在役管线泄漏检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的不断发展,管路被广泛应用于船舶、大型重装设备及石油、天然气等输送系统。船舶管路包括燃油管路、滑油管路、冷却水管路、压载水管路等等,其中任一管路发生泄漏,都可能导致相关设备无法正常使用,甚至影响到主辅机的安全使用;大型重装设备中的管路通常为油管和水管,以电站锅炉为例,电站锅炉“四管”(水冷壁、过热器、再热器和省煤器)爆漏事故是影响火电机组安全、经济运行的重要因素;石油和天然气等工业管道的泄漏不仅造成严重的资源浪费和环境污染,甚至会威胁到周围居民的生命财产安全。因此,展开对在役管线泄漏检测技术的研究具有重要的学术意义和工程实用价值。
     本文建立了一套管线泄漏检测综合试验台,并在此基础上进行了稳态输送和非稳态输送下的管线泄漏检测试验研究,最终完成了对管线泄漏检测试验系统的误差分析。本文的主要工作和研究内容如下:
     (1)简单介绍了常用的各种管线泄漏检测技术的基本原理,选用负压波—流量联合法进行管线泄漏的检测与定位,并采用小波分析作为管道压力和流量信号的数据处理方法,其中,利用小波降噪对信号消噪,利用小波变换奇异点分析检测负压波信号和流量信号的突变点,从而实现泄漏的检测与定位。
     (2)搭建了一套综合的管线泄漏检测试验台,模拟液体输送管线正常运行以及发生泄漏时的状况,并以负压波—流量联合法为基本原理,采用虚拟仪器LabVIEW开发了一套管线泄漏检测试验系统。该系统不仅能实时监测管线的运行状况,及时检测泄漏的发生并进行泄漏点的定位,还能通过查询时间实现历史数据的回放。在该试验台上,能开展不同泄漏量、不同管输状态(稳态输送和非稳态输送)、不同管线布局(水平输送管道和垂直输送管道)等多种方案的泄漏检测试验研究。
     (3)在试验台的基础上,讨论了管流处于稳定输送状态时,影响泄漏检测定位精度的因素。分别对一段直管和一段带有弯头且管线布局发生变化的复杂管道展开了泄漏检测试验,试验方案采用正交试验设计法设计,通过对试验结果的方差分析,得出了如下结论:对于直管,管输量越小,泄漏定位的精度越高,而泄漏量对泄漏定位精度也略有影响;对于复杂管道,管输量和泄漏量的不同会影响到泄漏定位精度,同时管道中的弯头数量越多,泄漏定位精度越差。
     (4)在试验台的基础上,开展了非稳态输送下的管线泄漏检测试验研究。刚开启泵时,管输流体压力波动较大,此时管流处于非稳定输送状态,对四种不同工况下刚开启泵时管流的压力波动程度进行了分级,压力波动程度越小时泄漏定位的精度越好,通过对不同压力波动程度下的试验数据进行分析,得出了非稳定输送状态下进行泄漏检测时,泵开启后不同阶段的泄漏定位修正值,提高了泄漏定位精度。
     (5)分析了管线泄漏检测试验系统的误差来源。随机误差主要是由各种干扰噪声引起,包括共模干扰、串模干扰和信号通道干扰。系统误差包括传感器的温度误差、非线性误差和灵敏度误差,数据采集中的采样误差和A/D转换误差,以及计算机与检测软件中的计算机运算误差、显示误差和数据处理误差。最后给出了管线泄漏检测试验系统的误差构成公式,并分别讨论了修正或抑制随机误差、传感器误差、数据采集误差和计算机与检测软件误差的方法。
With the development of industry, pipelines are widely used in ship, major equipment, oil and gas transport system. Ship pipe path includes fuel pipe, lube pipe, cooling water pipe and so on, and the leak of any pipe may cause related equipments unable to use, even influence the safe use of main and auxiliary engines; pipelines in major equipments are usually oil pipe and water pipe, taking utility boiler for example, the accident of "four-tube" crack in boiler has always been one of the major problems in power plant, which baffles the unit operation safely and economically; the leak of oil and gas pipeline causes not only large resource waste and huge environmental pollution, but also threatens people's lives and property. Therefore, it has important significance in research and engineering application to study on leak detection technology for in-service pipeline.
     In this paper, a pipeline leak detection testing system had been developed, a series of pipeline leak detection testing research were carried out, and error analysis of pipeline leak detection testing system had been completed. Follows are the main works:
     (1) The fundamental principle of common pipeline leak detection methods are simply introduced, negative pressure wave method and flow method are combined to detect and locate pipeline leak, wavelet analysis is chose as signal processing method of pipeline pressure and flow, in which, wavelet denoising method is used to filter away noise from original pressure and flow signals and wavelet singularity analysis is used to detect catastrophe points of pipeline pressure and flow signals, so pipeline leak detection and location can be implemented.
     (2) A pipeline leak detection synthetical testing platform was built in the laboratory to simulate normal operation and leak condition of liquid delivery pipeline, and a set of pipeline leak detection testing system was developed by Virtual Instrument LabVIEW, which based on negative pressure wave and flow. This system can not only monitor operation condition of the pipeline real-time, detect and locate leak in time, but also replay history data by query time. Based on the testing platform, a variety of leak detection testing research can be carried out under different leakage rate, different pipeline transportation condition such as steady transportation condition and unsteady transportation condition and different pipeline layout such as horizontal transport pipeline and vertical transport pipeline.
     (3) On the basis of the testing platform, when pipe flow is under steady transportation condition, factors having influence on leak location precision were discussed. Leak detection tests were carried out for a section straight pipe and a section complicated pipeline which has elbows and layout of beam line changes. The test plan was developed by orthogonal test design method. Through the variance analysis of testing results, we can get conclusions as follows: for a section straight pipe, the small pipeline transport flux, the better the leak location precision is, and leakage rate has little influence on leak location precision; for a section complicated pipeline, pipeline transport flux and leakage rate have influence on leak location precision, and the more elbows in pipeline, the worse leak location precision is.
     (4) On the basis of the testing platform, pipeline leak detection tests when flow is under unsteady transportation condition were carried out. On pumps start-up, the liquid pressure oscillation is comparatively large; flow is under unsteady transportation condition at this time. Under four kinds of different conditions, pressure fluctuation is divided into three degrees, we can find that leak location precision is better when pressure fluctuation is small, and by analyzing testing data of different pressure fluctuation degree, a set of modified value were provided, leak location precision had been improved.
     (5) Error sources of pipeline leak detection experimental system had been analyzed. Random error was caused by various interference noises, including common mode interference, series mode interference and signal channel interference. Systematic error includes temperature error, nonlinear error and sensitive error of sensors, sampling error and analog-digital conversion error in data acquisition, computer calculation error, displaying error and data processing error of virtual instrument software. Error constitution formula of pipeline leak detection system had been summarized, and several methods were provided to amend and restrain errors.
引文
[1]潘家华.管线安全的科学管理.管道运输,1997,2(3):1-9
    [2]王疆戈.世界油气管道现状.中国石化,2004,(7):18-19
    [3]李爽.深知安全之重,情系检测研究——纪天津大学靳世久教授及其获奖项目.中国科技奖励,2007(8):50-52
    [4]姜根山.锅炉管道泄漏声行为特性研究:[博士学位论文].北京:华北电力大学热能工程专业,2006
    [5]赵宏伟.供水管网漏损的控制方法.城乡建设,2008,(9):72-73
    [6]潘家华.油气管道的风险分析(待续).油气储运,1995,14(3):11-15
    [7]Fumess RA.Development in Pipeline Instrumentation.Measurement and Control,1987,20(1):7-15
    [8]Jun Zhang.Designing a Cost-effective and Reliable Pipeline Leak-detection System.Pipelines Reliability Conference,Houston,USA,November 19-22,1996
    [9]陈积懋.管道无损检测与评价技术.石油化工设备技术,1997,18(1):59-62
    [10]Read J A de.Comparison between ultrasonic and magnetic flux pigs for pipeline inspection.Pipes & Pipelines International,1987(1-2):7-15
    [11]李炜,朱芸.长输管线泄漏检测与定位方法分析.天然气工业,2005,25(6):105-109
    [12]Sandberg C,Holmes J,Mccoy K.Application of a continuous leak detection system to pipelines and associated equipment.IEEE transaction on industry applications,1989,25(5):906-909
    [13]李文军,王学英.油气管道泄漏检测与定位技术的现状及展望.炼油技术与工程,2005,35(9):49-52
    [14]Thompson Glenn M,Golding Randy D.Pipeline leak detection using volatile tracers.ASTM special technical publication,1992,131-136
    [15]Zhang Zaixuan,Wang Jianfen,Yu Xiangdong.The research of Raman type distributed optical fiber temperature measuring method.Journal of Optoelectronics · Laser,2001,12(6):596-600
    [16]袁朝庆,刘燕.利用光纤温度传感系统检测天然气管道泄漏.天然气工程,2006,26(8):117-119
    [17]S.B.M.Beck,M.D.Curren,N.D.Sims,et al.Pipeline Network Features and Leak Detection by Cross-Correlation Analysis of Reflected Waves.Journal of Hydraulic Engineering,2005,131(8):715-723
    [18]邓鸿英,杨振坤,王毅.负压波管道泄漏检测与定位技术.油气储运,2003,22(7):30-34
    [19]Dalius Misiunas,John Vitkovsky,Gustaf Olsson,et al.Pipeline Break Detection Using Pressure Transient Monitoring.Journal of Water Resources Planning and Management,2005,8:316-325
    [20]唐秀家.不等温长输管道泄漏定位理论.北京大学学报自然科学版,1997,33(5):574-580
    [21]江崇礼,孟庆操,董明.管道泄漏的压力测量诊断方法实验研究.大连理工大学学报,1998,38(1):101-104
    [22]R.S.Whaley,R.E.Nicholas,J.D.Van Reet.Tutorial on Software Based Leak Detection Techniques.Pipeline Simulation Interest Group,1992,10
    [23]J.C.P.Liou著,胡坚译.用质量平衡方法进行管道检漏.油气储运,1997,16(12):55-58
    [24]B.Parry,R.Mactaggart,C.Toerper.Compensated Volume Balance Leak Detection on a Batched LPG Pipeline.Proceedings of Offshore Mechanics & Arctic Engineering Conference,1992
    [25]李光海,王勇.基于声发射技术的管道泄漏检测系统.自动化仪表,2002,23(5):20-23
    [26]Rae Min,Lee Joorr Hyun.Acoustic Emission Technique for Pipeline Leak Detection.Key Engeering Materials,2000,184(4):17-21
    [27]王川,贾振旭,顾维毅等.应力波技术应用于管道防盗监测系统.油气田地面工程,2006,25(11):47
    [28]K.Fukushima,R.Maeshima,A.Kinoshita,et al.Gas pipeline leak detection system using the online simulation method.Computer and Chemical Engineering,2000(24):453-456
    [29]Vancelli J C,Lindsey T P.Reak-time Modeling and Application in Pipeline.Measurement and Control,IEEE Petroleum and Chemical Industry Conference,Chicago,1981
    [30]张来斌,王朝晖,陈茜.输油管道故障诊断中的实时模型法.油气储运,2003,22(9):52-55
    [31]Zhang Xuejun.Statistical Leak Detection in Gas and Liquid Pipelines.Pipe & Pipelines International,1993,July-August,26-29
    [32]Joep Hoeijmakers,John Lewis.Real Times Statistical Leak Detection on the RRP Crude Oil Networks,Holland.In:Proceedings of ICP00 International Pipeline Coference.Alberta,Calgary:ASME,2002:1-6
    [33]靳世久,王立宁,李健.瞬态负压波结构模式识别法原油管道泄漏检测技术.电子测量与仪器学报,1998,3(1):59-64
    [34]Jian Feng,Huaguang Zhang.Applications of Fuzzy Decision-Making in Pipeline Leak Localization.In:IEEE.Proceedings of Fuzzy IEEE,Hungary,Budapest,2004:599-603
    [35]唐秀家,颜大椿.基于神经网络的管道泄漏检测仪器及方法.北京大学学报,1997,33(3):319-326
    [36]J.Hoeijmakers,J.Lewis.Real Time Statistical Leak Detection on the RRP Crude Oil Network,Holland.Proceedings of the International Pipeline Conference,Calgary,Alberta,2002,10
    [37]Jun Zhang,Enea Di Mauro.Implementing a Reliable Leak Detection System on a Crude Oil Pipeline.Advances in Pipeline Technology,1998,Dubai,UAE
    [38]李文波,苏国胜.国外长输管道安全管理与技术综述.安全健康和环境,2005,5(1)
    [39]Farmer E J,Edwards G,Wallis D F,et al.Applications expand for new leak detection system.Pressure point analysis test used on three different pipeline projects prove successful.Pipeline Industry,1991,74(12):33-35
    [40]S T Ltd.Wavealert on duty for Britain's first major NGL pipeline.Pipe & Pipeline International,1984,29(3):26-30
    [41]冯健,张化光.管道监控技术现状与发展趋势.信息技术,2003,27(12):41-43
    [42]王海生,张布悦,王桂增.输油管道实时泄漏监测系统的设计与应用.油气储运,2001,20(12):17-22
    [43]彭柯.基于SCADA系统的原油管道泄漏检测关键技术研究:[硕士学位论文].天津:天津大学精密仪器与光电子工程学院,2003
    [44]王朝晖,李文苓.管道泄漏检测中实时模型法的研究.石油机械,2005,33(4):41-43
    [45]潘霞,范世东,钟骏杰等.管道泄漏检测实验系统设计与实现.船海工程,2007,36(2):44-47
    [46]苏维均,廉小亲,于重重等.负压波定位理论在输油管道泄漏监测系统中应用.微计算机信息,2003,19(3):43-44
    [47]周小华.利用负压波原理判断输油管线泄漏位置.化工设计通讯,2006,32(4):38-39
    [48]Rong Hu,Hao Ye,Guizeng Wang,et al.Leak Detection in Pipelines Based on FCA.2004 8th International Conference on Control,Automation,Robotics and Vision Kunming,China,2004
    [49]Yibo,Li,Liying,Sun,Shijiu,Jin,et al.Long range hot oil pipeline leak detection and location technique based on negative pressure wave.Proceedings of the Biennial International Pipeline Conference,IPC,v 2,Proceedings of the ASME International Pipeline Conference 2006,963-968
    [50]崔惠敏,王亚芳.基于双参数的管道泄漏检测系统的研究.石家庄铁道学院学报,2007,20(2):57-60
    [51]杨雷,孙云峰,陈秀凤.负压波一流量法管道泄漏监测技术在原油外输管道上的应用.石油规划设计,2004,15(2):24-26
    [52]潘霞.管道泄漏检测综合实验系统开发:[硕士学位论文].武汉:武汉理工大学能源与动力工程学院,2006
    [53]程家铭,张汉国.输油管道负压波法测漏原理及实现.石油机械,2002,30(9):28-30
    [54]李彦荣.基于负压波和流量检测管道泄漏定位系统研究:[硕士学位论文].北京:北京交通大学,2008
    [55]柳战良.长输原油管道泄漏定位关键技术研究:[硕士学位论文]:山东:石油大学(华东)检测技术与自动化装置,2007
    [56]Reinaldo A.Silva,Claudio M.Buiatti,Sandra L.Cruz,et al.Pressure Wave Behaviour and Leak Detection in Pipelines.European Symposium on Computers Aided Process Engineering,1996,20:S491-S496
    [57]苏彦勋,梁国伟,盛健.流量计量与测试(第二版).北京:中国计量出版社,2007
    [58]国家标准局.GB/T4472-1984.化工产品密度、相对密度测定通则.北京:标准出版社,1985
    [59]德翔生.长输原油管道热力计算.管道技术与设备.1994,(5):5-7
    [60]Watters G Z.Analysis and Control of Unsteady Flow in Pipelines.Butterworth Publishers,
    [61]Wylie E B,Streeter V L.瞬变流.北京:水利电力出版社,1983
    [62]王大凯,彭进业.小波分析及其在信号处理中的应用.北京:电子工业出版社,2006
    [63]成礼智,郭汉伟.小波与离散变换理论及工程实践.北京:清华大学出版社.2005,243-246
    [64]Robi Polikar.Robi Polikar's Wavelet Tutorial[EB/OL].http://users.rowan.edu/-polikar/WAVELETS/WTtutorial.html,2001-2-12
    [65]屈稳太,诸静.图像小波变换中的两个关键技术-滤波器的正则性与信号的边界处理.浙江大学学报工学版.2003,(3):185-189
    [66]杨福生.小波变换的工程分析与应用.北京:科学出版社,1999,201-208
    [67]Donoho D L.De-noising by Soft-Thresholding.IEEE Transactions on Information Theory,1995,41(3):613-627
    [67]Mallat S.Zero-Crossing of a Wavelet Transform.IEEE Transactions On Information Theory.1991.37(4):1019-1033
    [68]张爱华.自适应小波去噪算法研究:[硕士学位论文].西安:西安电子科技大学,2004
    [69]Wu Ming,Zhou Shidong,Zhang Yuguang.Adaptive Filtering for Leak Signal of Pipelining.Proceedings of the International Symposium on Test and Measurement,2003,4:3109-3111
    [70]欧阳春娟,杨群生,欧阳迎春.基于小波变换的自适应模糊阈值法去噪算法.计算机工程与应用,2006,(5):82-84
    [71]纪跃波,秦树人,柏林等.有限区间信号边界效应问题的研究.振动与冲击.2002.21(4):108-111
    [72]王振翼,谢孝宏,刘润华.小波分析在输油管道泄漏检测中的应用.计算技术与自动化,2006,25(4):95-100
    [73]Stephane Mallat,Wen Liang Hwang.Singularity Detection and Processing with Wavelets.IEEE Transactions on Information Theory,1992,38(2):617-643
    [74]张晓春,刘迈,尹向宝.基于小波变换的奇异信号检测研究.河北大学学报(自然科学版),2005,25(3):329-331
    [75]Mallat S,Zhong S F.Characterization of Signals from Multiscale Edges.IEEE Trans on Patterm Analysis and Machine Intelligence,1992,14(7):710-732
    [76]任伟建,康朝海,于镝.小波奇异性分析在输油管道泄漏检测中的应用.计算机测量与控制,2006,14(7):855-857
    [77]I.AI-Shidhani,S.B.M.Beck,W.J.Staszewski.Leak Monitoring in Pipeline Networks Using Wavelet Analysis.Key Engineering Materials,2003(245-246):51-58
    [78]Xiuhe Lu,Yingjun Sang,and Jinzhu Zhang,Yuanyuan Fan.A Pipeline Leakage Detection Technology based on Wavelet Transform Theory.Proceedings of the 2006 IEEE International Conference on Information Acquisition August 20-23,2006,Weihai,Shandong,China
    [79]欧阳鑫玉,唐跃鹏.基于小波变换的奇异性检测在信号分析中的应用.鞍山科技大学学报,2006,29(3):250-254
    [80]Cuiwei Li,Chongxun Zheng,Changfeng Tai.Detection of ECG characteristic points using wavelet transforms.IEEE Transactions on Biomedical Engineering.1995,42(1):21-28
    [81]秦树人,张明洪,熊诗波.机械工程测试原理与技术.重庆:重庆大学出版社,2002
    [82]刘君华,贾惠芹,丁晖.虚拟仪器图形化编程语言LabVIEW教程.西安:西安电子科技大学出版社,2001
    [83]张霞.基于LabVIEW的虚拟仪器的研究与设计:[硕士学位论文].武汉:武汉理工大学自动化学院,2005
    [84]杨乐平,李海涛,肖相生.LabVIEW程序设计与应用.北京:电子工业出版社,2001
    [85]黄燕梅,韩庆瑶,伊淑梅.Labview的虚拟仪器技术在自动化检测中的应用.中国测试技术,2005,31(1):37-38,51
    [86]金彦,储昭武.基于虚拟仪器平台的压力管道检测技术应用研究.化工设备与管道,2005,42(5):58-61
    [87]Nasser K,Namjin K.Digital Signal Processing System-Level Design Using LabVIEW.Oxford:Elsevier Inc.,2005
    [88]雷振山.LabVIEW 7 Express实用技术教程.北京:中国铁道出版社,2004
    [89]计算机虚拟仪器图形编程LabVIEW实验教材.北京:北京中科泛华测控技术有限公司
    [90]候国屏,王坤,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社,2005
    [91]Bitter R,Mohiuddin T,Nawrocki.LabVIEW Advanced Programming Techniques.Boca Raton:CRC Press,2001
    [92]Cory L.Clark.LabVIEW Digital Signal Processing and Digital Communications.USA:the McGraw-Hill Companies,INC,2005
    [93]National Instruments Corporation.LabVIEW for Measurement and Data Analysis[EB/OL].http://zone.ni.com/devzone/cda/tut/p/id/3566,2003
    [94]郑少华,姜奉华.试验设计与数据处理.北京:中国建材工业出版社,2004
    [95]吴翊,李永乐,胡庆军.应用数理统计.北京:国防科技大学出版社,2003
    [96]唐春勇.基于正交试验设计的浅埋偏压隧道有限元分析[硕士学位论文].西安:长安大学,2006
    [97]陈魁.试验设计与分析(第2版).北京:清华大学出版社,2005
    [98]中华人民共和国化学工业部.HG/T 20570-95管道压力降计算.北京:化工部工程建设标准编辑中心,1996
    [99]邹云屏.检测技术及电磁兼容性设计.武汉:华中理工大学出版社,2003
    [100]郏东耀,杨雷,丁天怀.数字滤波抗干扰技术在A/D转换中的应用.半导体技术,2003,28(8):52-54
    [101]王福桂.减振器试验台测试系统精度分析[硕士学位论文].辽宁:辽宁工学院车辆工程专业,2007
    [102]赵庆海.测试技术与工程应用.北京:化学工业出版社,2005
    [103]贾伯年,俞朴,宋爱国.传感器技术.南京:东南大学出版社,2007
    [104]宋文绪,杨帆.传感器与检测技术.北京:高等教育出版社,2004
    [105]金涛.虚拟仪器系统的误差分析方法的研究[博士学位论文].重庆:重庆大学机械工程学院,2005
    [106]孙慧卿,郭志友.压力传感器及误差补偿.传感器世界,2002,(3):14-16
    [107]W.Iain Madden,W.Craig Michie,Andrew Cruden,et al.Temperature compensation for optical current sensors.Optical Engineering,1999,38(10):1699-1707
    [108]郭志友,孙慧卿.磁传感器的非线性误差修正技术.传感器技术,2004,23(5):54-58
    [109]马建明.数据采集与处理技术.西安:西安交通大学出版社.2005
    [110]张爽,周显国,岳晓峰.基于虚拟仪器技术的信号处理.机械工程与自动,2006,(2):105-107,110
    [111]关贞珍,霍晓静,钱东平等.基于虚拟仪器的信号采集与分析系统.河北农业大学学报,2002,25(3):84-86,109
    [112]范啸涛,季光明,何永斌.计算机浮点数算术运算的舍入误差研究.成都理工大学学报(自然科学版),2005,32(2):213-216