应用于宽带数据通信的CMOS环振型频率综合器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几乎所有的现代通信系统都需要稳定的周期信号—时钟来提供基本的时序基础。周期时钟信号的产生由于受制造工艺的限制成为高速通信系统急需解决的问题,这些时钟信号一般由频率综合技术产生。本文系统研究了锁相型频率综合器的基本工作原理、线性建模、环路噪声性能,从片内集成易行性、小面积、多相位角度出发,选择环形振荡器作为电路核心,研究和实现了两个低成本高性能频率综合器的完整设计。
     首先,从锁相技术基本理论出发,详细推导了锁相环二阶线性模型的输入暂态响应,从理论上指导环路阻尼因数的选取,并对三阶开环(波特图)和三阶闭环(根轨迹)稳定性判定做了详细分析与验证,指出三阶开环模型中环路参数与直接闭环中参数的差异以及适用范围。同时又从环振适用性角度出发,有针对性地推导了几种振荡器噪声模型,选择经过Eken修正的DaiLiang模型作为环形振荡器行为级设计的噪声估计基础,并用电路级仿真结果进行验证。
     然后,系统总结了现有环振的典型结构,并针对高频应用下环振VCO的工艺和温度相关频偏与小增益的矛盾,提出并设计一种新型基于多通路交叉耦合结构的可选负载延迟单元,在避免太大VCO增益的前提下,有效解决了高频环振在极端工艺角下增益曲线无法覆盖中心频率问题,并将其成功应用于高频环振型频率综合器的设计中。
     接着,在实现以太网低抖动低功耗高性能的频率综合器设计中,为了有效解决超精细相位性能与成本的矛盾,提出一种新颖的动态电压模相位内插电路,与8级环振VCO相配合,为系统同时满足发送与接收需求起到至关重要的作用。芯片采用0.18um标准CMOS工艺,电源电压为1.8V。电路经流片验证,性能稳定优良(125MHz时钟rms jitter≈11ps@25MHz晶振输入rms jitter≈16ps),且有较小的功耗和面积。
     最后,针对高频环振型频率综合器设计这一挑战,我们从系统的行为级参数设定和模块噪声估算着手,同时考虑低噪声和低功耗的权衡,设计出一个综合指标优良的高频(~5GHz)环振型频率综合器。它采用了文中介绍的自动校准频偏的新型VCO,并配合差分电荷泵(及共模反馈)改善控制电压共模纹波。在实现差分控制电压转单端时,又设计一个新颖的DTOS(Differential-To-Single)模块,不仅提供几乎工艺无关的精准增益,调节控制电压的电平至VCO需要的电压范围,而且又产生一个额外的高阶环路极点,滤除环路中高频噪声。芯片采用0.18um标准CMOS工艺,核心模块电压为1.8V。在任意波形发生器作为参考时钟条件下,测试得到正确的锁相功能和较好的相位噪声(-100dBc/Hz@1MHZ,carrier=5.4GHZ)及积分相位误差(<2.3ps)。
Almost all modern communication systems need stable periodic signals, clocks, to provide basic timing for functions. The generation of stable periodic signal has been an urgent issue to be resolved due to the fabrication process limitation. This thesis has systematically researched the PLL based frequency synthesizer from the aspects of primary theory, linearly modeling and loop-filter performance. Also two low-cost high-performance frequency synthesizers have been designed where ring oscillator is chosen as the core circuit considering the factors like feasibility of integration, small area and multiple phases.
     First of all, detailed reasoning procedure of input transient response for PLL 2-order linear model has been obtained to guide the selecting of loop damping factor, as well as analyze and validate the stability of 3-order open-loop and close-loop, indicating the difference and application range between 3-order open-loop parameters and direct close-loop ones. Meanwhile, the thesis has summarized several noise models for oscillator from the side of applicability, choosing Eken-amended DaiLiang model as noise estimation basis for ring oscillator behavior-level design and verifying by transistor-level simulation.
     Secondly, systematic summarization has been given on the available typical ring oscillator structure. The conflict between a small gain of Voltage Controlled Oscillator (VCO) and large frequency variation due to process and temperature fluctuation in high frequency application leads to the design of a new multi-pass cross-coupled delay cell with selectable loading controlled by automatic switches. This design has effectively resolved the issue that the gain curve of high frequency ring oscillator can not cover the centre frequency under extreme process corners.
     Then, in order to trade off between the cost and performance of super-fine phase when realizing the low-jitter low-power high-performance frequency synthesizer for Ethernet application, a novel dynamic voltage-mode phase interpolator with 8-stage differential ring VCO has been provided satisfying the requirement of transmitter and receiver simultaneously. The chip has been implemented in SMIC 0.18-um standard CMOS process and achieved an RMS jitter of 11ps with the crystal oscillator reference RMS jitter of 16ps. The power dissipation is smaller than 4mW from a 1.8V supply voltage.
     Finally, a high-frequency frequency synthesizer which adopts the new multiple-pass ring VCO with frequency calibration in different process corners has been desinged. The whole design flow includs behavior-level, circuit-level, layout, PCB and measurement. Besides the ring VCO, the loop uses differential Charge Pump (CP) and a novel Differential-To-Single (DTOS) module to convert differential output of CP to single one. The DTOS has a precise gain which adjusts equivalent VCO gain in loop. Meanwhile it can change the control voltage level to cater for VCO and produces an additional high-frequency pole for noise filtering. The chip was implemented in SMIC 0.18-um standard CMOS technology and core power supply is 1.8V. It achieves good phase noise and jitter performance (-100dBc/Hz@1MHz, carrier=5.4GHz) by using waveform generator as the reference clock.
引文
[1] Behzad Razavi,"Design of Monolithic Phase-Locked Loops and Clock Recovery Circuits", IEEE Press, Piscataway, NJ. 1996
    [2] Ramon S.Co, J.H.Mulligan, "Optimization of Phase-Locked Loop Performance in Data Recovery Systems", IEEE Journal of Solid-State-Circuits, vol.29, pp.1022-1034, Sep. 1994
    [3] Mark G. Johnson, Edwin L. Hudson, "A Variable Delay Line PLL for CPU-Coprocessor Synchronization", IEEE Journal of Solid-State-Circuits, vol.23, pp.1218-1223, Oct, 1988
    [4] R. F.Bitting and W.P.Repasky, "A 30-128MHz Frequency Synthesizer Standard Cell", in Proceedings of IEEE Custom Integrated Circuits Conference, May, 1992, pp. 24.1.1-24.1.6
    [5] Seema Butala Anand, Behzad Razavi," A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZ Data", IEEE Journal of Solid-State-Circuits, vol.36, pp. 432-439, Mar, 2001
    [6] Dao-Long Chen, "A Power and Area Efficient CMOS Clock/Data Recovery Circuit for High-Speed Serial Interfaces", IEEE Journal of Solid-State-Circuits, vol.31, pp.1170-1176, Aug, 1996.
    [7] P. Gray and R. Meyer, "Future directions in silicon ICs for RF personal communications," in Proceedings of IEEE Custom Integrated Circuits Conference, May, 1995, pp. 83-90
    [8] I. A. Koullias, J. H. Havens, I. G. Post, and P. E. Bronner, "A 900MHz transceiver chip set for dualmode cellular radio mobile terminals," in Proceedings of IEEE International Solid-State Circuits Conference, Feb, 1993, pp. 140-141
    [9] J. Sevenhans, D. Haspeslagh, A. Delarbre, L. Kiss, Z. Chang, and J. Kukielka, "An analog radio front-end chip set for a 1.9GHz mobile radio telephone application," in proceedings of IEEE International Solid-State Circuits Conference, Feb. 1994, pp. 44-45
    [10] Calbaza D E, SavariaY, "Direct digital frequency synthesis of low-jitter clocks", IEEE Journal of Solid-State-Circuits, vol.36, pp.570-572, Mar.2001
    [11] YamagishiA, I shikawaM, T sukaharaT, "A 2-V, 2-GHz low-power direct digital frequency synthesizer chip-set for wireless communication", IEEE Journal of Solid-State-Circuits, vol.33, pp.210-217, Feb. 1998
    [12] Behazd Razavi, "Design of Analog CMOS Integrated Circuits", The McGraw-Hill Companies, Inc, 2001
    [13] P.Vancorenland and M.Steyaert, "A 1.57-GHz fully integrated very low-phase-noise quadrature VCO", IEEE Journal of Solid-State-Circuits, vol.37, pp.653-656, May 2002
    [14] M.Tiebout, H.D. Wohlmuch and W.simburger, "A 1V 51GHz fully-integrated VCO in 0.12um CMOS", ISSCC Digest Technical Papers, vol.2, 2002, pp.238-239
    [15] K.V. Schuylenbergh, C. Chua, D. Fork, J.P.Lu, etc, "On chip out-of-plane high-Q inductors", in Proceedings of IEEE Lester Eastman conference, Aug. 2002, pp.364-373
    [16] L. Sun and T. Kwasniewski, "A 1.25-GHz 0.35-um monolithic CMOS PLL based on a multiphase ring oscillator," IEEE Journal of Solid-State-Circuits, vol.36, pp.910-916, Jun. 2001
    [17] D.Y. Jeong, S.H. Chai, W.C. song, et al, "CMOS current-controlled oscillators using multiple-feedback loop architectures", ISSCC Digest Technical Papers, 1997, pp.386-387
    [18] S.J.Lee, B.Kim, and K.Lee, "A novel high-speed ring oscillator for multiphase clock generation using negative skewed-delay scheme", IEEE Journal of Solid-State-Circuits, vol.32, pp.289-291, Feb. 1997.
    [19] Lu Ping, Wang Yan, Li Lian, Ren Junyan, "A 3.3v low-jitter frequency Synthesizer applied to fast Ethernet transceiver", Chinese Semiconductor, vol.26, Aug, 2005(in Chinese)
    [20] Lu Ping, Wang Yan, Zheng Zengyu, Ren Junyan, "A Low-Jitter and Low-Power Frequency Synthesizer Applied to 1000 Base-T Ethernet", Chinese Semiconductor, vol.27, pp.137-142, Jan. 2006(in Chinese)
    [1] Thomas H.Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Publishing House of Electronics Industry, June, 2002
    [2] 张阙盛,郑继禹,万心平,“锁相技术”,西安电子科技大学出版社,2003
    [3] F. M. Gardner, "Charge-pump phase-locked loops," IEEE Transaction on Communication, vol.28, pp.1849-1858, Nov. 1980
    [4] J. Hein and J. Scott, "Z-domain model for discrete-time PLLs," IEEE Transaction on Circuits Systems, vol.35, pp. 1393-1400, Nov. 1988
    [5] M. van Paemel, "Analysis of a charge-pump PLL: a new model," IEEE Transaction on Communication, vol. 42, pp. 2490-2498, Jul. 1994.
    [6] P. K. Hanumola, "Analysis of charge-pump phase-locked loops," IEEE Transaction on Circuits Systems, vol. 51, pp.1665-1674, Sep. 2004.
    [7] Michael H. Perrott, Mitchell D. Trott, Charles G. Sodini, "A Modeling Approach for △-∑ Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis", IEEE Journal of Solid-State Circuits, vol.37, pp.1028~1038, Aug. 2002
    [8] William B. Wilson, Un-Ku Moon, Kadaba R. Lakshmikumar, et al. "A CMOS Self-Calibrating Frequency Synthesizer", IEEE Journal of Solid-State Circuits, vol.35, pp. 1437~1444, Oct. 2000
    [9] Joonsuk Lee, Beomsup Kim, "A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive Bandwidth Control", IEEE Journal of Solid-State Circuits, vol.35, pp.1137~1145, Aug. 2000
    [10] Michael H. Perrott, "PLL Design Using the PLL Design Assistant Program", July, 2004
    [11] 王正林,王胜开,陈国顺,“MATLAB/Simulink与控制系统仿真”,电子工 业出版社,2006
    [12] 包闻亮,鲍风,“信号和通信系统”,复旦大学出版社,1991
    [13] Behazd Razavi, "Design of Analog CMOS Integurated Circuits", McGraw-Hill Companies, Inc. 2001
    [14] Alan V. Oppenheim, Alan S. Willsky with S. Hamid Nawab, "Signal and System", Prentice-Hall, 1997
    [15] 何捷,“DVB-T接收机中频率综合器的研究”,复旦大学博士论文,2005
    [16] John G. Proakis, "Digital Communication", 4th Edition, McGraw-Hill, 2001
    [17] Dean Banerjee, "PLL Performance, Simulation, and Design", 3rd Edition (electronic version), 2003
    [18] Woogeun Rhee, "Design of Hign-Performance CMOS Charge Pumps In Phase-Locked Loops", IEEE International Symposium on Circuit and System, May. 1999, pp.Ⅱ545-548
    [19] M. Johnson and E. Hudson, "A variable delay line PLL for CPU coprocessor synchronization," IEEE Journal of Solid-State Circuits, vol. 23, pp. 1218-1223, Oct. 1988
    [20] I. A. Young, J. K. Greason, and K. L. Wong, "A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors," IEEE Journal of Solid-State Circuirs, vol. 27, pp.1599-1607, Nov. 1992.
    [21] Jae-Shin Lee, Min-Sun Keel, Shin-I1 Lim and Suki Kim, "Charge pump with perfect current matchingcharacteristics in phase-locked loops", Electronics letters, vol.36, pp.1907-1908, Nov. 2000
    [22] Geum-Young Tak, Seok-Bong Hyun, Yae Young Kang, et. al, "A 6.3-9-GHz CMOS Fast Settling PLL for MB-OFDM UWB Applications", IEEE Journal of Solid-state Circuits, vol.40, pp. 1671-1679, Aug. 2005
    [1] Manop Thamsirianunt and Tadeusz A. Kwasniewski, "CMOS VCO's for PLL Frequency Synthesis inGHz Digital Mobile Radio Communications", IEEE Journal of Solid-State Circuits, vol. 32, No. 10, pp.1551-1524, Oct. 1997
    [2] A. Hajimiri, S. Limotyrakis, T.H. Lee, "Phase noise in multi-gigahertz CMOS ring oscillators", in Proceedings of IEEE Custom Integrated Circuit Conference, May 1998, pp.49-52
    [3] Dean Adam Badillo, "Low Power, Low Phase Nosie CMOS ring Ocsilltors", Ph.D dissertation of Arizona State University, 2003
    [4] Behazd Razavi, "Design of Analog CMOS Integurated Circuits", McGraw-Hill Companies, Inc. 2001
    [5] John G. Maneatis, "Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques", IEEE Journal of Solid-State Circuits, vol. 31, pp.1723-1732, Nov. 1996
    [6] Chan-Hong Park, Beomsup Kim, "A Low-Noise, 900-MHz VCO in 0.6-m CMOS", IEEE Journal of Solid-State Circuits, vol. 34, pp.586-591, May 1999
    [7] Joonsuk Lee, Beomsup Kim, "A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive Bandwidth Control", IEEE Journal of Solid-State Circuits, vol. 35, pp.1137-1144, Aug. 2000
    [8] Yalcin Alper Eken, John P. Uyemura, "A 5.9-GHz Voltage-Controlled Ring Oscillator in 0.18-_m CMOS", IEEE Journal of Solid-State Circuits, vol.39, pp.230-233, Jan. 2004
    [9] L. Sun and Y. Kwasniewski, "A 1.25-GHz 0.35-um monolithic CMOS PLL based on a multiphase ring oscillator," IEEE Journal of Solid-State Circuits, vol.36, pp.910-916, Jun. 2001
    [10] D.Y. Jeong, S.H. Chai, W.C. song, etc, "CMOS current-controlled oscillators using multiple-feedback loop architectures", ISSCC, Digest of Technical Papers, Feb.1997, pp.386-387
    [11] S.J.Lee, B.Kim, and K.Lee, "A novel high-speed ring oscillator for multiphase clock generation using negative skewed-delay scheme", IEEE Journal of Solid-State Circuit, vol.32, pp289-291, Feb. 1997.
    [12] Yalcin Alper Eken, "High frequency voltage controlled ring oscillators in standard CMOS", Ph.D thesis of Georgia Institute Technology, 2003
    [13] A. Kral, F. Behbahani, A.A.Abidi, "RF-CMOS Oscillators with Switched Tuning" , in proceedings of IEEE Custom Integrated Circuits Conference, pp.555-558, May. 1998
    [14] Chi-Wa Lo and Howard Cam Luong, "A 1.5-V 900-MHz Monolithic CMOS Fast-Switching Frequency Synthesizer for Wireless Applications", IEEE Journal of Solid-State Circuirs, vol. 37, pp..459-471, Apr. 2002.
    [15] Chun-Yi Kuo, Jung-Yu Chang, Shen-Iuan Liu, "A Spur-Reduction Technique for a 5-GHz Frequency Synthesizer", IEEE Journal of Solid-State Circuirs, vol.53, pp. 526-533, Mar. 2006.
    [16] Yongsam Moon, Young-Soo Park, Namhoon Kim, et al, "A Quad 0.6-3.2 Gb/s/Channel Interference-Free CMOS Transceiver for Backplane Serial Link", IEEE Journal of Solid-State Circuirs, vol. 39, No.5, pp. 795-803, May. 2004.
    [17] Roberto Nonis, Nicola Da Dalt, Pierpaolo Palestri,et al, "Modeling, Design and Characterization of a New Low-Jitter Analog Dual Tuning LC-VCO PLL Architecture", IEEE Journal of Solid-State Circuirs, vol. 40, pp. 1303-1309, Jun. 2005
    [18] Stephen Williams, Hugh Thompson, Michael Hufford, et al. "An Improved CMOS Ring Oscillator PLL with Less than 4ps RMS Accumulated Jitter", in proceedings of IEEE Custom Integrated Circuits Conference, pp. 151-154, Oct. 2004
    [19] William B. Wilson, Un-Ku Moon, Kadaba R. Lakshmikumar,et al, "A CMOS Self-Calibrating Frequency Synthesizer", vol. 35, No.10, pp. 1437-1444, Oct. 2000.
    [20] D.B. Lesson, "A Simple of Feedback Oscillator Noise Spectrum", in Proceedings of IEEE, vol.54, Feb.1966, pp.329-330
    [21] B. Razavi, "A Study of Phase Noise in CMOS Oscillator", IEEE Journal of Solid-State Circuits, vol. 31, pp.331-343, Mar. 1996
    [22] A. Hajimiri, T. H. Lee, "A General Theory of Phase Noise in Electrical scillators", IEEE Journal of Solid-State Circuits, vol. 33, pp.179-194, Feb. 1998
    [23] A. Hajimiri, S. Limotyrakis, T. H. Lee, "Jitter and Phase Noise in Ring Oscillators", IEEE Journal of Solid-State Circuits, vol. 34, pp.790-804, Jun. 1999
    [24] Liang Dai, Ramesh Harjani, "Design of Low-Phase-Noise CMOS Ring scillators", IEEE Transaction on Circuits and Systems, vol. 45, pp.328-338, May. 2002
    [25] Marc Yiebou, "Low-Power Low-Phase-Noise Differentially Tuned Quadrature VCO Design in Standard CMOS", IEEE Journal of Solid-State Circuirs, vol. 36, pp. 1018-1024, Jul. 2001.
    [26] A.Rezayee, K.Martin, "A coupled two-stage ring oscillator", IEEE Midwest Symposium on Circuits and System, vol.2, Aug. 2001, pp.878-881
    [27] Rui Tao, Manfred Berroth, "The Design of 5GHz Voltage Controlled Ring Oscillator using Source Capacitively Coupled Current Applifier", IEEE Ratio Frequency Integrated Circuits Symposium, Jun.2003, pp.623-626
    [1] 李曙光,“高速锁相环电路的设计及其在1.25/2.5Gbps高速以太网串并转换电路中的应用”,复旦大学硕士论文,2001
    [2] 王彦,“高速以太网时钟电路的研究”,复旦大学硕士论文,2003
    [3] Iravani K, Saleh F, Lee D, et al. "Clock and data recovery for 1.25 Gb/s Ethemet transceiver in 0.35μm CMOS", in Proceedings of IEEE Custom Integrated Circuits, vol. 19, May. 1999
    [4] Shuguang Li, Junyan Ren, Lianxing Yang, et al, "Clock and data recovery circuit for 2.5Gbps Gigabit Ethernet transceiver", in proceedings of IEEE 4th International Conference on ASIC. Oct. 2001, pp.330-332
    [5] HanYifeng, LiQiang, GuCanghai, et al, "A Novel Transmitter for 10/100MHz Base TX Ethernet", Chinese Journal of Semiconductors, vol.26, pp.385, Apr.2005 (in Chinese)
    [6] Lu Ping, Wang Yan, Li Lian, Ren Junyan, "A 3.3v low-jitter frequency Synthesizer applied to fast Ethernet transceiver", Chinese Semiconductor, vol.26, Aug.2005(in Chinese)
    [7] H. Q. Liu, L. Goh, L. Sick, "Design and frequency/phase-noise analysis of a 10-GHz CMOS ring oscillator with coarse and fine frequency tuning", Analog Integrated Circuits and Signal Processing, vol.48, pp.85-94, Aug. 2006
    [8] Chan-Hong Park, Beomsup Kim, "A Low-Noise, 900-MHz VCO in 0.6-m CMOS", IEEE Journal of Solid-State Circuits, vol. 34, pp.586-591, May 1999
    [9] Hsiang-Hui Chang, Jyh-Woei Lin, Ching-Yuan Yang, et al. "Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock Cycle", IEEE Journal of Solid-State Circuits, vol.37, pp. 1021~1027, Aug. 2002
    [10] Chulwoo Kim, In-Chul Hwang, and Sung-Mo (Steve) Kang, "A Low-Power Small-Area 7.28-ps-Jitter 1-GHz DLL-Based Clock Generator", IEEE Journal of Solid-State Circuits, vol.37, pp. 1414~1420, Nov.2002
    [11] Yongsam Moon, Jongsang Choi, Kyeongho Lee, et al "An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance ", IEEE Journal of Solid-State Circuits, vol.35, pp.377~384, Mar.2000
    [12] Lu Ping, Zheng Zengyu, Ren Junyan, "Delay-Locked Loop and Its Application", Research and Development of Solid Electronics, vol.25, pp. 81~88, Apr. 2005
    [13] S. Sidiropoulos, Mark A. Horowitz, "A Semidigital Dual Delay-Locked Loop", IEEE Journal of Solid-State Circuits, vol.32, pp. 1683~1692, Nov. 1997
    [14] Adrian Maxim, "A 0.16-2.55-GHz CMOS Active Clock Deskewing PLL Using Analog Phase Interpolation", IEEE Journal of Solid-State Circuits, vol.40, pp.1437~1444, Jan. 2005
    [15] Lixin Yang, and Jiren Yuan, "An Arbitrarily Skewable Multiphase Clock Generator Combining Direct Interpolation with Phase Error Average" in Proceedings of IEEE International Symposium on Circuits and Systems, May. 2003, pp.Ⅰ-645-648
    [16] Lee J, Kim B. "A low-noise fast lock phase-locked loop with adaptive bandwidth control", IEEE Journal of Solid-State Circuits, vol.35, pp. 1137-1145, Aug. 2000
    [17] Jan M. Rabaey, "Digital Integrated Circuits—A Design Perspective", Prentice-Hall International, Inc. 1998
    [18] Howard Johnson, Martin Graham(沈立、朱来文、陈宏伟 等译), "High-Speed Digital Design—A handbook of Black Magic", 电子工业出版社, 2005
    [19] D. W. Boerstler, "A low-jitter clock generator for microprocessors with lock range of 340-612 MHz," IEEE Journal of Solid-State Circuits, vol.34, pp.513-519, Apr. 1999
    [20] K. Lim, C. Park, D. Kim and B. Kim, "A low noise phase-locked loop design by loop bandwidth optimization," IEEE Journal of Solid-State Circuits, vol.35, pp. 807-815, Jun. 2000
    [21] S. Williams, H. Thompson, M. Hufford and E. Naviasky, "An improved CMOS ring oscillator PLL with less than 4ps accumulated jitter," in Proceeedings of IEEE Custom Integrated Circuits Conference, Oct. 2004, pp. 151-154
    [22] Xintian Shi, Kilian Imfeld, Steve Tanner, "A Low-Jitter and Low-Power CMOS PLL for Clock Multiplication", in Proceedings of IEEE European Solid-State Circuit Conference, Sep. 2006, pp. 174-177
    [1] Behzad Razavi, Turgut Aytur, Christopher Lam, et al. "A UWB CMOS Transceiver", IEEE Journal of Solid-State Circuits, vol. 40, pp. 2555-2562, Dec. 2005
    [2] A. Maxim, R. Poorfard, J. Kao, "A sub-l.5°rms Phase-Noise Ring-Oscillator-Based Frequency Synthesizer for Low-IF Single-Chip DBS Satellite Tuner-Demodulator SoC", IEEE International Solid-Stated Circuits Conference, Feb. 2006, pp.2552-2561
    [3] William B. Wilson, Un-Ku Moon, Kadaba R. Lakshmikumar, "A CMOS Self-Calibrating Frequency Synthesizer", IEEE Journal of Solid-State Circuits, vol. 35, pp. 1437-1444, Oct.2000
    [4] 何捷,“DVB-T接收机中频率综合器的研究”,复旦大学博士论文,2005
    [5] 衣晓峰,“全单片集成的多模CMOS正交频率综合器的研究”,复旦大学博士论文,2006
    [6] A.D. Berny, A.M. Niknejad and R.G. Meyer, "A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration", IEEE Journal of Solid-State Circuits, vol. 40, pp.909-917, Apr. 2005
    [7] S. Li, S. Kipnis and M. Ismail, "A 10-GHz CMOS quadrature LC-VCO for multirat optical applications." IEEE Journal of Solid-State Circuits, vol. 38, pp. 1626-1634, Oct. 2003
    [8] S.P.Woyciehowsky and R.N. Nottenburg, "10GHz LC-tuned VCO with coarse and fine frequency control." Electronics Letters, vol. 33, pp.917-918, May. 1997
    [9] Roberto Nonis, Nicola Da Dalt, Pierpaolo Palestri, "Modeling, Design and Characterization of a New Low-Jitter Analog Dual Tuning LC-VCO PLL Architecture", IEEE Journal of Solid-State Circuits, vol. 40, pp. 1303-1309, Jun. 2005
    [10] 包闻亮,鲍风,“信号与通信系统”,复旦大学出版社,1991
    [11] D. Boerstler, "Alow-jitter PLL clock generator for microprocessors with lock range of 340-612 MHz," IEEE Journal of Solid-State Circuits, vol. 34, pp. 513-519, Apr. 1999.
    [12] J. Maneatis et al., "Self-biased, high bandwidth, low jitter 1 to 4096 multiplier clock generation PLL," IEEE Journal of Solid-State Circuits, vol. 38, pp. 1795-1803, Nov. 2003.
    [13] D. Mijuskovic et al., "Cell based fully integrated CMOS frequency synthesizer," IEEE Journal of Solid-State Circuits, vol. 29, pp. 271-279, Mar. 1994.
    [14] Adrian Maxim, Baker Scott, Edmund M. Schneider, et al, "A Low-Jitter 125-1250-MHz Process-Independent and Ripple-Poleless 0.18-_m CMOS PLL Based on a Sample-Reset Loop Filter", IEEE Journal of Solid-State Circuits, vol. 35, pp. 1673-1683, Nov. 2001
    [15] L. Lin, "A 1.4GHz differential low-noise CMOS frequency synthesizer using wideband PLL architecture," IEEE International Solid-Stated Circuits Conference, Feb.2000, pp204-205
    [16] Pedro M. Alicea-Moralesl, Carlos J. Ortiz-Villanueval, Raul Perez2,R et al, "Design of an Adjustable, Low Voltage, Low Dropout Regulator ", in Proceedings of the 5th IEEE International Caracas Conference on Devices, Circuits and Systems, vol. 1, Nov. 2004, pp.289-292
    [17] Rainy Tantawy and Elizabeth J. Brauer, "Performance Evaluation of CMOS Low Drop-Out Voltage Regulators", The 47th IEEE International Midwest Symposium on Circuits and Systems, vol. 1, Jul.2004, pp.Ⅰ-141-144
    [18] Ka Nang Leung, Philip K. Y. Mok, Wing-Hung Ki, et al, "Three-Stage Large Capacitive Load Amplifier with Damping-Factor-Control Frequency Compensation", IEEE Transaction on Solid-State Circuits, vol. 35, pp. 221-230, Feb. 2000
    [19] Xiaohua Fan, Chinmaya Mishra, Edgar Sanchez-Sinencio, "Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers", IEEE Journal of Solid-State Circuits, vol. 40, pp. 584-592, Mar. 2005
    [20] Gabriel A. Rincon-Mora, Phillip E. Allen, "A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator", IEEE Journal of Solid-State Circuits, vol. 33, pp. 36-44, Jan. 1998
    [21] Chaitanya K. Chava, Jose Silva-Martinez, "A Frequency Compensation Scheme for LDO Voltage Regulators", IEEE Transaction on Solid-State Circuits, vol. 51, No. 6, pp. 1041-1050, Jun. 2004
    [22] Behazd Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill Companies, Inc. 2001
    [23] H-T. Ahn, "A low-jitter 1.9-V CMOS PLL for UltraSPARC microprocessor applications," IEEE Journal of Solid-State Circuits, vol.35, pp. 450-454, Mar, 2000
    [24] Phillip E. Allen, Douglas R. Holberg (冯军、李智群 译), "CMOS Analog Integrated Circuit Design", 电子工业出版社, 2005
    [25] 李骅,“应用于无线通讯系统的高频分频器的研究”,复旦大学硕士论文,2005
    [26] Christopher Saint, Judy Saint, "IC Mask Design—Essential Layout Techniques"(影印版),清华大学出版社,2003
    [27] 陈诚,“千兆以太网中低电压模数转换器设计研究”,复旦大学博士论文,2005
    [28] "Power Supply and Ground Design for a WiFi Transceiver", Application Note 3630 of Maxim, Sep. 2005 (http://www.maxim-ic.com.cn/appnotes.cfm/appnote_number/3630/)
    [29] Howard Johnson, Martin Graham(沈立、朱来文、陈宏伟 等译), "High-Speed Digital Design—A handbook of Black Magic",电子工业出版社, 2005
    [30] A. Maxim, "A 0.16-2.55-GHz CMOS Active Clock Deskewing PLL Using Analog Phase Interpolation", IEEE Journal of Solid-State Circuits, vol.40, pp. 110-131, Jan. 2005
    [31] Eva Tatschl-Unterbergerl, Sasan Cyrusian2, Michael Ruegg3, "A 2.5GHz phase-switching PLL using a supply controlled 2-delay-stage 10GHz ring oscillator for improved jitter/mismatch", IEEE International Symposium on Circuits and System, pp.23-26, May, 2005
    [32] Lizhong Sun and Tadeusz A. Kwasniewski, "A 1.25-GHz 0.35-um Monolithic CMOS PLL Based on a Multiphase Ring Oscillator", IEEE Journal of Solid-State Circuits, vol. 36, pp.910-916, Jun. 2001
    [1] J. Maneatis, "Low jitter process-independent DLL and PLL based on self-biased techniques," IEEE Journal of Solid-State Circuits, vol.31, pp. 1723-1732, Nov. 1996
    [2] J. Kim, "Design of CMOS adaptive-bandwidth PLL/DLLs: a general approach," IEEE. Transaction on circuits and systems-Ⅱ: Analog and digital signal processing, vol.50, pp860-869, Nov. 2003
    [3] A. Maxim et al, "A low voltage,10-2550, 0.15μm CMOS, process and divider modulus independent PLL using zero-VY MOSFETs," in Proceedings of IEEE European Solid-State Circuit Conference, Sep.2003, pp. 105-108.
    [4] Roberto Nonis, Nicola Da Dalt, Pierpaolo Palestri,et al, "Modeling, Design and Characterization of a New Low-Jitter Analog Dual Tuning LC-VCO PLL Architecture", IEEE Journal of Solid-State Circuirs, vol. 40, pp. 1303-1309, Jun. 2005.
    [5] Yongsam Moon, Young-Soo Park, Namhoon Kim, et al, "A Quad 0.6-3.2 Gb/s/Channel Interference-Free CMOS Transceiver for Backplane Serial Link", IEEE Journal of Solid-State Circuirs, vol. 39, pp. 795-803, May. 2004.
    [6] Zhinian Shu, Ka Lok Lee, and Bosco H. Leung, "A 2.4-GHz Ring-Oscillator-Based CMOS Frequency Synthesizer with a Fractional Divider Dual-PLL Architecture", IEEE Journal of Solid-State Circuits, vol. 39, pp. 452-462, Mar. 2004