林—菜复合生态系统微生境变化及植物生产特点研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林复合生态系统是一种经济、高效、可持续的土地利用方式。发展农林复合生态系统具有重要的经济、社会、生态效益。在本研究中,首先采用生物检测的方法,测定了香樟叶片、根和根际土壤的化感作用,然后选取不同林分郁闭度的香樟林地,分别配植紫背天葵、芝麻菜、辣菜三种蔬菜,以无林地和纯林地为对照,研究林-菜系统生态耦合后土壤理化性质的变化规律,林下小气候的变化规律以及林-菜复合生态系统的植物生产特点,探讨发展林-菜复合生态系统的可行性,通过研究得到结论如下:
     ①香樟叶、根、根际土壤的水浸提液对蔬菜种子萌发、幼苗生长均有化感作用,化感作用随着浸提液浓度的增大而增加,受试蔬菜种类不同,其化感作用也不相同,化感能力以叶水浸提液最大,根水浸提液次之,土壤水浸提液的抑制作用最小。高浓度的根水浸提液处理下,红苋菜和荠菜种子均不能萌发,发芽速度指数I为0。低浓度的土壤水浸提液出现对受试植物生长的作用,如对萝卜根长的化感作用效应指数为49.69,对根长生长有明显的促进作用。这和其他一些研究结果相同,即该化感物质对植物生长出现低促高抑的作用。
     ②林-菜系统耦合后土壤的理化性质有比较明显的变化。结果表明,低林分郁闭度与蔬菜构建的林菜复合系统能够降低土壤容重,改善土壤物理性状。林菜复合生态系统土壤有机质含量明显高于对照,有利于维持土壤有机质的稳定。
     ③林-菜复合系统中,由于蔬菜生长吸收较多养分,土壤速效养分逐渐减少,但与无林对照地K相比,养分损失较少,在蔬菜采收期林-菜复合系统土壤养分含量与纯林地相比差异不显著,说明林-菜系统耦合能够有效利用土壤中的有效养分,减少养分淋溶带来的损失。
     ④林-菜系统耦合后土壤pH值有所下降,接近中性,说明林-菜系统复合经营能够降低土壤pH值,使之趋于有利于作物生长的pH区间;且合理的复合模式能够有效调控土壤TDS含量达到动态平衡。
     ⑤林-菜复合生态系统中,由于林木的存在,外界气温较高时,能够显著降低林下的大气温度,与无林对照地气温相比,最多能降低10.92℃,外界气温较低时,能够延缓林下温度的下降,林-菜系统耦合以后,能够显著减小温度的日较差,维持气温稳定。系统内部的大气相对湿度也有较为明显的升高,土壤蒸发减少,系统保水性增加。
     ⑥林-菜系统耦合构建的农林复合生态系统形成了独特的林下小气候,能够提高蔬菜光合效率,其生物量较高,固定和转化CO2的效率得到提高。林木、蔬菜的存在,减少了裸露土壤受光照、气候条件的影响,因而其各层土壤温度的变化幅度均有减小。尤其是在蔬菜生长初期,处理H的表层土壤温度比对照CK下降了5.65℃。
     ⑦林-菜系统耦合对蔬菜的一些生化指标影响显著,不同处理的蔬菜叶绿体色素含量、可溶性糖和可溶性蛋白质的含量差异显著,通过分析数据可将三种蔬菜分为两类,芝麻菜、辣菜的含量随着郁闭度的下降基本呈上升趋势,紫背天葵恰恰相反,更适合在有一定郁闭度的林下栽培。
     ⑧林分郁闭度对林-菜系统内蔬菜的株高、叶面积影响显著,在蔬菜生长初期,高郁闭度降低了大气温度,减少了水分蒸发,H内蔬菜生长较好;随着时间进行,温度下降,环境越来越适宜蔬菜生长,低郁闭度和无林对照地的蔬菜迅速生长,株高,叶面积迅速增加。蔬菜的根冠比与林分郁闭度成负相关关系,随着郁闭度的降低根冠比逐渐增大。不同林分郁闭度下蔬菜的鲜重和产量差异显著,其鲜重变化规律同株高、叶面积基本相同;低郁闭度林地与三种蔬菜耦合后,紫背天葵和辣菜产量均高于无林对照地,说明合理模式的林-菜复合生态系统具有更大的经济、生态效益。
In the paper, the allelopathy of leaves, roots and the rhizosphere soil of Cinnamomum camphora L. on three vegetables (Raphanus sativus L., Amaranthus mangosfanus L. and Capsella bursa-pastoris (L.) Medic.) were studied by using the biological examination, and then the change of soil physicochemical properties, microclimate and the plant growth in compound ecosystem of Cinnamomum camphora L. and three vegetables Gynura bicolor D.C, Eruca sativa L., Brassica juncea (L.) var. foliosa Bailey were investigated to research the feasibility of developing forest-vegetable compound ecosystem. Results showed as follows:
     ①The water extracts of leaves, roots and rhizosphere soil of Cinnamomum camphora L. have allelopathy effects on the seed germination and seedling growth of radish, amaranth and capsella and different vegetables have different responses on the allelopathy of Cinnamomum camphora L.. Meanwhile, allelopathy effect increased with increasing the concentration of each extract, which order is: leaves>root>rhizosphere soil. However, low concentration of rhizosphere soil extract can improve plant growth, but high restrict. Therefore, developing forest-vegetable compound system is feasibility through reasonable agricultural measurement and scientific management.
     ②The change of soil physicochemical properties in the forest-vegetable system coupling process is very obvious. The result indicated that the reasonable canopy density forest compounded appropriate vegetables can reduce the soil bulk specific gravity and leaching loss, and maintain and increase the content of organic matter and availability of nutrient in the soil. Moreover, the reasonable management of forest-vegetable compound system can reduce the soil pH value to advantageous range for growth and development of crops, and effectively regulate the soil TDS content to achieve the dynamical equilibrium.
     ③The forest-vegetable coupling ecological system can reduce the difference of day-night temperature and the soil moisture evaporation and the vegetable transpiration, and increase the atmospheric humidity and the CO2 efficiency of fixation and transformation. The biomasses of vegetables in the forest-vegetable system have a high affinity with the canopy density of forest. The low canopy density can significantly increase vegetables photosynthesis compared to the control. Meanwhile, the total efficiency of photosynthesis in the reasonable disposed compound ecosystem is higher than the control (non-forest) and the economic outputs are also significantly high. The change of soil temperature is small and there is a quite stable microclimate under the forest because the influence of the light and other climatic conditions on soil reduced.
     ④The forest-vegetable coupling system had a significantly effect on some physicochemical characteristic of vegetables. The contents of the chloroplast pigment, soluble sugar and soluble protein in the vegetables present the regular changes, but the relative of Gynura bicolor D.C is different with other two kinds of vegetables. Gynura bicolor D.C displayed shade-resistant, possibly due to its specifically physiological structures, which should be deeply studied for us.
     ⑤Vegetables' height, leaf area, fresh weight and outputs have remarkable difference compared to the control. In the initial period of vegetables growth, the high canopy density reduced the air temperature and moisture evaporation, and makes the vegetable growing well. The temperature drops with the time in high canopy density and this environment is suitable for the growth of vegetables. The high of vegetable and leaf area in the low canopy density rapidly grow compared to the control (non-forest). Moreover, outputs of vegetables are highest among the treatments and the control.
     Therefore, it is very important to select reasonable canopy density forest land and the kinds of compounded vegetables and introduce appropriate agronomy method and pattern of scientific management for optimizing forest-vegetable compound system to achieve the maximization of economic, ecological and social benefits.
引文
[1] King K. F. S. Agri-silvicuture. Bulletin (1), Department of Forestry, University of Ibadan Nigeria, l968. [17]
    [2] 黄金东, 赵冰, 赵刚等. 农林复合生态系统对世界林业发展的影响[J]. 世界林业研究,1999,12(1): 38~41.
    [3] Leakey, R. 1997,Redefining agroforestry and opening Panora’sbox[J]. Agroforestry today,1991, 9(1):5
    [4] 蒋建平. 农林业系统工程与农桐间作的结构模式[J]. 世界林业研究,1990,3(1):32~38
    [5] 李肇齐. 农林系统经济评价方法的探讨[J]. 世界林业研究, 1991, 4(2):75~80
    [6] 熊文俞. 生态系统工程与农林业生产体系[J]. 生态学杂志,1991,10(1):21~26
    [7] 孟平, 张劲松, 樊巍等. 中国复合农林业研究[M]. 北京:中国林业出版社, 2003. 40~68
    [8] 林农复合生态系统学术讨论会论文集.东北林业大学出版社,1988. [21]
    [9] 吴建军. 1990. 发展中国家农林系统的研究与实践[J]. 农村生态环境,(1): 43~47
    [10] 杜守宇, 田恩平, 王占山.南山区灌溉农业立体复合种植生态系统生产力的研究.生态学杂志,1993, 12(6):11~16
    [11] 傅庆林, 罗永进等.低丘红壤地区几种农林复合系统的生态经济效益.生态学杂志,1995, 14(6):11~15
    [12] 傅庆林, 孟赐福.低丘红壤区农业生态系统的功能研究. 生态学报,1992, 12(I):89~92
    [13] 何园球.红壤农业生态模式设计及其优化.中国科学院红壤生态站编,红壤生态系统研究,第三集.中国农业科技出版社,1995,10: 243~282
    [14] 吕军, 俞劲炎, 张连佳.低丘红壤地区粮食作物光能利用率和农田能流分析.生态学杂志,1990 9(6):11~15
    [15] 王明珠, 尹瑞龄.红壤丘陵区生态农业模式研究.生态学报,1998 .18(6):595~600
    [16] 郑志安, 傅择田, 林启瑞.区域农业产业化评估指标体系的构建与应用.中国农业大学学报,1999. 4(6):6~12
    [17] 钟继宏, 唐淑英, 谭军. 南方丘陵山区农业生态环境的改善.生态学杂志,1993, 12(4):52~54
    [18] 杨玉盛等. 杉木、油桐、仙人草复合经营模式生物量的研究,福建林学院报.1996, 16
    [19] 俞新妥. 杉木的混农林业, 生态学杂志, 1991, 10 (3):25~28
    [20] Paul chandler. 福建山区混农林业的系统知识, 生态学杂志, 1991, 10 (3):33~36
    [21] 冯耀学等. 论海南岛热带农业的“林-胶-茶”复合模式的立体结构,热带作物科技,1990, 3:15~19
    [22] 丁王贞. 茶农复合经营对土壤肥力的影响研究,生态学杂志,1991, 11 (2):63~67
    [23] 陈凯等,低山红壤地柑橘-花生立体复合体系效益的研究,当代复合农业,1998,3 (6):58~62
    [24] 廖彩恢等,油茶立体经营模式对土壤肥力影响的研究,江西农业大学学报,1993, 115 (3):61~65
    [25] 孟平等,林农复合系统光能利用率的研究,林业科学,1997,33(专刊 1):14~19
    [26] 朱首军,渭北旱原源面混农林的结构因子与防风效益关系的研究,西北林学院报,1995,(增):91~96
    [27] 王勤,苹果园果草牧结合的效果,果树科学,2000, 17 (3):228~230
    [28] 张继绅等,山区河谷地带果幼园间作姜的试验效果,中国果树,1995, 1: 16~18
    [29] 任满田等,平原农林立体栽培及效益研究,林业科技开发,1995, 4: 5~7
    [30] 安树康等,临夏地区杨麦间作效益分析,林业科技开发,1995, 4: 42~45
    [31] 白促奎等,山区板栗立体栽培技术,果树科学。1991, 10 (3):22~30
    [32] 王忠林,混农林体系对作物光合效率的影响研究,西北林学院学报,1995 , 10(增):84~90
    [33] 王忠林,渭北早原林农复合植被类型生态和经济效益调查研究,水土保持研究,1994,3: 36~42
    [34] 王佑民等,黄土高原沟壑区混农林的结构及其防护效益研究,水土保持学报,1992, 6(4):1~8
    [35] 雷瑞德等,坡面防护林生态经济效益评价,西北林学院学报,1991, 6 (4):1~8
    [36] 宋兆民等,黄淮海平原综合防护林体系生态经济效益研究,北京:北京农业出版社,1990
    [37] 刘晓鹰,柳杉-黄连立体经营效益,生态学杂志,1990, 10 (3):136~140
    [38] 万勇军,鄂中立岗地区农林业系统研究,生态学杂志,1994, 13 (4):1~6
    [39] 高崇岳等,草地农业中的几种优化种植模式,草业科学,2000, 113 (5):22~29
    [40] 李国方,枣粮间作优化模式的经济效益研究,林业经济,1995, 4: 61~64
    [41] 薛建辉等,林茶复合经营研究与应用,世界林业研究,1996, 3, 45~50
    [42] 倪善庆等,茅山地区桐茶间种生态及经济效益研究,江苏林业科技,1990,17(2):1~10
    [43] 施拱生等,茶树与乌柏混交效益的研究,浙江林学院学报,1988 5 (2 ):115~122
    [44] 康荣南等,湿地松与茶树间作生态效益的研究,南京林业大学学报,1987 2: 35~44
    [45] 刘东飘、邓立平,庭院生态经济系统设计与应用,生态学杂志,1995, 14 (2):52~60
    [46] 姜志林等,安徽涡阳县桐农间作类型及其分析,生态学杂志,1991, 10 (3):22~26 (3):200~204
    [47] 贾渝彬等,林农复合生态系统的研究与实践,河北林学院学报 1995, 10 (3):275~281
    [48] Rice, E.L. Allelopathy, Academic Prees Inc. New York, 1974, 166~179
    [49] 方绮军,傅钧,程世清.植物之间生化他感作用的研究及其应用。云南农业大学学报,1999, 14 (2):206~209
    [50] 刘秀芬,马瑞霞,袁光林,孙思恩.根际区他感化学物质的分离、鉴定与生物活性的研究,生态学报,1996, 16 (1):1~10
    [51] 马瑞霞,刘秀芬,袁光林,孙思恩.小麦根区的化感物质及其生物活性的研究,生态学报,1997, 17 (4):449~451
    [52] Aminder Kaur, Rao, P.B., Allelopathic effect of four agroforestry tree species on seed germination varieties of wheat. Annals of Forestry, 1998, 6(1):110~115
    [53] Kamara, A Y, Investigations into the effects of some selected multipurpose trees on weeds and growth of maize, (Zea Mays (L.)) and cowpea (Vigna unguiculata (L.))in South-Western Nigeria Tropenlandwirt, Beiheft, 1998, 65:143~149
    [54] 袁光林,马瑞霞,刘秀芬,孙思恩. 化感物质对小麦幼苗吸收氮的影响,生态农业研究,1998, 6 (2):37~39
    [55]游文琦,张福锁,李春俭. 小麦根系分泌物对绿豆种子中铁累积的影响. 中国农业大学学报,1996, 1 (1):46~51
    [56] 翟明普,贾黎明. 森林植物间的化感作用. 北京林业大学学报, 1993, 15(3): 138~147
    [57] 黄宝龙等,林农复合经营生态体系研究,生态学杂志,1991,10 (3):27~32
    [58] 方乐金等,杉、烟混农耕作技术及效益研究,植物生态学报,1994, 18 (3):243~252
    [59] 杨忠信等,榆林沙区林农复合经营的主要模式,陕西林业科技,1998, 3: 2~5
    [60] 杨玉盛等,杉木、油桐、仙人草复合经营土壤特性与分析性质研究,南京林业大学学报,1992,17(3):75~79
    [61] 蔡丽平等,杉木、油桐、仙人草等营养元素分配,东北林业大学学报,1992,29(1):21~25
    [62] 杨玉盛等,杉木-山苍子-作物复合经营模式土壤肥力的研究,林业科学,1993,29 (2):93~103
    [63] Corlett. J. E. et al. Microclimatic modification in intercropping and alley-cropping system. In: Reifsnyder.W.S. and Damhofer. T. O. eds. Nairobi, ICRAF: Meteorology and Agro forestry, 1989: 419~430
    [64] Jones H G et al. Drought enhance stomata closure in response to shading in sorgham(sorghum bicolor)and in Millet (Pemisetun americanum). Aust. Plant Physial, 1995, 22:1~6
    [65] Monteith J. L. Microclimatic in teraction in agroforestry system. For. Ecol. Manage, 1991, 45:31~44
    [66] Muir. J. P et al, Response of the Florida Galatia elliottii to shade, Agroforestry system,9:223~239
    [67] Singh K et al, Preport of a 60 month study on liter production, changes in sail Chemical properties and productivity under poplar(P. deltoids)and eucalyptus(E. hybrid)interptanted with aromatic grasses, Agroforestry system, 1989,9:37~45
    [68] Singh. R. P. et al. Above and below ground interaction in alley cropping in semi-arid India. Agroforestry Systems, 1989, 9:259~274
    [69] 王汉杰. 池杉、稻麦间作田中光照条件初步分析[J].南京林学院学报,1984, (1): 147~156.
    [70] 宋露露. 农桐间作对秋作物光合同化及 CO2 导度的影响[J].泡桐与农用林业,1990, (2): 68~74
    [71] 宋露露. 桐麦间作对小麦光合同化的影响[J].泡桐与农用林业,1990, (2): 62~67
    [72] 袁雷生,蒋绍曾,董兆武,等.枣农间作群体结构的光照及效益研究[J].河南农业大学学报,1982, (2): 38~55
    [73] 王广钦,徐文波,廖晓梅,等.农桐间作与作物产量[J]河南农业大学学报,1983, (1): 29~37
    [74] 徐大平.杉木间作大豆的研究[A]见:熊文愈.中国农林复合经营研究与实践[C]南京:江苏科技出版社,1994. 201~206
    [75] 宛志沪.江淮丘陵农桐间作经济、生态效益的研究[[A].见:熊文愈.中国农林复合经营研究与实践[C].南京:江苏科技出版社,1994, 144~150
    [76] 陆光明,马秀玲,周厚德,等.农林复合系统中农田蒸散及作物水分利用效率的研究田.北京农业大学学报,1992, 19(4): 409~415
    [77] 黄寿波.茶林间作下茶树生理生化特性及其效益的研究[J].泡桐与农用林业.1989. (1):48~56
    [78] 裴保华,袁玉欣,王颖.杨树遮荫与荫棚遮荫对农作物产量影响的研究田.河北林果研究,1997, 12(4): 306~310
    [79] 裴保华,袁玉欣,王颖.模拟林木遮光对小麦生育期和产量的影响[[J].河北农业大学学报,I 998. 21(1): 1~5
    [80] 李新平,郭学斌,吕皎.混农林业中的树木密度对小麦产量的影响. 苏北林业大学学报,1999: 27(4):46~49
    [81] 黄高宝、张恩和, 禾本科豆科作物间套种植对根系活力影响的研究,草业学报,1998, 7 (2):18~22
    [82] 左元梅等,玉米-花生间作对两种作物根系形态特征空间变异的影响,黄巧云主编,第六届全国青年土壤暨首届全国青年植物营养科学工作者学术讨论会论文集:迈向21世纪的土壤与植物营养科学,中国农业出版社,1997, 314~317
    [83] 左元梅等,玉米花生混作对花生根系还原力和花生铁营养的影响,植物营养与肥料学报,1998, 4 (2):170~175
    [84] Tillman, D. and D. Wedin. Plant traits and resource reduction for five grasses growing on nitrogen gradient. Ecology, 1991, 72: 683~689
    [85] Ti1man, D. Gtace, JB. Perspectives in Plant Competition, Academic Press New York. 1990, 117~141
    [86] Shanna Y.A. Bhutani, L.P., Effect of nitrogen levels and weed control treement on nutrient status of peach (Prunus persica). Indian Journal of Agricultural Sciences, 1989, 84(4):255~259
    [87] Tomaso, Jm, Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Science, 1995, 43(3):491~497
    [88] 常杰,陈杰,王文章.林网生态场中玉米主要产量形状和质量性状的研究. 生态学报,1992:12 (4):317~323
    [89] Freeman, C. et.al, Could competition between plants and microbes regulate plant nutrition and atmospheric CO2 concentrations? Science of the Total Environment, 1998, 220(23)181~184
    [90] I M Chunga, J K Ahna. Assessment of allelopathic potential of barnyard grass (Echinochloa crusgalli) on rice (Oryza sativa L.) cultivars [J] .Crop Protection, 2001, 20: 921~928
    [91] Hari Om, S D Dhiman. Allelopathic response of Phalaris minor to crop and weed plants in rice–wheat system [J].Crop Protection, 2002, 21:699~705
    [92] Bradow JM, Connick WJ. Volatile seed germination inhibitors from plant residues [J].J Chem Ecol, 1990, 16(3): 645~666
    [93] F M V Z JUAN JIMENEZ-OSORNIO.Allelopathy Acticity of Chenopodium ambrosioides L [J]. 23 Biochemical Systematics and Ecology, 1996, 24(3):195~205
    [94] 李志华,沈益新,薛萍,周志华.黑麦草、草地早熟禾、翦股颖和白三叶的化感作用初探[J].中国草地.2003, 25(1):31~38
    [95] 潘晓芳,黎向东.蒜头果他感作用的初步研究[J]. 广西植物.2003, 23(3):271~275
    [96] 贾黎明.化感作用物对油松幼苗生长及光合作用的影响[J].北京林业大学学报.2003, 25(4): 6~10
    [97]夏青等,紫色土农林复合经营土壤理化性状研究,水土保持学报,2006.4, (20)
    [98]樊巍,李芳东,孟平.河南平原复合农林业[M].郑州:黄河出版社,2001
    [99]徐祝龄,马秀玲,周厚德,等.黑龙港流域农田林网气象效应的研究[A].黄淮海平原综合防护林体系生态经济效益的研究[C]. 北京:北京农业人学出版社,1990: 160~166
    [100]孟平,张劲松,宋兆民,等. 农林复合模式耗水的研究[J].林业科学研. 1996, 9(3): 221~226
    [101] Cannell, M. G. R. Plant management in agroforestry: manipulation of trees, population densities and mixtures of trees and herbaceous crops [A]. In: Huxley, P. A. (ed). Plant Research and Agroforestry [C]. Nairobi ,Kenya : ICRAF ,1983. 455~486
    [102] Kang, B. T. et al. Alley cropping maize and leucaena in southern Nigeria [J]. Plant and Soil ,1981 ,63 :165~179
    [103] Lowan ,T. L. and Kang ,B. T. Yield of maize and cowpea in alley cropping system in relation to available light [ J ] . A gric. For.Metere,1990 ,52 :349~359
    [104] Willey, R. W. and Reddy, M. S. A field technique for separating above and below ground interactions in intercropping: An experiment with pearl millet/ groundnut [J]. Expert Agri,1981, 17:257~264
    [105] Verinumbe, I. and O:kali, D.U.U. The influence of coppiced teak regrowth and roots on intercropped maize [J]. Agroforestry, 1985, 3:381~386
    [106] 裴保华,贾渝彬,王文全,等. 杨农间作田的光强和土壤水分状况及其对农作物的影响[J]. 河北农业大学学报, 1998, 21 (2) :28~33
    [107] 王颖,崔建州,袁玉欣,农林间作系统林木遮荫及其对产量的影响,中国生态农业学报,2003,(11)2: 107~110
    [108] Lehmann, J. And Zech, W. M glicheiten und Grenzender Ertragsseigerung in tropischen Alley-cropping System [A]. In: Ottow, J. C. G. (eds). Leguminosen zur Verbesserung and nachhaltigen Sicherung der Agrarproduktion [C]. Giessener Beitry gezur Entwicklungs for schung,Giessen University, Giessen ,Deutschland ,1997. 165~176
    [109] 张斌,张桃林. 低丘红壤区农林间作系统的水分生态特征及生产力[J]. 生态学杂志,1997, 16(4)1~5
    [110] 李全胜,吴建军,严力蛟.. 下垫面性状对农林系统微生态环境的影响[J]. 生态学报,1999, 19(3): 329~334
    [111] 黄晓澜,丁瑞兴.. 亚热带丘陵区茶林复合系统小气候特征的研究[J]. 生态学报,1991, 11(1):7~12
    [112] 吴建军,李全胜. 柑桔园套种及其效益分析[J]. 生态农业研究,1998, 6(2): 48~50
    [113] CarlosGT,etal.. Agroforestry system effects on soil characteristics of the Sarapiquí region 1999
    [114] 范兴海,黄寿波. 杉-茶间作热量平衡的研究[J]. 林业科学研究,1996, 9(2):170~175
    [115] 傅懋毅,傅金和. 农林复合生态系统中人体舒适度及劳动效率的研究[J]. 林业科学研究,1995, 8(4): 447~454
    [116] 樊巍,卢琦,高喜荣.果农复合系统根系分布格局与生长动态研究[J]. 生态学报,1999, 19(6): 860~863
    [117] 吴建军,李全胜.幼龄桔园间作牧草的土壤生态效应及其对桔树生长的影响[J]. 生态学杂志,1996, 15(4): 10~14
    [118] 孟庆岩,叶旭君,严力蛟,等.我国热带地区胶-茶-鸡农林复合模式生态效益研究[J]. 浙江农业学报,1999, 11(4): 193~195
    [119] 刘中桂. 立体农业原理与技术[M]. 福州:福建科学技术出版社,1989, 18~22
    [120] 宋兆民. 农用林的概念与发展[J]. 农业气象, 1991, (4): 26~29
    [121] 宋兆民. 黄淮海平原防护林体系建设对农业生态系统的改造和调控作用[A]. 综合防护林体系生态经济效益的研究[M]. 北京:北京农业大学出版社,1990. 61~66
    [122] Willam HS. 大气污染与森林[M]. 北京:气象出版社,1986. 36~39
    [123] 孟平, 宋兆民, 张劲松等. 农林复合生态系统对环境质量调控作用研究. 林业科学研究2000, 13(1):1~7
    [124] 张均营, 吴炳奇等. 河北林业科技第一期1994. 3
    [125] 李新宇,朴顺姬,唐海萍等. 大籽蒿花中生物碱类化感物质对羊草根茎节器官分化的影响[J].生态学杂,2004,23(2):50~54
    [126] 曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报.1999,10(1):123~126
    [127] WILLIAMSON G B.Bioassay for allelopathy: measuring treatment responses with independent controls [J]. Journal of Chemical Ecology, 1988, 14(1):181~187