Kojima, M. Shima, T. Motoda, T. Jibiki, T. Sugawara. An estimation of friction from the indentation of metals by acute-angled conical indenters [J]. Tribology International, 2007, 40: 1479-1483.
    [170] A. Sackfield, D. A. Hills, H. Qiu. Side-contact of sharp indenters, including the effects of friction [J]. International Journal of Mechanical Sciences, 2007, 49: 567-576.
    [171]姜汉卿.应变梯度塑性理论断裂和大变形的研究[博士学位论文].北京:清华大学工程力学系, 2000.
    [172] K. Durst, O. Franke, A. Bohner, M. Goken. Indentation size effect in Ni-Fe solid solutions [J]. Acta Materialia, 2007, 55: 6825-6833.
    [173] S. Qu, Y. Huang, G. M. Pharr, K. C. Hwang. The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity [J]. International Journal of Plasticity, 2006, 22: 1265-1286.
    [174] E. Cosserat, F. Cosserat. Theorie des corps deformables [M]. Paris: A Hermann et Fils, 1909.
    [175] H. B. Muhlhaus, E. C. Alfantis. A variational principle for gradient plasticity [J]. International Journal of Solids and Structures, 1991, 28: 845-857.
    [176] A. Acharya, J. L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity [J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 1565-1595.
    [177] Z. S. Ma, S. G. Long, Y. Pan, Y. C. Zhou. Indentation depth dependence of the mechanical strength of Ni films [J]. Journal of Applied Physics, 2008, 103: 043512-043516.
    [178] K. W. McElhaney, J. J. Vlassak, W. D. Nix. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments [J]. Journal of Materials Research, 1998, 13: 1300-1306.
    [179] M. T. K. Soh, A. C. Fischer-Cripps, N. Savvides, C. A. Musca, L. Faraone. Nanoindentation of plasma-deposited nitrogen-rich silicon nitride thin films [J]. Journal of Applied Physics, 2006, 100: 024310-024317.
    [180] N. A. Stelmashenko, M. G. Walls, L. M. Brown, Y. V. Milman. Microindentations on W and Mo oriented single crystals: an STM study [J]. Acta Metallurgica et Materialia, 1993, 41: 2855-2865.
    [181] M. F. Ashby. The deformation of plastically non-homogeneous materials [J]. Philosophical Magazine, 1970, 21: 399 - 424.
    [182] G. I. Taylor. Plastic strain in metal [J]. Journal Institute of Metals, 1938, 62: 307-324.
    [183] N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson. Strain gradient plasticity: theory and experiment [J]. Acta Metallurgica et Materialia, 1994, 42: 475-487.
    [184] D. Tabor. Hardness of metals [M]. London: Oxford University Press, 1951.
    [185] D. M. Marsh. Plastic flow in glass [J]. Proceedings of the Royal Society of London A, 1964, 279: 420-435.
    [186] W. Hirst, M. G. J. W. Howse. The Indentation of Materials by Wedges [J]. Proceedings of the Royal Society of London A, 1969, 311: 429-444.
    [187] K. L. Johnson. The correlation of indentation experiments [J]. Journal of the Mechanics and Physics of Solids, 1970, 18: 115-126.
    [188] R. Hill. The Mathematical theory of plasticity [M]. London: Oxford University Press, 1950.
    [189] R. Narasimhan. Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model [J]. Mechanics of Materials, 2004, 36: 633-645.
    [190] W. Zhang, G. Subhash. An elastic-plastic-cracking model for finite element analysis of indentation cracking in brittle materials [J]. International Journal of Solids and Structures, 2001, 38: 5893-5913.
    [191] M. Mata, M. Anglada, J. Alcala. A hardness equation for sharp indentation of elastic-power-law strain-hardening materials [J]. Philosophical Magazine A, 2002, 82: 1831-1839.
    [192] M. Mata, J. Alcala. Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes [J]. Journal of Materials Research, 2003, 18: 1705-1709.
    [193] X. L. Gao, X. N. Jing, G. Subhash. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials [J]. International Journal of Solids and Structures, 2006, 43: 2193-2208.
    [194] C. J. Studman, M. A. Moore, S. E. Jones. On the correlation of indentation experiments [J]. Journal of Physics D: Applied Physics, 1977, 10: 949-956.
    [195] M. Rester, C. Motz, R. Pippan. Microstructural investigation of the volume beneath nanoindentations in copper [J]. Acta Materialia, 2007, 55: 6427-6435.
    [196] I. L. Jager. Surface free energy?a possible source of error in nanohardness? [J]. Surface Science, 2004, 565: 173-179.
    [197] A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. M. Minor, Y. L. Shen. Indentation across size scales and disciplines: Recent developments in experimentation and modeling [J]. Acta Materialia, 2007, 55: 4015-4039.
    [198] E. O. Hall. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society. B, 1951, 64: 747-753.
    [199] C. L. Woodcock, D. F. Bahr. Plastic zone evolution around small scale indentations [J]. Scripta Materialia, 2000, 43: 783-788.
    [200] C. Q. Sun, B. K. Tay, S. P. Lau, X. W. Sun, X. T. Zeng, S. Li, H. L. Bai, H. Liu, Z. H. Liu, E. Y. Jiang. Bond contraction and lone pair interaction at nitride surfaces [J]. Journal of Applied Physics, 2001, 90: 2615-2617.
    [201] Y. W. Bao, W. Wang, Y. C. Zhou. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements [J]. Acta Materialia, 2004, 52: 5397-5404.
    [202] Y. T. Cheng, C. M. Cheng. Relationships between hardness, elastic modulus, and the work of indentation [J]. Applied Physics Letters, 1998, 73: 614-616.
    [203] A. Bagchi, A. G. Evans. The mechanics and physics of thin film decohesion and its measurement [J]. Interface Science, 1996, 3: 169-193.
    [204] N. J. Petch. The cleavage strength of polycrystals [J]. Journal of Iron Steel Institute, 1953, 174: 25-28.
    [205] R. P. Vinci, E. M. Zielinski, J. C. Bravman. Thermal strain and stress in copper thin films [J]. Thin Solid Films, 1995, 262: 142-153.
    [206] M. F. Doerner, W. D. Nix. A method for interpreting the data from depth-sensing indentation instruments [J]. Journal of Materials Research, 1986, 1: 601-609
    [207] G. M. Pharr. Measurement of mechanical properties by ultra-low load indentation [J]. Materials Science and Engineering A, 1998, 253: 151-159.
    [208] N. Chollacoop, M. Dao, S. Suresh. Depth-sensing instrumented indentation with dual sharp indenters [J]. Acta Materialia, 2003, 51: 3713-3729.
    [209] K. Zeng, C. Chiu. An analysis of load-penetration curves from instrumented indentation [J]. Acta Materialia, 2001, 49: 3539-3551.
    [210] T. W. Capehart, Y. T. Cheng. Determining constitutive models from conical indentation: sensitivity analysis [J]. Journal of Materials Research, 2003, 18: 827–832.
    [211] J. Alkorta, J. M. Martinez-Esnaola, J. G. Sevillano. Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data [J]. Journal of Materials Research, 2005, 20: 432-437.
    [212] Y.-T. Cheng, Z. Li, C.-M. Cheng. Scaling relationships for indentation measurements [J]. Philosophical Magazine A, 2002, 82: 1821 - 1829.
    [213] K. K. Tho, S. Swaddiwudhipong. Uniqueness of reverse analysis from conical indentation tests [J]. Journal of Materials Research, 2004, 19: 2498-2502.
    [214] Y. Cao, N. Huber. Further investigation on the definition of the representative strain in conical indentation [J]. Journal of Materials Research, 2006, 21: 1810-1821.
    [215] S. Swaddiwudhipong, K. K. Tho, Z. S. Liu, K. Zeng. Material characterization based on dual indenters [J]. International Journal of Solids and Structures, 2005, 42: 69-83.
    [216] K. L. Johnson. Contact mechanics [M]. Cambridge: Cambridge University Press, 1985.
    [217] H. Hertz, D. E. Jones, G. A. Schott. Miscellaneous papers [M]. London: Macmillan and Company, 1896.
    [218] A. L. Norbury, T. Samuel. The recovery and sinking-in or piling-up of material in the Brinell test, and the effects of these factors on the correlation of the Brinell with certain other hardness tests [J]. Journal of the Iron and Steel Institute, 1928, 117: 673-687.
    [219] J. R. Matthews. Indentation hardness and hot pressing [J]. Acta Metallurgica, 1980, 28: 311-318.
    [220] J. S. Field, M. V. Swain. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations [J]. Journal of Materials Research, 1995, 10: 101-112.
    [221] S. Biwa, B. Storakers. An analysis of fully plastic Brinell indentation [J]. Journal of the Mechanics and Physics of Solids, 1995, 43: 1303-1333.
    [222] R. Hill, B. Storakers, A. B. Zdunek. A theoretical study of the Brinell hardness test [J]. Proceedings of the Royal Society of London A, 1989, 423: 301-330.
    [223] D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, W. W. Gerberich. Yield strength predictions from the plastic zone around nanocontacts [J]. Acta Materialia, 1998, 47: 333-343.
    [224] L. E. Samuels, T. O. Mulhearn. An experimental investigation of the deformed zone associated with indentation hardness impressions [J]. Journal of the Mechanics and Physics of Solids, 1957, 5: 125-134.
    [225] T. O. Mulhearn. The deformation of metals by vickers-type pyramidal indenters [J]. Journal of the Mechanics and Physics of Solids, 1959, 7: 85-88.
    [226] K. Zeng, E. S?derlund, A. E. Giannakopoulos, D. J. Rowcliffe. Controlled indentation: A general approach to determine mechanical properties of brittle materials [J]. Acta Materialia, 1996, 44: 1127-1141.
    [227] W. Zielinski, H. Huang, W. W. Gerberich. Microscopy and microindentation mechanics of single crystal Fe-3 wt.% Si: Part II. TEM of the indentation plastic zone [J]. Journal of Materials Research, 1993, 8: 1300-1310.
    [228] H. O’Niell. Hardness measurement of metals and alloys [M]. London: Chapman and Hall, 1967.
    [229] T. R. G. Kutty, C. Ganguly, D. H. Sastry. Development of creep curves from hot indentation hardness data [J]. Scripta Materialia, 1996, 34: 1833-1838.
    [230] M. S. R. Heynes, H. Rawson. [J]. Physics and Chemistry of Glasses, 1961, 2: 1-11.
    [231] R. W. Douglas, W. L. Armstrong, J. P. Edward, D. Hall. A penetration viscometer [J]. Glass Technology, 1965, 6: 52-55.
    [232] E. C. Yu, J. C. M. Li. Impression creep of LiF single crystals [J]. Philosophical Magazine, 1977, 36: 811-825.
    [233] W.-T. Han, M. Tomozawa. Indentation Creep of Na2O·3SiO2 Glasses with Various Water Contents [J]. Journal of the American Ceramic Society, 1990, 73: 3626-3632.
    [234] O. Prakash, D. R. H. Jones. Creep of metal-type organic compounds?II. Indentation creep [J]. Acta Materialia, 1996, 44: 891-897.
    [235] M. Fujiwara, M. Otsuka. Indentation creep ofβ-Sn and Sn-Pb eutectic alloy [J]. Materials Science and Engineering A, 2001, 319-321: 929-933.
    [236] B. Zhao, B. Xu, Z. Yue. Indentation creep-fatigue test on aluminum alloy 2A12 [J]. Materials Science and Engineering A, 2010, 527: 4519-4522.
    [237] M. Gan, V. Tomar. Role of length scale and temperature in indentation induced creep behavior of polymer derived Si-C-O ceramics [J]. Materials Science and Engineering A, 2010, 527: 7615-7623.
    [238] W. H. Poisl, W. C. Oliver, B. D. Fabes. The relation between indentation and uniaxial creep in amorphous selenium [J]. Journal of Materials Research, 1995, 10: 2024-2032.
    [239] D. Dorner, K. R?ller, B. Skrotzki, B. St?ckhert, G. Eggeler. Creep of a TiAl alloy: a comparison of indentation and tensile testing [J]. Materials Science and Engineering A, 2003, 357: 346-354.
    [240] M. Vandamme, F. J. Ulm. Viscoelastic solutions for conical indentation [J]. International Journal of Solids and Structures, 2006, 43: 3142-3165.
    [241] Z. F. Yue, G. Eggeler, B. St?ckhert. A creep finite element analysis of indentation creep testing in two phase microstructures (particle/matrix- and thin film/substrate-systems) [J]. Computational Materials Science, 2001, 21: 37-56.
    [242] R. Roumina, B. Raeisinia, R. Mahmudi. Room temperature indentation creep of cast Pb-Sb alloys [J]. Scripta Materialia, 2004, 51: 497-502.
    [243] T. Chudoba, N. Schwarzer, F. Richter, U. Beck. Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter [J]. Thin Solid Films, 2000, 377-378: 366-372.
    [244] G. Feng, A. H. W. Ngan. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation [J]. Journal of Materials Research, 2002, 17: 660-668.
    [245] A. H. W. Ngan, B. Tang. Viscoelastic effects during unloading in depth-sensing indentation [J]. Journal of Materials Research, 2002, 17: 2604-2610.
    [246] B. Tang, A. H. W. Ngan. Accurate measurement of tip-sample contact size duringnanoindentation of viscoelastic materials [J]. Journal of Materials Research, 2003, 18: 1141-1148.
    [247] N. Fujisawa, M. V. Swain. Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation [J]. Journal of Materials Research, 1995, 21: 708-714.
    [248] H. Li, A. H. W. Ngan. Size effects of nanoindentation creep [J]. Journal of Materials Research, 2004, 19: 513-522.
    [249] F. R. N. Nabarro. Do we have an acceptable model of power-law creep? [J]. Materials Science and Engineering A, 2004, 387-389: 659-664.
    [250] S. Beauchesne, J. P. Poirier. In search of a systematics for the viscosity of perovskites: creep of potassium tantalate and niobate [J]. Physics of the Earth and Planetary Interiors, 1990, 61: 182-198.
    [251] N. E. Dowling. Mechanical behavior of materials: engineering methods for deformation, fracture and fatigue [M]. USA: New Jersey, 1999.
    [252] H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi. Dislocation creep behavior in Mg-Al-Zn alloys [J]. Materials Science and Engineering A, 2005, 407: 53-61.
    [253]穆霞英.蠕变力学[M].陕西:西安交通大学出版社, 1990.
    [254] J. Weertman. Creep of polycrystalline aluminium as determined from strain rate tests [J]. Journal of the Mechanics and Physics of Solids, 1956, 4: 230-234.
    [255] M. Y. Wu, O. D. Sherby. Superplasticity in a silicon carbide whisker reinforced aluminum alloy [J]. Scripta Metallurgica, 1984, 18: 773-776.
    [256] W. B. Li, J. L. Henshall, R. M. Hooper, K. E. Easterling. The mechanisms of indentation creep [J]. Acta Metallurgica et Materialia, 1991, 39: 3099-3110.
    [257] H. Li, A. H. W. Ngan. Indentation size effects on the strain rate sensitivity of nanocrystalline Ni-25 at.%Al thin films [J]. Scripta Materialia, 2005, 52: 827-831.
    [258] C. Herring. Diffusional viscosity of a polycrystalline solid [J]. Journal of Applied Physics, 1950, 21: 437-445.
    [259] M. F. Ashby, R. A. Verrall. Diffusion-accommodated flow and superplasticity [J]. Acta Metallurgica, 1973, 21: 149-163.
    [260] P. Kern, P. Schwaller, J. Michler. Electrolytic deposition of titania films as interference coatings on biomedical implants: microstructure, chemistry and nano-mechanical properties [J]. Thin Solid Films, 2006, 494: 279-286.
    [261] S. C. Ray, M. K. Karanjai, D. DasGupta. Tin dioxide based transparent semiconducting films deposited by the dip-coating technique [J]. Surface and Coatings Technology, 1998, 102: 73-80.
    [262] H. Buckle. Science of hardness testing and its research applications [M]. ASM: Metals Park, Ohio, 1973.
    [263] B. Jonsson, S. Hogmark. Hardness measurements of thin films [J]. Thin Solid Films, 1984, 114: 257-269.
    [264] P. M. Sargent. Factors affecting the microhardness of solids [Ph. D. Thesis]. England:University of Cambridge, 1979.
    [265] P. J. Burnett, T. F. Page. Surface softening in silicon by ion implantation [J]. Journal of Materials Science, 1984, 19: 845-860.
    [266] P. J. Burnett, D. S. Rickerby. The mechanical properties of wear-resistant coatings: I: modelling of hardness behaviour [J]. Thin Solid Films, 1987, 148: 41-50.
    [267] S. J. Bull, T. F. Page, E. H. Yoffe. An explanation of the indentation size effect in ceramics [J]. Philosophical Magazine Letters, 1989, 59: 281-288.
    [268] B. R. Lawn, A. G. Evans, D. B. Marshall. Elastic/plastic indentation damage in ceramics: the median/radial crack system [J]. Journal of the American Ceramic Society, 1980, 63: 574-581.
    [269] A. Thomas. Microhardness measurement as a quality control technique for thin hard coatings [J]. Surface Engineering, 1987, 3: 117-122.
    [270] M. R. McGurk, H. W. Chandler, P. C. Twigg, T. F. Page. Modelling the hardness response of coated systems: the plate bending approach [J]. Surface and Coatings Technology, 1994, 68-69: 576-581.
    [271] A. M. Korsunsky, M. R. McGurk, S. J. Bull, T. F. Page. On the hardness of coated systems [J]. Surface and Coatings Technology, 1998, 99: 171-183.
    [272] J. R. Tuck, A. M. Korsunsky, D. G. Bhat, S. J. Bull. Indentation hardness evaluation of cathodic arc deposited thin hard coatings [J]. Surface and Coatings Technology, 2001, 139: 63-74.
    [273] R. Saha, Z. Xue, Y. Huang, W. D. Nix. Indentation of a soft metal film on a hard substrate: strain gradient hardening effects [J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 1997-2014.
    [274] M. J. Van den Bosch, P. J. G. Schreurs, M. G. D. Geers, M. P. F. H. L. Van Maris. Interfacial characterization of pre-strained polymer coated steel by a numerical-experimental approach [J]. Mechanics of Materials, 2008, 40: 302-317.
    [275] J. M. Lee, D. C. Ko, K. S. Lee, B. M. Kim. Identification of the bulk behavior of coatings by nano-indentation test and FE-analysis and its application to forming analysis of the coated steel sheet [J]. Journal of Materials Processing Technology, 2007, 187-188: 309-313.
    [276] Y. Choi. A study on the effects of machining-induced residual stress on rolling contact fatigue [J]. International Journal of Fatigue, 2009, 31: 1517-1523.
    [277] Y. B. Lee, C. S. Chung, Y. K. Park, H. K. Kim. Effects of redistributing residual stress on the fatigue behavior of SS330 weldment [J]. International Journal of Fatigue, 1998, 20: 565-573.
    [278] T. Y. Zhang, L. Q. Chen, R. Fu. Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture [J]. Acta Materialia, 1999, 47: 3869-3878.
    [279] C. O. Ruud. A review of selected non-destructive methods for residual stress measurement [J]. NDT International, 1982, 15: 15-23.
    [280] K. Feja, V. Hauk, W. K. Krug, L. Pintschovius. Residual stress evaluation of a cold-rolled steel strip using X-rays and a layer removal technique [J]. Materials Science andEngineering, 1987, 92: 13-21.
    [281] J. L. Marcelin, M. Abouaf, J. L. Chenot. Analysis of residual stresses in hot-rolled complex beams [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 56: 1-16.
    [282] N. Scuor, E. Lucchini, S. Maschio, S. L. Casto, V. Sergo. Wear mechanisms and residual stresses in alumina-based laminated cutting tools [J]. Wear, 2005, 258: 1372-1378.
    [283] C. M. Suh, B. W. Hwang, R. I. Murakami. Behaviors of residual stress and high-temperature fatigue life in ceramic coatings produced by PVD [J]. Materials Science and Engineering A, 2003, 343: 1-7.
    [284] A. R. Marder. The metallurgy of zinc-coated steel [J]. Progress in Materials Science, 2000, 45: 191-271.
    [285]刘澂.形状记忆合金的微尺度力学行为[M].北京:中国科学院力学研究所博士后研究工作报告, 2003.
    [286] X. Hernot, O. Bartier, Y. Bekouche, R. E. Abdi, G. Mauvoisin. Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation [J]. International Journal of Solids and Structures, 2006, 43: 4136-4153.
    [287] S. H. Kim, B. W. Lee, Y. Choi, D. Kwon. Quantitative determination of contact depth during spherical indentation of metallic materials?A FEM study [J]. Materials Science and Engineering A, 2006, 415: 59-65.
    [288] M. Li, W. Chen, Y. T. Cheng, C. M. Cheng. Influence of contact geometry on hardness behavior in nano-indentation [J]. Vacuum, 2009, 84: 315-320.
    [289] T. Y. Tsui, W. C. Oliver, G. M. Pharr. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy [J]. Journal of Materials Research, 1996, 11: 752-759
    [290] J. D. Schall, D. W. Brenner. Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data [J]. Journal of Materials Research, 2004, 19: 3172-3180.
    [291] S. Kokubo. On the change in hardness of a plate caused by bending [M]. Science Reports of the Tohoku Imperial University, 1932.
    [292] G. Sines, R. Carlson. Hardness measurements for determination of residual stresses [J]. ASTM Bulletin, 1952, 180: 35-37.
    [293] G. U. Oppel. Biaxial elasto-plastic analysis of load and residual stresses (Load and residual stress effects on metal hardness) [J]. Experimental Mechanics, 1964, 21: 135-137.
    [294] T. Simes, S. Mellor, D. Hills. A note on the influence of residual stress on measured hardness [J]. The Journal of Strain Analysis for Engineering Design, 1984, 19: 135-137.
    [295] A. Bolshakov, W. C. Oliver, G. M. Pharr. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations [J]. Journal of Materials Research, 1996, 11: 760-768.
    [296] S. Carlsson, P. L. Larsson. On the determination of residual stress and strain fields by sharp indentation testing: Part II: experimental investigation [J]. Acta Materialia, 2001, 49: 2193-2203.
    [297] J. D. Schall, D. W. Brenner Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data [J]. Journal of Materials Research, 2004, 19: 3172-3180.
    [298] T. Y. Tsui, W. C. Oliver, G. M. Pharr. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. experimental studies in an aluminum alloy [J]. Journal of Materials Research, 1996, 11: 752-759.
    [299] Z.-H. Xu, X. Li. Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation [J]. Acta Materialia, 2005, 53: 1913-1919.
    [300] W. R. C. Lafontaine, A. Paszkiet, M. A. Korhonen, C. Y. Li. Residual stress measurements of thin aluminum metallizations by continuous indentation and x-ray stress measurement techniques [J]. Journal of Materials Research, 1991, 6: 2084-2090.
    [301] S. Suresh, A. E. Giannakopoulos. A new method for estimating residual stresses by instrumented sharp indentation [J]. Acta Materialia, 1998, 46: 5755-5767.
    [302] T. E. Buchheit, R. Tandon. Measuring residual stress in glasses and ceramics using instrumented indentation [J]. Journal of Materials Research, 2007, 22: 2875-2887.
    [303] K. O. Kese, Z. C. Li, B. Bergman. Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation [J]. Journal of Materials Research, 2004, 19: 3109-3119.
    [304] X. Zhang, A. Misra, H. Wang, A. L. Lima, M. F. Hundley, R. G. Hoagland. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films [J]. Journal of Applied Physics, 2005, 97: 094302-094305.
    [305] S. Carlsson, P. L. Larsson. On the determination of residual stress and strain fields by sharp indentation testing: Part I: theoretical and numerical analysis [J]. Acta Materialia, 2001, 49: 2179-2191.
    [306] X. Chen, J. Yan, A. M. Karlsson. On the determination of residual stress and mechanical properties by indentation [J]. Materials Science and Engineering A, 2006, 416: 139-149.