小麦LMW-GS基因类群品质效应及茎基腐病遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦类作物包括小麦、大麦、燕麦、黑麦和小黑麦。其中小麦(Triticum aestivum L.)是我国乃至全世界最重要的粮食作物之一,和水稻、玉米一起并称世界三大粮食作物,其种植面积和产量均居禾谷类作物之首,在农业生产中占有十分重要的地位。大麦(Hordeum vulgare L.)是全球第四大禾谷类作物,具有生育期短、适应性广、耐瘠、抗逆性强等生育生理特点,且用途广泛,集经济作物、粮食作物和饲料作物于一体。虽然前人围绕着加强抗性、提高产量和改善品质开展了卓有成效的工作,但是随着全球人口增长与气候变化,对小麦和大麦的抗性、产量和品质提出了新的要求。本论文主要围绕改善小麦加工品质,加强小麦和大麦茎基腐病抗性两方面做一些研究。在改善小麦加工品质方面主要研究了四川小麦地方品种低分子量谷蛋白亚基等位基因变异及其对品质的影响;在小麦和大麦茎基腐病抗性研究方面,系统解析了茎基腐病病原菌侵染机理,并对大麦种质资源的茎基腐病抗性进行了评价和筛选;同时,对小麦茎基腐病抗性机制进行了探索。取得了以下主要研究结果:
     1.利用分子标记技术,对67份四川小麦地方品种的低分子量谷蛋白亚基等位基因位点进行了鉴定,结果表明低分子量谷蛋白亚基等位基因变异较大,在Glu-3位点发现13种不同类群LMW-GS基因组合的类型,其中a组合类型(包括第一、第二和第八类群的LMW-GS基因)、f组合类型(包括第三和第四类群的LMW-GS基因)和i组合类型(包括第五、第六、第七和第九类群的LMW-GS基因)分别为Glu-A3、Glu-B3和Glu-D3位点的优势类型。通过对低分子量谷蛋白亚基等位基因变异对品质相关指标影响的分析,在Glu-A3位点,发现第二类群的LMW-GS基因对小麦蛋白质含量、沉降值、湿面筋含量和稳定时间均具有负效应;在Glu-B3位点,发现第四类群的LMW-GS基因小麦面粉的面团稳定时间具有正效应:在Glu-D3位点,发现第五类群的LMW-GS基因对小麦湿面筋含量具有正效应,而第七类群的LMW-GS基因对小麦湿面筋含量具有负效应。
     2.利用小麦株高近等基因系,研究了小麦株高与茎基腐病抗性的相关性,发现在全部12对近等基因系中,矮秆基因型均比相对应的高秆基因型表现更好的茎基腐病抗性。同时,对12对近等基因系的赤霉素处理实验发现,赤霉素处理后导致所有基因型茎基腐病抗性下降,并且茎基腐病抗性变幅与苗长变幅呈负相关。因此,证实了矮秆基因增强茎基腐病抗性,外源赤霉素负向调节茎基腐病抗性,并推测细胞密度是造成高矮秆基因型茎基腐病抗性差异的重要因素之一。
     3.利用RT-qPCR技术测定了4对小麦株高近等基因系中9个防卫相关基因在不同生长发育时期被茎基腐病病原菌诱导的表达模式。结果发现PR3和PR4基因在不同生长发育时期和不同基因型中均被茎基腐病病原菌显著诱导上调表达,表明PR3和PR4基因是小麦茎基腐病病原菌侵染过程中的关键防卫反应基因。同时,分析了防卫相关基因分别在矮秆基因型和相对应的高秆基因型中的表达模式,没有发现在全部矮杆基因型中都一致被强诱导上调表达的防卫相关基因,表明矮秆基因型比高秆基因型具有更好茎基腐病抗性的原因可能不是由于矮秆基因调控防卫反应基因造成的,这对下一步寻找小麦株高近等基因系中高矮秆基因型茎基腐病抗性差异的原因提供了线索。
     4.利用RT-qPCR测定了不同时期茎基腐病病原菌在三个小麦品种(Kennedy、Sunco和Wolloroi)和六个大麦品种(Commander、Dash、Franklin、Gairdner、Lockyer和Mundah)茎基部的相对含量。发现茎基腐病病原菌侵染小麦及大麦茎基部有三个明显的阶段:1)品种茎基腐病病原菌相对含量显著上升的阶段;2)品种茎基腐病病原菌相对含量显著下降的阶段;3)品种茎基腐病病原菌相对含量再次显著上升的阶段。同时,通过比较大麦与小麦的相对茎基腐病病原菌含量,发现大麦相对菌含量明显高于小麦相对菌含量,表明大麦比小麦更易感茎基腐病。
     5.对1047份大麦种质资源进行了茎基腐病抗性鉴定,结果表明:当今大麦主栽品种抗性较差,全部高感茎基腐病,因此挖掘具有茎基腐病抗性的大麦资源,培育抗茎基腐病品种迫在眉睫;在澳大利亚冬季谷物中心随机选择的993份大麦资源材料中,没有发现茎基腐病免疫材料,但发现高抗材料33份,占总数的3%,包括147982、148012、140093、140961、151952、148090等,中抗材料47份,占总数的5%,其余92%的大麦种质资源均为感病材料。该结果明确了大麦种质资源的茎基腐病抗性,发现了一些优异的茎基腐病抗性资源材料,为改良大麦主栽品种的茎基腐病抗性提供了物质基础。
Triticeae crops consist of wheat, barley, oat, rye and triticale. Wheat (Triticum aestivum L.) is one of the most important cereal crops in both the world and China, which coupled with rice and maize as top three cereal crops in the world. Its planting areas and production are on the top of the cereal crops. Wheat plays an important role in agricultural industry. Barley (Hordeum vulgare L.) is the forth largest cereal crop all over the world. It harbors lots of advantages, including fast life cycle, drought-resistance, and so on and could be used as economical, edible and forage crops. Although great achievement has been made in improvement of productivity, quality and resistance in both wheat and barley, more would be expected because of population growth and increasing demanding in life improvement. In this study, some basic researches have been made on wheat processing qualities and enhancing resistances to crown rot in wheat and barley. To improve processing qualities, high-and low-molecular gluten alleles in the Sichuan wheat landraces were investigatedand the relationships between LMW-GS gene groups and quality were examined. Meanwhile, the variations of Waxy genes in the common wheat germplasm resources were characterized. For resistance to crown rot in wheat and barley, crown rot infection mechanism was evaluated systematically and crown rot resistance materials from barley germplasm resources were identified. Crown rot resistance mechanism in wheat was also examined.
     1. Molecular markers were used to assess the genetic variation of low molecular weight glutenin subunit (LMW-GS) genes in 67 Sichuan wheat landraces from China. Five, three and five types of different LMW-GS allele compositions were identified, and a (including the first, second and eighth groups of LMW-GS genes),f(including the third and fourth groups of LMW-GS genes) and i (including the fifth, sixth, tseventh and ninth groups of LMW-GS genes) were the dominant types at the Glu-A3, Glu-B3 and Glu-D3 loci, respectively. The relationship between the variations in LMW-GS gene groups and quality characters were analyzed, indicating that the second LMW-GS gene group had negative effect on protein content, sedimentation value, wet gluten content and stability time at the Glu-A3, the fourth LMW-GS gene group had positive effect on stability time at the Glu-B3 and the fifth LMW-GS gene group had positive effect on wet gluten content at the Glu-D3.
     2. Potential effects of plant height on Fusarium crown rot (CR) disease severity were investigated using 12 pairs of near-isogenic lines (NILs) for six different reduced height (Rht) genes in common wheat. Remarkably, all the dwarf isolines gave better CR resistance compared to their respective tall counterparts, although the six Rht genes involved are located on five different chromosomes. For all of the genotypes tested, the plants treated with exogenous gibberellin increased CR severity as well as seedling lengths, confirming the Rht genes' positive influence and exogenous gibberellin's negative influence on the CR resistance.
     3. The expression of nine defense-related genes at different developmental stages in four wheat plant height NILs was analyzed using real-time quantitative polymerase chain reaction.The results indicated that PR3 and PR4 genes were the key defence genes during Fusarium infection. But no defence gene was found to be consistently upregulated in any of the dwarf genotypes when induced by F. pseudograminearum, indicating that the resistance of dwarf lines was not due to enhanced defense gene induction.
     4. To characterize crown rot (CR) developmental process, real-time quantitative polymerase chain reaction analyses were used to assess fungal colonization during a timecourse of infection at the stem base of three wheats (Kennedy, Sunco and Wolloroi) and six barley varieties (Commander, Dash, Franklin, Gairdner, Lockyer and Mundah). Three distinct phases of infection were identified:1) a significant increase in relative fungal biomass,2) a statistically significant decrease in fungal biomass, and 3) again, a statistically significant increase in relative biomass.
     5. To identify crown rot resistance barley germplasm, a total of 1047 barley germplasm accessions were evaluated. The results indicated that most of barley cultivars can be highly infected by F. pseudograminearum. Only 33 highly resistance barely accessions (3%),47 intermediate resistance accession (5%) were identified from 993 barley germplasm accessions conserved in Australia Winter Cereal Collection (AWCC). No barley accesion was found to be immune to this disease.
引文
1. Akinsanmi, O.A., Mitter, V., Simpfendorfer, S., Backhouse, D., and Chakraborty, S. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales[J]. Aust. J. Agr. Res,2004,55(3):97-107.
    2. Akinsanmi, O. A., Backhouse, D., Simpfendorfer, S., and Chakraborty, S. Genetic diversity of Australian Fusarium graminearum and F. pseudograminearum[J]. Plant Pathol.,2006,55(4): 494-504.
    3. Allan, R.E. Agronomic comparison between Rhtl and Rht2 semi-dwarfing genes in winter wheat[J]. Crop Sci.,1989,29(5):1103-1108.
    4. Autran, J.C., Laignelet, B., Morel, M.H. Characterisation and quantification of low-molecular-weight glutenins in durum wheats[J]. Biochimie.,1987,69(6):699-711.
    5. Backhouse, D., Abubakar, A.A., Burgess, L.W., Dennis, J.I., Hollaway, GJ., Wildermuth, G.B., Wallwork, H. and Henry, F.J. Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia[J]. Aust. Plant Pathol.,2004,33(2):255-261.
    6. Balmas, V.Root rot of wheat in Italy caused by Fusarium graminearum Group 1[J]. Plant Disease,1994,78(4):317.
    7. Bari, R., Jones, J.D.G.. Role of plant hormones in plant defence responses[J]. Plant Mol. Biol.,2009, 69(10):473-488.
    8. Beddis, A.L., and Burgess, L. W. The influence of plant water stress on infection and colonization of wheat seedlings by Fusarium graminearum Group 1[J]. Phytopathology,1992,82(1):78-83.
    9. Boggini, G., Pogna, N. E. The bread-making quality and storage protein composition of Italian durum wheat[J]. Cereal Sci.,1989,9(2):131-138.
    10. Bonjean, A.P., and Augus, W.J. The world wheat book-A history of Wheat breeding[M]. Intercept: Londres-Paris-New York,2001:115
    11. Botwright, T.L., Rebetzke, G.J., Condon, A.G., Richards, R.A. Influence of the Gibberellin-sensitive Rht8 Dwarfing Gene on Leaf Epidermal Cell Dimensions and Early Vigour in Wheat (Triticum aestivum L.)[J]. Ann. Bot,2005,95(4):631-639.
    12. Bovill, W.D., Ma, W., Ritter, K., Collard, B.C.Y., Davis, M., Wildermuth, G.B., Sutherland, M.W. Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population W21MMT709 Mendos[J]. Plant Breed.,2006,125(6):538-543.
    13. Branlard, G, Dardevet, M. Diversity of grain protein and bread wheat quality, Ⅱ:correlation between high-molecular-weight subunits of glutenin and flour quality characteristics[J]. Journal of Cereal Science,1985,3(4):345-354.
    14. Branlard, G., Dardevet, M., Saccomano, R., Lagoutte, F., Gourdon, J. Genetic diversity of wheat storage proteins and bread wheat quality[J]. Euphytica,2001,119(1):59-67.
    15. Branlard, G, Dardevet, M., Amiour, N., Igrejas, G. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.) [J]. Genetic Resources and Crop Evolution,2003,50(7):669-679.
    16. Burgess, L.W., and Griffin, D.M. The recovery of Gibberella zeae from wheat straws[J]. Australian Journal of Experimental Agriculture and Animal Husbandry,1968,8(11):364-370.
    17. Burgess, L.W., Wearing, A.H., and Toussoun, TA. Surverys of Fusaria associated with crown rot of wheat in eastern Australia[J]. Australian Journal of Agricultural Research,1975,26(5):791-799.
    18. Burgess, L.W., Backhouse, D., Summerell, B.A., Pattison, A.B., Klein, T.A.,Esdaile RJ, and Ticehurst, G. Long-term effects of stubble management on the incidence of infection of wheat by Fusarium graminearum Schw. Group 1[J]. Australian Journal of Agricultural Research,1993,33(4): 451-456.
    19. Burgess, L.W., Backhouse, D., Swan, L.J., Esdaile, R.J. Control of Fusarium crown rot of wheat by late stubble burning and rotation with sorghum[J]. Aust. Plant Pathol.,1996,25(4):229-233.
    20. Cassidy, B.G., Dvorak, J. Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum[J]. Thero Appl Gene.,1991,81(5):653-660.
    21. Cassidy, B.G., Dvorak, J., Anderson, O.D.The wheat lowmolecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure[J]. Theor. Appl. Gene.,1998,96(6):743-750.
    22. Chakraborty, S., Liu, C.J., Mitter, V., Scott, J.B., Akinsanmi, O.A., Ali, S., Dill-Macky, R., Nicol, J., Backhouse, D., and Simpfendorfer, S. Pathogen population structure and epidemiology are a key to wheat crown rot and Fusarium head blight management[J]. Australasian Plant Pathology,2006,35(6):1-13.
    23. Cloutier, S., Rampitsch, C., Penner, G. A., et al. Cloning and Expression of a LMW-i Glutenin Gene[J]. J Cereal Sci.,2001,33(2):143-154.
    24. Collard, B.C.Y., Grams, R.A., Bovill, W.D., Percy, C.D., Jolley, R., Lehmensiek, A., Wildermuth, G., Sutherland, M.W. Development of molecular markers for crown rot resistance in wheat: mapping of QTL for seedling resistance in a 2-49 9 Janz population[J]. Plant Breed,2005,124(6): 532-537.
    25. Colot, V., Bartels, D., Thomopson, C., et al. Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes[J]. Mol. Gen. Genet.,1989, 216(1):81-90.
    26. Cook, R.J. Fusarium root rot of wheat and its control in the Pacific Northwest[J]. Plant Dis.,1980, 64(102):1061-1066.
    27. Dachkevitch, T., Autran, J. C.. Prediction of baking quality of bread wheats in breeding programs by size-exclusion high-perfromance liquid chromatography[J]. Cereal Chem,1989,66(6):448-456.
    28. Desmond, O.J., Edgar, C.I., Manners, J.M., Maclean, D.J., Schenk, P.M., Kazan, K.. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum[J]. Physiol. Mol. Plant Path,2005,67(3-5):171-179.
    29. Desmond, O.J., Edgar, C.I., Manners, J.M., Maclean, D.J., Schenk, P.M., and Kazan, K.. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum[J]. Physiological and Molecular Plant Pathology. 2006,67(3-5):171-179.
    30. Desmond, O.J., Manners, J.M., Stephens, A.E., Maclean, D.J., Schenk, P.M., Gardiner, D.M., Munn, A., and Kazan, K..The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat[J]. Mol. Plant Pathol,2008,9(4): 435-445.
    31. Dodman, R.L., and Wildermuth, G.B.. Inoculation methods for assessing resistance in wheat to crown rot caused by Fusarium graminearum Group 1[J]. Australian Journal of Agricultural Research,1987,38(3):473-486.
    32. Dodman, R.L., and Wildermuth, G.B.. The effect of stubble retention and tillage practices in wheat and barley on crown rot caused by Fusarium graminearum Group 1[J]. Plant Protection Quarterly,1989,4(3):98-99.
    33. D'Ovidio, R., Simeone, M., Masci, S., et al.. Nucleotide sequence of a γ-type glutenin gene from durum wheat:correlation with a γ-type glutenin subunit from the same biotype[J]. Cereal Chem,1995,72(5):443-449.
    34. D'Ovidio, R., Simeone, M., Masci, S., Porceddu, E.. Molecular characterization of a LMW-GS gene located on chromosome 1B and the development of primers specific for the Glu-B3 complex locus in durum wheat[J]. Theor. Appl. Genet,1997,95(7):1119-1126.
    35. D'Ovidio, R., Marchitelli, C., Cardelli Ercoli, et al.. Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat[J]. Theor Appl Genet,1999,98(3):455-461.
    36. D'Ovidio, R., Masci, S.. The low-molecular-weight glutenin subunits of wheat gluten[J]. Journal of Cereal Science,2004,39(3):321-339.
    37. Eagles, H.A., Hollamby, G.J., Gororo, N.N., Eastwood, R.F.. Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs[J]. Australian Journal of Agricultural Research,2002,53(20):367-377.
    38. Ellis, M.H., Rebetzke, G.J., Azanza, F., Richards, R.A., and Spielmeyer, W.. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat[J]. Theor. Appl. Genet,2005,111(3): 423-430.
    39. Ellis, M.H., Spielmeyer, W., Rebetzke, G.J. and Richards, R.A.. "Perfect" markers for the Rht-Blb and Rht-Dlb dwarfing genes in wheat[J]. Theor. Appi. Genet,2002,105(6):1038-1042.
    40. Felton, W.L., Marcellos, H., Alston, C., Martin, R.J., Backhouse, D., Burgess, L.W., and Herridge, D.F.. Chickpea in wheat-based cropping systems of northern New South Wales Ⅱ. Influence on biomass, grain yield, and crown rot in the following wheat crop[J]. Australian Journal of Agricultural Research,1998,49(10):401-407.
    41. Flintham, J.E., and Gale, M.D. The tom thumb dwarfing gene Rht3 in wheat.2. Effects on height yield and grain quality[J]. Theor. Appi. Genet,1983,66(3):249-256.
    42. Gale, M.D. and Youssefian, S. Dwarfing genes in wheat[M]. London:Butterworths,1985:35.
    43. Ganeva, G., Korzun, V., Landjeva, S., Tsenov, N. and Atanasova, M. Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica,2005,145(3):305-315.
    44. Grewal, H.S., Graham, R.D., and Rengel, Z. Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat[J]. Plant and Soil,1996,186(2):219-226.
    45. Grant, M.R., and Jones, J.D.G. Hormone (Dis) harmony moulds plant health and disease[J]. Science,2009,324(5928):750-752.
    46. Gupta, R.B., Shepherd, K.W., Macritchie, F. Effects of rye chromosome arm 2RS on flour proteins and physical dough properties in bread wheat[J]. Cereal Sci,1989a,10(12):169-173
    47. Gupta, R.B., Singh, N.K., Shepherd, K.W. The cumulative effects of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats[J]. Thero Appl Gent,1989b,77(2):57-64
    48. Gupta, R.B., Shepherd, K.W. Two-step one-dimensional SDS-PAGE analysis of LWM subunits of glutenin I variation and genetic control of the subunits in hexaploid wheats[J]. Thero Appl Genet, 1990,80(1):65-74
    49. Gupta, R.B., Shepherd, K.W. Production of multiple wheat-rye IRS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks[J]. Theor Appl Genet,1993,85(6):719-728
    50. Gupta, R.B., Paul, J.G., Cornish, G.B., Palmer, G.A., Bekes, F., Rathjen, A.J., Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheat[J],Ⅰ:its additive and interaction effects on dough properties. Journal of Cereal Science,1994,19(1):9-17.
    51. Harberd, N.P., Bartels, D., Thompson, R.D. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines[J]. Mol Gen Genet,1985,198(2):234-242.
    52. Holmes, A., Govan, J., and Goldstein, R. Agricultural use of Burkholderia(Pseudomonas) cepacia: A threat to human health[J]? Emerging Infectious Diseases,1998,4(2):221-227.
    53. Huang, Y., and Wong, P.T.W. Effect of Burkholderia(Pseudomonas) cepacia and soil type on the control of crown rot in wheat[J]. Plant and Soil,1998,203(1):103-108.
    54. Huebner, F.R., Wall, J.S. Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality[J]. Cereal Chem,1976,53(2):258-269.
    55. Jones, R.L. Gibberellins:their physiological role[J]. Ann. Rev.Plant Physio,1973,24(9):571-598.
    56. Kasarda, D.D., Tao, H.P., Evans, P.K., et al.. Sequence of a protein from a single spot of a 2-D gel pattern:N-terminal sequence of a major wheat LMW glutenin subunits[J]. J. Exp. Bot.,1988,39(7): 899-906.
    57. Klein, T. A., Summerell, B. A., and Burgess, L. W. Influence of stubble management practices on crown rot of wheat[J]. Plant Protection Quarterly,1988,3(1):10-11.
    58. Klein, T.A., Burgess, L.W., and Ellison, F.W. The incidence and spatial patterns of wheat plants infected by Fusarium graminearum Group 1 and the effect of crown rot on yield[J]. Aust.J. Agr. Res,1991,42(3):399-407.
    59. Kirkegaard, J.A., Simpfendorfer, S., Holland, J., Bambach, R., Moore, K.J., Rebetzke, G.J. Effect of previous crops on crown rot and yield of durum and bread wheat in northern NSW[J]. Aust. J. Agric. Res,2004,55(3):321-334.
    60. Korzun, V., Borner, A., Worland, A.J., Law, C.N., and Roder, M.S. Application of microsatellite markers to distinguish inter-varietal chromosome substitution lines of wheat (Tritieum aestivum L.) [J]. Euphytica,1997,95(2):149-155.
    61. Korzun, V., Roder, M.S., Ganal, M.W., Worland, A.J., and Law, C.N. Genetie analysis of the dwarfing gene (Rht8) in wheat. Part1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Tritieum aestivum L.) [J]. Theor. Appi. Genet,1998,96(8):1104-1109.
    62. Law, C.N. The location of genetic factors affiecting aquantitative charaeter in wheat[J]. Geneties,1966,53(3):487-498.
    63. Lawrence, G.J., Shepherd, K.W. Chromosomal location of genes controlling seed proteins in species related to wheat[J]. Theoretical and Applied Genetics,1981,59(1):25-31.
    64. Lawrence, C.B., Joosten, M.H.A., Tuzun, S. Differential induction of pathogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance[J]. Physiological and Molecular Plant Pathology,1996,48(6):361-377.
    65. Lawrence, C.B., Singh, N.P., Qiu, J., et al. Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism[J]. Physiological and Molecular Plant Pathology,2000,57(5):211-220.
    66. Lamprecht, S.C., Marasas, W.F.O., Hardy, M.B., and Calitz, F.J. Effect of crop rotation and the incidence of Fusarium pseudograminearum in wheat in the Western Cape, South Africa[J]. Australasian Plant Pathology,2006,35(4):419-426.
    67. Lee, Y.K., Bekes, F., Gupta, R., et al. The low-molecular-weight glutenin subunit protein in of primitive wheats Ⅰ variation in A-genome species[J]. Theor Appl Genet,1999,98(1):119-125.
    68. Lee, Y.K., Ciaffi, M., Appels, R., et al. The low-molecular-weight glutenin subunit proteins of primitive wheat Ⅱ The genes from A-genome species[J]. Theor Appl Genet,1999,98(1):126-134.
    69. Lew, E.J., Kuzmicky, D.D., Kasarda, D.D. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacryla-mide gel electrophoresis and N-terminal amino acid sequence[J]. Cereal Chem,1992,69(5):508-515.
    70. Li, X.M., Liu, C.J., Chakraborty, S., Manners, J.M., and Kazan, K. A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum[J]. J. Phytopath,2008,156(11):751-754.
    71. Liddell, C.M., and Burgess, L.W. Wax layers for partitioning soil moisture zones to study the infection of wheat seedlings by Fusarium graminearum[J]. In Ecology and Management of Soilborne Plant Pathogens,1988,78(2):185-189.
    72. Liddell, C.M., Burgess, L.W., and Taylor, P.W.J. Reproduction of crown rot of wheat caused by Fusarium graminearum Group 1 in the greenhouse[J]. Plant Disease,1986,70(9):632-635.
    73. Long, H., Wei, Y.M., Yan, Z.H., Baum, B., Nevo, E., Zheng, Y.L. Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers[J]. Theor. Appl. Genet,2005,111(7):1251-1259.
    74. Luo, C., Griffin, W.B., Branland, G., et al. Comparison of low-and high molecular-weight glutenin allele effects on flour quality[J]. Theor Appl Genet,2001,102(6):1088-1098.
    75. Ma, J., Li, H.B., Zhang, C.Y., Yang, X.M., Liu, Y.X., Yan, G.J., and Liu, C.J. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat[J]. Theor. Appl. Genet.,2010,120(6):1119-1128.
    76. MacRitchie, F. Physicochemical properties of wheat proteins in relationships to functionality[M]. Adv. Food Nutr. Res,1992,36(1):1-87.
    77. Masci, S., D'Ovidio, R., Lafiandra, D., et al. Characterization of a low-molecular-weight glutenin subunit from bread wheat and corresponding protein that represent a major subunit of the glutenin polymer[J]. Plant Physiol,1998,118(4):1147-1158.
    78. Masci, S., Rovelli, L., Kasarda, D. D., et al. Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread cultivar Chinese Spring[J]. Theor Appl Genet,2002,104(2):422-428.
    79. McDonald, T., Brown, D., Keller, N.P., and Hammond, T.M. RNA silencing of mycotoxin production in Aspergillus and Fusarium species[J]. Mol. Plant-Microbe Interact,2005,18(6): 539-545.
    80. McKnight, T., and Hart, J. Some field observations on crown rot disease of wheat caused by Fusarium graminearum[J]. Queensland Journal of Agricultural and Animal Sciences,1966,23(1): 373-378.
    81. Metakovsky, E.V., Wriley, C.W., Bekes, F., et al. Glutenin polypeptides as useful genetic markers of dough quality in Australian wheats[J]. Aust J Agric Res,1990,41(2):289-306.
    82. Miralles, DJ., Calderini, D.F., Pomar, K.P., and D'Ambrogio, A. Dwarfing genes and cell dimensions in different organs of wheat[J]. J. Exp. Bot,1998,49(324):1119-1127.
    83. Mishra, S.K., and Kushkawa, C.M. Inheritance of Rht8 dwarfing genes in wheat (Triticum aesrivum L.) [J]. Indian J. Genet,1995,55(1):36-40.
    84. Mishra, S.K., and Kushkawa, C.M.. Inheritance of Rht8 dwarfing genes in wheat(Triticum aesrivum L.)[J]. Indian J. Genet.,1995,55(1):36-40.
    85. Mitter, V., Zhang, M.C., Liu, C.J., Ghosh, R., Ghosh, M., and Chakraborty, S. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm[J]. Plant Pathol.,2006, 55(3):433-441.
    86. Monds, R.D., Cromey,M.G., Lauren, D.R., Menna, M., and Marshall, J. Fusarium graminearum, F. cortaderiae and Fusarium pseudograminearum in New Zealand:molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species[J]. Mycological Research.,2005,109(4): 410-420.
    87. Murray, G.M., and Brennan, J.P. Estimating disease losses to the Australian wheat industry[J]. Australas Plant Path.,2009,38(1):558-570.
    88. Nakamura, Y., Sawada, H., Kobayashi, S., et al. Expression of soybean beta-1,3-glucanase cDNA and effect on disease tolerance in kiwifruit plants[J]. Plant Cell Reports.,1999,18(7/8):527-532.
    89. Nagamine, T., Kai, Y., Takayama, T., et al. Alleic variation of glutenin subunit loci Glu-1 and Glu-D3 in southern Japanese wheat and their effects on dough and glutenin properties[J]. Cereal Sci.,2000,32(2):129-135.
    90. Nieto-Taladriz, M. T., Ruiz, M., Martinez, L. M., et al. Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat[J]. Theor Appl Genet.,1997,95(11): 1155-1160.
    91. Okita, T.W., Cheesbrough, V., Reeves, C.D. Evolution and heterogeneity of the α-/β-type and y-type gliadin DNA sequences[J]. J Biol Chem.,1985,60(1):8203-8213.
    92. Paulitz, T.C., Smiley, R.W., and Cook, R.J. Insights into the prevalence and management of soilborne ceral pathogens under direct seeding in the Pacific Northwest, U.S.A[J]. Canadian Journal of Plant Pathology.,2002,24(11):416-428.
    93. Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J., Fish, L.J., Worland, A.J., Peliea, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D. and Harbeul, N.P. "Green revolution" genes encode mutant gibberellin response modulators[J]. Nature., 1999,400(5):256-261.
    94. Pogna, N. E., Autran, J. C., Mellini, F., et al. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat:genetics and relationship to gluten strength[J]. J Cereal Sci.,1990.11(1): 15-34.
    95. Purss, G. Studies of varietal resistance to crown rot of wheat caused by Fusarium graminearum Schw[J]. Queensland Journal of Agricultural and Animal Sciences.,1966,23(1):475-498.
    96. Purss, G. The relationship between strains of Fusarium graminearum Schwabe causing crown rot of various gramineous hosts and stalk rot of maize in Queensland[J]. Australian Journal of Agricultural Research.,1969,20(2):257-264.
    97. Purss, G. Pathogenic specialization in Fusarium graminearum[J]. Australian Journal of Agricultural Research.,1971,22(4):553-561.
    98. Ramakers, C., Ruijter, J.M., Deprez, R.H.L., Moorman, A.F.M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data[J]. Neurosci. Lett.,2003,339(1): 62-66.
    99. Richards, R.A. The effect of dwarfing genes in spring wheat in dry environments I. Agronomic characteristics[J]. Aust. J. Agric. Res.,1992,43(3):517-527.
    100. Sabelli, P., Shewry, P.R.. Characterization and organization of gene families at the Gli-1 loci of bread and durum wheat[J]. Theor. Appl. Genet,1991,83(12):428-434.
    101. Sasaki, T., Burr, B. International rice genome sequencing project:the effort to completely sequence the rice genome[J]. Current Opinion in Biotechnology.,2000,3(2):138-141.
    102. Shewry, P., Parrner, S., Miflin, B. Extraction, separation, and polymorphism of the prolamin storage proteins(secalins) of rye[J]. Cereal Chem.,1983,60(1):1-6.
    103. Shewry, P.R., Miflin, B.J., Lew, E.J., et al. The preparation and characterization of an aggregated gliadin fraction from wheat[J]. J Exp Bot.,1983,34(11):1403-1410.
    104. Shewry, P.R., Miflin, B.J., Kasarda, D.D. The structural and evolutionary relationships of the prolamin storage proteins (secalins) of barley, rye and wheat[J]. Philosophical Transactions of the Royal Society of London, London.,1984,304(1):297-308.
    105. Shewry, P.R., Miflin, B.J. Seed storage proteins of economically important cereals[J]. Adv Cereal Sci Technol.,1985,7(1):1-84.
    106. Shewry, P.R., Halford, N.G., Tatham, A.S. The high molecular weight subunits of wheat, barley and rye:Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality[J]. In:Miflin B.J. (Ed), Oxford Surveys of Plant and Molecular Cell Biology,. Oxford University Press., London.,1989,6(1):163-219.
    107. Shewry, P.R., Tatham, A.S. The prolamin storage proteins of cereal seed:structure and evolution[J]. J Biochem.,1990,267(1):1-12.
    108. Shewry, P.R., Tatham, A.S., Barro, P., Lazzeri, P. Biotechnology of breadmaking:unraveling and manipulating the multi-protein gluten complex[J]. Biotechnology.,1995,13(11):1185-1190.
    109. Shewry, P.R., Tatham, A.S. Disulphide bonds in wheat gluten proteins[J]. J Cereal Sci., 1997,25(3):135-146.
    110. Shewry, P.R., Popineau,Y., Lafiandra, D., Belton, P. Wheat gluten subunits and dough elasticity: findings of the EUROWHEAT project[J]. Trends in Food Sci Tech.,2000,11(12):433-441.
    111. Shewry, P.R., Gilbert, S.M., Savage, A.W.J., Tatham, A.S., Wan, Y.F., Belton, P.S., Wellner, N., D'Ovidio, R., Bekes, F., Halford, N.G. Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties[J]. Theor and Appl Genet.,2003,106(4):744-750.
    112. Singh, N. K., Shepherd, K. W. Linkage mapping of the genes controlling endosperm proteins in wheat[J].2 Genes on the long arms of group-1 chromosome. Theor Appl Genet.,1988,75(4): 642-650.
    113. Singh, N.K., Shepherd, K.W. The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm[J]. Theor. Appl. Genet.,1988,71(1):79-92.
    114. Singh, R.P., Huerta-Espino, J., Rajaram, S., and Crossa, J. Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats[J]. Euphytica.,2001,119(1-2):241-244.
    115. Skeritt, J.H. Glutenin proteins:genetics structure and dough quality-a review[J]. Ag Biotech News Information.,1998,10(8):247-270.
    116. Smiley, R.W., Gourlie, J.A., Easley, S.A., Patterson, L.M., and Whittaker, R.G. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest[J]. Plant Disease.,2005,89(6): 595-604.
    117. Sparrow, D.H., and Graham, R.D. Susceptibility of zinc-deficient wheat plants to colonization by Fusarium graminearum Schw. Group 1. Plant and Soil.,1988,112(2):261-266.
    118. Stephens, A.E., Gardiner, D.M., White, R.G., Munn, A.L., and Manners, J.M. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat[J]. Mol. Plant Microbe In.,2008,21(12):1571-1581.
    119. Stelmakh, A.E. Genetic systems regulating flowering response in wheat[J]. Euphytica., 1998,100(1-3):359-369.
    120. Summerell, B.A., and Burgess, L.W. Stubble management practices and the survival of Fusarium graminearum Group 1 in wheat stubble residues[J]. Australasian Plant Pathology.,1988,17(4): 88-93.
    121. Summerell, B.A., Burgess, L.W., and Klein, T.A. The impact of stubble management on the incidence of crown rot of wheat[J]. Australian Journal of Agricultural Research.,1989,29(1): 91-98.
    122. Summerell, B.A., Burgess, L.W., Klein, T.A., and Pattison, A.B. Stubble management and the site of penetration of wheat by Fusarium graminearum Group 1[J]. Phytopathology.,1990,80(9): 877-879.
    123. Swan, L.J., Backhouse, D., and Burgess, L.W. Surface soil moisture and stubble management practice effects on the progress of infection of wheat by Fusarium pseudograminearum[J]. Australian Journal of Experimental Agriculture.,2000,40(5):693-698.
    124. Tao, H.P., Kasarada, D.D. Two-dimensional gel mapping and N-terminal sequencing of LMW glutenin subunits[J]. J Exp Bot.,1989,40(218):1015-1020.
    125. Vazquez, J.F., Ruiz, M., Nieto-Taladriz, M.T., Albuquerque, M.M. Effects on gluten strength of low molecular glutenin subunits coded by alleles at Glu-A3 and Glu-B3 loci in durum wheat. J Cereal Sci.,1996,24(2):125-130.
    126. Wallwork, H., Butt, M., Cheong, J.P.E., and Williams, K.J. Resistance to crown rot in wheat identified through an improved method for screening adult plants Resistance to crown rot in wheat identified through an improved method for screening adult plants[J]. Australas. Plant Path.,.2004, 33(1):1-7.
    127. Wearing, A.H., and Burgess, L.W. Distribution of Fusarium roseum 'Graminearum' Group 1 and its mode of survival in eastern Australian wheat belt soils[J]. Transactions of the British Mycological Society.,1977,69(3):429-442.
    128. Wessels, J.G.H., Sietsma, J.H. Fungal cell walls:A survey[A].In:Tannerw.loewus FA(eds), Encyclopedia of plant physicol,New Series, Voll 3B. Springger-Verlag, New York.,1981:352-394.
    129. Wildermuth, G.B., McNamara, R.B., and Quick, J.S. Crown depth and susceptibility to crown rot in wheat[J]. Euphytica.,2001,122(2):397-405.
    130. Wildermuth, G.B., Thomas, G.A., Radford, B.J., McNamara, R.B, Kelly, A. Crown rot and common root rot in wheat grown under different tillage and stubble treatments in southern Australia[J]. Soil Tillage Res.,1997,44(3):211-224.
    131. Wildermuth, GB., McNamara, R.B. Testing wheat seedlings for resistance to crown rot caused by Fusarium graminearum group 1. Plant Dis.,1994,78(10):949-953.
    132. Wildermuth, GB., Purss, GS. Further sources of field resistance to crown rot (G zeae) of cereals in Queensland[J]. Aust. J. Exp. Agric. Ani. Husb.,1971,11(51):455-458.
    133. Williams, K.J., Dennis, J.I., Smyl, C., and Wallwork, H. The application of species-specific assays based on the polymerase chain reaction to analyse Fusarium crown rot of durum wheat. Australasian Plant Pathology.,2002,31(2):119-127.
    134. Woriand, A.J., Korzun, V., Roder, M.S., Ganal, M.W., Law, C.N. Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ.The distribution and adaptive significance of allelie variants at the Rht8 locus of wheat as revealed by microsatellite screening[J]. Theor. Appl. Genet.,1998,96(8): 1110-1120.
    135. Worland, A.J., Bomer, A., Korzun, V., Li, W.M., Petrovie, S., and Sayers, E. J. The influence of Photoperiod genes on the adaptability of European winter wheats[J]. Euphytica.,1998,100(1-3): 385-394.
    136. Worland, A.J. The influence of flowering time genes on environmental adaptability in European wheats[J]. Euphytica.,1996,89(1):49-57.
    137. Worland, A.J., Sayers, E.J., and Bomer, A. The genetics and breeding potential of Rhtl2,a dominant dwarfing gene in wheat[J]. Plant Breed.,1994,113(3):187-196.
    138. Worland, A.J., Petrovic, S. and Law, C.N. Genetic analysis of chromosome 2D of wheat Ⅱ. The importance of this chromosome to Yugoslavian varieties[J]. Plant Breed.,1988,100(4):247-259.
    139. Worland, A.J., Petrovie, S. The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27[J]. Euphtica.,1988,38(1):55-63.
    140. Worland, A. J., and Law, C.N. An effect of temperature on the fertility of wheats containing the dwarfing genes Rhtl, Rht2, and Rht3[R]. Annual Report, Plant Breed. Institute, Cambridge.,1985: 69-71.
    141. Wong, P.T.W., Mead, J.A., and Croft, M.C. Effect of temperature, moisture, soil type and Trichoderma species on the survival of Fusarium pseudograminearum in wheat straw[J]. Australasian Plant Pathology.,2002,31(3):253-257.
    142. Wrigley, C. W. Giant proteins with flour power [J]. Nature,1996,381 (6585):738-739.
    143. Wright, S.T.C. Growth and cellular differentiation in the wheat coleoptile (Triticum vulgare). Ⅱ. Factors influencing the growth response to gibberellin acid, kinetin and indolyl-3-acetic acid [J]. J. Exp.Bot.,1966,17(1):165-176.
    144. Wright, S.T.C. A sequential growth response to gibberelin acid, kinetin and indolyl-3-acetic acid in the wheat coleoptile (Triticum vulgare L.)[J]. Nature,1961,190(1961):699-700.
    145. Yasphal, Sen. A., Venkateshwari, J., et al. Pyramiding of chitinase and glucanase for fungal resistance [J]. Indian Journal of Experiment Biology,1999,37(6):579-583.
    146. Zhang, W., Gianibell,i M.C., Rampling, L.R., Gale, K.R. Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum. L) [J]. Theor. Appl. Genet.,2004,108(7):1409-1419.
    147. Zhao, H.X., Guo, A.G., Hu, S.W., Fan, S.H., Zhang, D.P., Ren, S.L., Wang, R.J., Development of primers specific for LMW-GS Genes at Glu-D3 and Glu-B3 loci and PCR Amplification[J]. Acta Agronomica Sinic.,2004,30(2):126-130.
    148.郭保宏,宋春华,贾继增.我国小麦品种的Rht1、Rht2矮秆基因鉴定及分布研究[J].中国农业科学,1997,30(5):56-60.
    149.郭北海,张艳敏,李洪杰等.小麦株高近等基因系的RAPD标记研究[J].华北农学报,2000,15(1):7-11.
    150.侯永翠.大麦资源遗传多样性及贮藏蛋白基因克隆研究[D].雅安:四川农业大学,2005:
    151.胡明,李晓宇,马平,朱宝成.抗真菌蛋白研究进展[J].生物技术通报,2004,(03):13-17.
    152.胡萍,安成才,李毅等.原核表达的天花分蛋白和另外两种蛋白具有体外抗真菌活性[J].微生物学报,1999,39(3):234-240.
    153.贾继增,丁寿康,李月华,张辉.中国小麦的主要矮秆基因及矮源的研究[J].中国农业科学,1992,25(1):1·5.
    154.蒋跃明,马国华,陈芳.芒果采后潜伏真菌活化与几丁酶、p-l,3-葡聚糖酶的研究[J].植物保护学报,1995,22(1):80-84.
    155.金善宝.中国小麦学[M].北京:中国农业出版社,1996:153.
    156.蓝海燕,田颖川.表达β-1,3-葡聚糖酶及chitinase基因的转基因烟草及其抗真菌病的研究[J].遗传学报,2000,27(1):70-77.
    157.李杏普,庞春明,蒋春志等.矮秆基因对春小麦植株生长发育的影响及对籽粒产量的间接作用[J].华北农学报,1998,13(4):1-7.
    158.李珍.我国大麦种质资源评价与利用[J].大麦与谷类科学,2007,(2):1-4.
    159.刘冬成,高睦枪,关荣霞等.小麦株高性状的QTL分析[J].遗传学报,2002,29(8):706-711.
    160.唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002:648.
    161.王莹,朱坤华,张永鑫.二棱和四棱皮大麦农艺性状对产量的通径分析与比较研究[J].河南师范大学学报,2002,30(2):64.
    162.周阳,何中虎,张改生等.用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布[J].作物学报,2003,29:810-814.
    163.周阳,何中虎,张改生等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报,2004,30(6):531-535