海岛棉ERF族B3和B1亚组转录因子基因的克隆与特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是重要的经济作物,各种病害特别是黄萎病严重影响着棉花生产,基因工程技术的发展为棉花抗病育种提供了新途径。ERF族转录因子通过ERF域和GCC-box等顺式元件相互作用,调控下游基因如病程相关蛋白基因的转录过程,从而改变植物抗病、抗逆性状,在植物抵抗生物和非生物胁迫中扮演重要角色。ERF族转录因子分为不同组类,其中B3亚组成员通过上调启动子中含有GCC-box元件基因的转录活性,增强植物体抗病性,而B1亚组转录因子对启动子中含有GCC-box基因的转录活性起抑制作用,具有防止下游基因过度激活的功能。克隆这两亚组基因、探究其生物学功能,对农作物抗病性状的遗传改良具有重要意义。
     为了克隆与棉花黄萎病抗性相关的B3/B1亚组转录因子基因,本研究首先利用陆地棉EST库进行电子克隆,获得20个B3亚组和9个B1亚组陆地棉ERF族基因。然后根据海岛棉和陆地棉的同源性及ERF族转录因子的保守性,以黄萎病处理的海岛棉幼苗cDNA为模板,利用PCR技术扩增出29个具有完整阅读框的同源基因,其中27个是第一次从海岛棉分离出的新基因。利用实时荧光定量技术,对大丽轮枝菌孢子液处理的海岛棉幼苗根组织中各基因转录本量分析发现:GbB3002、GbB3003、GbB3009、GbB3016-20、GbB1006、GbB1007等多个基因明显增加,上调幅度在7倍以上;GbB3012和GbB3015两个基因只有处理前的三分之一左右;GbB3010基本没有变化;其它基因虽有上升,但上调幅度较小,都在5倍以下。利用RACE技术扩增基因的5’-和3’-UTR,获得4个基因全长cDNA序列,分别命名为GbEREB3(GbB1007)、GbEREB4 (GbB1006)、GbEREB5 (GbB3009)和GbEREB6 (GbB3015),并提交到NCBI GenBank数据库,注册号分别是JN003806,JN003807,JN003808,JN003809。
     在利用生物信息学对4个基因分析的基础上,构建GFP瞬时表达载体转化洋葱表皮细胞进行亚细胞定位分析,结果表明四个转录因子均分布于核内;利用BL21(DE3)原核表达菌株,表达GST和转录因子融合蛋白,纯化后进行凝胶阻滞实验,证明它们和GCC-box能够特异结合;构建超表达载体转化烟草,对T_0代植株进行半定量和荧光定量分析发现, GbEREB3/4和GbEREB5/6在转基因阳性植株中均得到异位表达,而防卫基因NtCHI-B和NtPR2的转录本量相应地减少和增加,该结果表明GbEREB3/4和GbEREB5/6分别具有下调和上调NtCHI-B和NtPR2基因转录活性的功能,暗示这些基因参与防卫反应过程。另外,构建超表达载体将B1亚组(Gb)EREB2(GbB1004)基因转入陆地棉,实时荧光定量分析表明T_0阳性棉株中几丁质酶(CHI)和β-1,3-葡聚糖苷酶(BGL)基因的转录活性下降;测量GbEREB2转基因阳性棉株的离体叶片失水率发现比受体叶片更容易失水,表明GbEREB2基因不仅参与棉花的防卫反应过程,而且与植物的水分代谢生理过程密切相关。
     研究表明这些基因参与棉花对黄萎病菌防卫反应的应答过程,可能参与棉花对黄萎病抗性的调控。有关转基因阳性株系对黄萎病菌抗性水平的鉴定分析研究,正在进行之中。本研究为抗黄萎病相关基因的筛选奠定了基础。
Cotton is an important cash crop, however, a variety of diseases, especially Verticillium wilt have exerted serious impact on cotton production. The development of genetic engineering technique provides a new way for cotton disease resistance breeding. Transcription factors of ERF (Ethylene responsive factor) family play an important role in resistance and/or tolerance to biotic and/or abiotic stresses. All members of ERF family contain a highly conservative DNA binding domain, which endow the transcription factors with the capacity to recognize and combine with the GCC-box and nonGCC-box. Via these interactions, they are able to regulate the expression of downstream genes such as PRs (pathogenesis-related protein genes) which contain GCC-box in their promotors, thereby changing the plant traits of disease resistance and stress tolerance. ERF family transcription factors can be divided furhter into many different groups or subgroups. The transcription factors of B3 subgroup are able to serve as activators and up-regulate the transcription activities of GCC-box-promoted genes, and in turn enhance the plant resistance to diseases. On the contrary, B1 subgroup members can inhibit the expression of GCC-box-promoted genes, for preventing overactivation of defense genes. To clone genes of the two subgroups and research their function have significance in genetic improvement of the disease resistance of crops.
     For the purpose to isolate the B3 and B1 subgroup genes related to resistance to verticillium wilt, in this study, we firstly cloned in silico 29 genes including 20 B3 and 9 B1 members utilizing the EST (Expression sequence tag) data of Gossypium hirsutum. Then, according to the homology between Gossypium barbadense and Gossypium hirsutum, and the conservative characteristics of ERF family transcription factors, we cloned 29 genes, containing complete coding region homologous to upland cotton, by PCR using cDNA extracted from Sea Island cotton seedlings infected with verticillium dahliae as templates, and 27 of the 29 genes are novel. RT-qPCR(Real-time Fluorescence Quantitative Polymerase Chain Reaction)analysis showed that, compared with the control without inoculation, after treated with Verticillium dahliae, the expression of GbB3002、GbB3003、GbB3009、GbB3016-20、GbB1006 and GbB1007 genes in roots tissue were up-regulated obiviously, more than 7 times; however, the GbB3012 and GbB3015 genes were down-regulated at 2-3 fold, and the GbB3010 didn’t basically change, and the transcripts accumulation of other genes had a slight increase less than 5 fold. Then, we cloned the full length cDNAs of the four genes of GbEREB3(GbB1007)、GbEREB4(GbB1006)、GbEREB5(GbB3009) and GbEREB6(GbB3015) by RACE (Rapid amplification of cDNA end) technique, and submmitted them to NCBI GenBank data and received the accession numbers : JN003806, JN003807, JN003808 and JN003809.
     On the basis of bioinformatics analysis, constrution of over-expression vectors inserted respectively with the four genes fragaments and transformation into onion epidermis cell were performed for transient expression analysis, and the results showed that they were all nucleus-localized proteins, and meanwhile, the results of EMSA (Electrophoretic mobility shift assay) proved that they were all able to combined with GCC-box. Semi-quantitative PCR and RT-qPCR analyses in transgenic tobacco showed that GbEREB3/4/5/6 had the capacity to activate or inhibit the expression of PRs. Furthermore, the results of RT-qPCR analysis also showed that the expression levels of both chitinase (CHI)andβ-1,3-glucanase (BGL)genes decreased in transgenic cotton plants, in which GbEREB2 (GbB1004) over-expressed. In addition, experiments demonstrated that the leaf water loss rate of transgenic cotton plants with GbEREB2 increased compared with non-transgenic cotton lines. These data implied that (Gb)EREB2, a member of B1subgroup genes, involved in the resistance to diseases and water metabolism.
     This study shows that these genes are involved in the precesses of cotton defense responses to attacks from Verticillium dahliae, and may regulate the resistance of cotton to verticillum wilt. The identification and analysis of cotton resistance against Verticillium dahliae are in progress. And this study provides the basis for screening of genes relative to cotton resistance to verticillium wilt.
引文
[1]陈大华,叶和春,李国凤等.绿色荧光蛋白基因在青蒿转基因芽中的表达.植物学报,1999,41(5):490~493.
    [2]陈其瑛.棉花枯萎病和黄萎病的综合防治.北京:科学技术文献出版社,1983.
    [3]丁笑生,于广丽.棉花黄萎病及其抗病育种的研究.生物技术,2005.15(96):96~97.
    [4]窦道龙.棉花抗黄萎病基因工程研究和防卫反应相关基因的克隆[博士论文].北京:中国农业科学院,2002.
    [5]杜娟,柴友荣.植物转录抑制子的结构特征及其作用机理.植物学通报,2008,25:344~353.
    [6]杜威世,杜雄明,马峙英.棉花黄萎病抗性遗传和分子生物学研究进展.棉花学报,2002,14(5):311~317.
    [7]房卫平,王家典,孙玉堂等.棉花抗黄萎病种质豫棉19,21号的抗性遗传研究.河南农业科学,2003b,7:14~16.
    [8]房卫平,祝水金,季道藩.陆地棉和海岛棉的黄萎病抗性遗传研究.棉花学报,2003a,15(1):3~7.
    [9]高必达.植物抗病基因工程研究进展.湖南农学院学报,1994,20(6):587~593.
    [10]郭小平,潘家驹.棉花黄萎病抗性遗传研究.南京农业大学学报,1989,12(12):12~17.
    [11]贺学礼,赵丽莉,李英鹏.NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响.生态学报,2005,25(1):188~193.
    [12]贾士荣,郭三堆,安道昌.转基因棉花.北京:科学出版社,2001.
    [13]贾士荣.我国棉花基因工程的研究进展.中国农业科技导报,2000,2(2):18~20.
    [14]蒋玉蓉,房卫平,祝水金等.陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报,2005,3:337~341.
    [15]景忆莲,刘耀斌,范万法等.棉花黄萎病及其抗性育种研究进展.西北农业学报,1999,8(3):106~110.
    [16]乐锦华,祝建波,崔百明等.利用目的基因转化技术培育棉花抗病新品种.石河子大学学报(自然科学版), 2002,6(2):173~178.
    [17]李成伟,丁锦平,刘冬梅等.棉花黄萎病及抗病育种研究进展.棉花学报,2008,20 (5):385~390.
    [18]李晓宇,胡明,朱宝成等.氨基酸铜对棉花黄萎病株几种酶活性的影响.棉花学报,2004,16(3):152~155.
    [19]李延军.中国棉花黄姜病菌营养体亲和性研究和棉花病虫害综合防治及研究进展.北京:中国农业科技出版社,1990,360~364.
    [20]铃木直治.近代植物病理化学(张际中,齐显章等译)上海:上海科学技术出版社,1985.
    [21]刘坤,李付广,张雪妍.EAR型转录抑制子和嵌合抑制子沉默技术研究进展及应用,分子植物育种(网络版),2010,8(12).
    [22]吕金殿,甘莉,阎龙飞.棉花黄萎病菌毒素的纯化与特性研究.植物病理学报,1991,21(2):127~133.
    [23]吕泽勋,李久蒂,朱至清.用绿色荧光蛋白基因(gfp)标记产酸克雷伯氏菌SG-11研究其在水稻苗期根部的定植.农业生物技术学报,2001,9(1):13~18.
    [24]马存,简桂良,孙文姬.我国棉花抗黄萎病育种现状、问题及对策.中国农业科学,1997,30 (2):58~64.
    [25]马存,简桂良,孙文姬.我国棉花品种抗黄萎病鉴定存在的问题及对策.棉花学报,1999,11(3):163~166.
    [26]马存,简桂良,郑传临.中国棉花抗枯、黄萎病育种50年.中国农业科学,2002,35(5):508~513.
    [27]马存,简桂良,杨家荣等.棉花枯萎病和黄萎病的研究.北京:中国农业出版社,2007,61~62.
    [28]马峙英,王省芬,张桂寅等.不同来源海岛棉品种黄萎病抗性遗传研究.作物学报,2000,26(3):316~321.
    [29]孟宪鹏.海岛棉抗病相关ERF转录因子的克隆与鉴定[博士论文].北京:中国农业科学院,2009.
    [30]潘家驹,张天真,蒯本科等.棉花黄萎病抗性遗传研究.南京农业大学学报,1999,17 (3):8~18.
    [31]齐俊生,马存,赵良忠等.海岛棉品种抗黄萎病遗传规律初步研究.棉花学报,2000,12(4):169~171.
    [32]沈其益.棉花病害-基础研究与防治.北京:科学出版社,1992.
    [33]石磊岩.我国棉花黄萎病研究进展.棉花学报,1995,7(4):243~245.
    [34]王希庆,陈柏君,印莉萍.植物中的MYB转录因子.生物技术通报,2003,(2): 22~25.
    [35]王省芬,张桂寅,李瑞奇等.陆地棉黄萎病抗性的遗传研究.河北农业大学学报,1999,22(2):10~14.
    [36]王雪,马骏,张桂寅等.黄萎病菌胁迫条件下棉花叶片的蛋白质组分析.棉花学报,2007,19 (4):273~278.
    [37]王志兴,刘昱辉,孙敬三等.葡萄糖氧化酶基因的克隆及其在转基因烟草中的表达.自然科学进展,2003,13(3):248~252.
    [38]吴家和,张献龙,罗晓丽等.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性.遗传学报,2004,31(2):183~188.
    [39]谢迎秋,孟蒙,朱祯.植物反式作用因子研究进展.高技术通讯,2000,2:97~102.
    [40]许志刚.普通植物病理学.北京:高等教育出版社,2009.
    [41]张金锋,薛庆中.稻飞虱胁迫对水稻植株内主要保护酶活性的影响.中国农业科学,2004,37 (10):1487~1491.
    [42]张天真,周兆华,闵留芳等.棉花对黄萎病的抗性遗传模式及抗(耐)病品种的选育技术.作物学报,2000,26(6):575~586.
    [43]张绪振,张树琴,陈吉.我国棉花黄萎病菌“种”的鉴定.植物病理学报,1981,11 (3):13~18.
    [44]章元寿,王建新.棉花黄萎病菌毒素产生条件的研究.南京农业大学学报,1988,11(3):57~61.
    [45]章元寿,王建新,顾本康等.用棉花黄萎病菌毒素检测棉花抗病性的研究.植物保护,1991a,(4):2~4.
    [46]章元寿,王建新,周明国.大丽轮枝菌毒素的多糖组分对棉花致萎作用的研究.菌物学报,1991b,10(2):155~158.
    [47]章元寿,王建新,周明国等.棉花黄萎病菌毒素对棉花作用机制的初步探讨.植物病理学报,1991c,21(1):49~52.
    [48]章元寿,王建新,方中达等.大丽轮枝菌毒素的脂肪组分对棉花致萎活性的研究.真菌学报,1992,11 (3):229~233.
    [49]余沛涛,薛应龙.植物苯丙氨酸解氨酶(PAL)在细胞分化中的作用.植物生理学报,1987,13 (1):14~19.
    [50] Allen MD, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by aβ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 1998, 17 (18): 5484~5496.
    [51] Anderson JP, Badruzsaufari E, Schenk PM, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16: 3460~3479.
    [52]Anderson JP, Lichtenzveig J, Gleason C, et al. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia.Plant Physiol, 2010, 154 (2): 861~873.
    [53] Anderson JP, Singh KB. et al. Interactions of Arabidopsis and M. truncatula with the same pathogens differ in dependence on ethylene and ethylene response factors. Plant Signal Behav, 2011, 6 (4): 551~552.
    [54] Atkinson MM, Midland SL, Sims JJ, et al. Syringolidel triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4.Plant Phy- siology, 1996, 112: 297~302.
    [55] Aukerman MJ, Schmidt RJ, Burr B, et al. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding, Genes Dev, 1991, 5 (2): 310~320.
    [56] Bell AA. Formation of gossypol in infected or chemically irritated tissues of Gossypium species. Phytopathology, 1967, 57: 759~764.
    [57] Bell AA. Phytoalexin production and Verticillium wilt resistance in cotton. Phyto-pathology, 1969a, 59: 1119~1127.
    [58] Bell AA, Presley JT, et al. Temperature effects upon resistance and Phytoalexin synthesis in cotton inoculated with Verticillum albo-atrum. Phytopathology, 1969b, 59: 1141~1146.
    [59] Bell AA, Stipanovic RD, Howell CR, et al. Antimicrobial terpenoids of Gossypium: Hemigossypol, 6-methoxyhemigossypol and 6- deoxyhemigossypol. Phyto-chemistry, 1975, 14: 225~231.
    [60] Bell AA. Verticillium wilt. In: Hillocks JH (ed) Cotton Diseases. Wallingford UK: CAB International, 1992, 87~126.
    [61] Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29 (1) : 23~32.
    [62] Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact, 2004, 17 (7): 763~770.
    [63] Bhatnagar-Mathur P, Vadez V, Sharma KK. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Pl Cell Rep, 2008, 27: 411~424.
    [64] Broekaert WF, DelauréSL, De Bolle MFC, et al. The Role of Ethylene in Host-Pathogen Interanctions. Annu.Rev. Phytopathol, 2006, 44: 393~416.
    [65] Champion A, Hebrard E, Parra B, et al. Molecular diversity and gene expression of cotton ERF transcription factors reveal that group Ixa members are responsive to jasmonate, ethylene and Xanthomonas. Molecular Plant Pathology, 2009, 10 (4): 471~485.
    [66] Chandler JW, Cole M, Flier A, et al. The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development, 2007, 134 (9): 1653~1662.
    [67] Chandler JW, Cole M, Flier A, et al. BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN-LIKE. Plant Mol Biol, 2009, 69 (1-2): 57~68.
    [68] Chandler JW, Cole M, Jacobs B, et al. Genetic integration of DORNR?SCHEN and DORNR?SCHEN-LIKE reveals hierarchical interactions in auxin signalling and patterning of the Arabidopsis apical embryo.Plant Mol Biol, 2011, 75 (3): 223~236.
    [69] Chakravarthy S, Tuori RP, D'Ascenzo MD, et al. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 2003, 15 (12): 3033~3050.
    [70]Chen G, Hu Z, Grierson D. Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. J Plant Physiol, 2008, 165 (6): 662~670.
    [71] Chen L, Zhang Z, Liang H, et al. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot, 2008, 59 (15): 4195~4204.
    [72]Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci, 2008, 9 (12): 2601~2613.
    [74] Chuck G, Muszynski M, Kellogg E, et al. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298 (5596): 1238~1241.
    [75] Cole M, Chandler J, Weijers D, et al. DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development, 2009, 136 (10): 1643~1651.
    [76] Cui YX, Bell AA, Joost O, et al. Expression of potential defense response genes in cotton. Physiology Molecular Plant Pathology, 2000, 56: 25~31.
    [77] Daayf M, Nicole B, Boher A, et al. Early vascular defense reactions of cotton roots infected with a defoliating mutant strain of Verticillium dahliae. European Journal of Plant Pathology, 1997, 103:125~136.
    [78] Delledonne M, Xia Y, Dixon RA, et al. Nitric oxide functions as a signal in plant disease resistance, Nature, 1998, 394: 585~588.
    [79] Devey ME, Roose ML. Genetic analysis of Verticillium wilt tolerance in cotton using pedigree data from three crosses. Theor Appl Genet ,1987, 74: 162~167.
    [80] Dubery IA, Slater V. Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochemistry, 1997, 44(8): 1429~1434.
    [81] Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like Gene of Arabidopsis with Pleiotropic Roles in Ovule Development and Floral Organ Growth. The Plant Cell, 1996, 8:155~168.
    [82] Elsmer EF. Oxygen activation and oxygentoxicity. Annual Review of Plant Physiology, 1982, 33: 73~96.
    [83] Eyal Y, Meller, Y, Lev-Yadun S, et al. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J, 1993, 4: 225~234.
    [84] Felix G, Meins F, Jr, et al. Ethylene regulation ofβ-1,3-glucanase in tobacco. Planta, 1987, 172: 386~392.
    [85] Felix G, Grosskopf DG, Regenass M, et al. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proceedings of the National Academy of Sciences USA, 1991, 88: 8831~8834.
    [86] Fischer U, Dr?ge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact, 2004, 17 (10): 1162~1171.
    [87] Flor. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9: 275~296.
    [88] Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7(2): 71~86.
    [89] Fujimoto SY, Ohta M, Usui A, et al. M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393~404.
    [90] Gao S, Zhang H, Tian Y, et al. Expression of TERF1 in rice regulates expression of stress- responsive genes and enhances tolerance to drought and high- salinity. Plant Cell Rep, 2008, 27 (11): 1787~1795.
    [91] González-Lamothe R, Boyle P, Dulude A, et al. The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell, 2008, 20 (11): 3136~3147.
    [92] Goremykin V, Moser C. Classification of the arabidopsis ERF gene family based on Bayesian analysis. Mol Biol (Mosk), 2009, 43 (5): 789~794.
    [93] Graham JS , Pearce G, Merryweather J, et al. Wound-induced proteinase inhibitors from tomatoleaves I. The cDNA-deduced primary structure of pre-inhibitor I and its post-translation processing . The Journal of Biological Chemistry, 1985a, 260: 6555~6560.
    [94] Graham JS , Pearce G, Merryweather J, et al. Wound-induced proteinase inhibitors from tomato leaves II. The cDNA-deduced primary structure of pre-inhibitor II. The Journal of Biological Chemistry, 1985b, 260:6561~6564.
    [95] Gu YQ, Yang C, Thara VK, et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase.Plant Cell, 2000, 12 (5): 771~786.
    [96] Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14 (4): 817~831.
    [97] Guo ZJ, Chen XJ, Wu XL, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol, 2004, 55 (4): 607~618.
    [98] Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7: 465~471.
    [99] Hahlbrock K, Scheel D, Logemann E, et al. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proceedings of the National Academy of Sciences USA, 1995, 92: 4150~4157.
    [100] Hancock JT, Desikan R, Clarke A, et al. Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiology and Biochemistry, 2002, 40: 611~617.
    [101] Hao D, Ohme-Takagi M, Sarai A. Unique Mode of GCC Box Recognition by the DNA-binding Domain of Ethylene-responsive Element-binding Factor (ERF Domain) in Plant. The Journal of Biological Chemistry, 1998, 273 (41): 26857~26861.
    [102] Hart CM, Nagy F, Meins F, et al. A 61 bp enhancer element of the tobaccoβ-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol. Biol, 1993, 21: 121~131.
    [103] He P, Warren RF, Zhao T, et al. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato.Mol Plant Microbe Interact, 2001, 14 (12):1453~1457.
    [104] Heath MC. Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 2000a, 3: 315~319.
    [105] Heath MC. Hypersensitive response-related death. Plant Molecular Biology, 2000b, 44: 321~ 334.
    [106] Hill et al. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Molecular Biology, 1999, 40 (2): 289~296.
    [107] Hillocks RJ . Hillocks JH (ed) Cotton Diseases. CAB International, Wallingford. 1992.
    [108] Hiratsu K, Ohta M, Matsui K, et al. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett,2002, 514: 351~354.
    [109] Hiratsu K, Mitsuda N, Matsui K, et al. Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biohphys Res Commun, 2004, 321: 172~178.
    [110] Huang H, Tudor M, Su T, et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell, 1996, 8(1): 81~94.
    [111] Huang Z, Zhang Z, Zhang X, et al. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Let., 2004, 573 (1-3): 110~116.
    [112] Immink RG, Ferrario S, Busscher-Lange J, et al. Analysis of the petunia MADS-box transcription factor family, Mol Genet Genomics, 2003, 268 (5): 598~606.
    [113] Jach G, Gorhardt B, Mundy J, et al. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J, 1995, 8: 97~109.
    [114] Jia Y, Martin GB. Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants. Plant Mol Biol, 1999, 40 (3): 455~465.
    [115] Jin LG, Liu JY. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirsutum). Plant Physiology and Biochemistry, 2008, 46: 46~53.
    [116] Jofuku KD, Boer BGWd, Montagu MV, et al. Control of Arabidopsis Flower and Seed Development by the Homeotic Gene APETALA2. The Plant Cell, 1994, 6: 1211~1225.
    [117] Kazan. Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci, 2006, 11 (3): 109~112.
    [118] Kende. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1993, 44:283~307.
    [119] Kim H S, Delaney T P. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J, 2002, 32 (2):151~163.
    [120] Kirch T, Simon R, Grünewald M, et al. The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. Plant Cell, 2003, 15 (3): 694~705.
    [121] Kuhlmann M, Horvay K, Strathmann A, et al. Theα-Helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response. J Biol Chem, 2003, 278 (10): 8786~8794.
    [122] Lee SJ, Park JH, Lee MH, et al. Isolation and functional characterization of CE1 binding proteins.BMC Plant Biol, 2010, 10: 277~290.
    [123] Li A, Zhang Z, Wang XC, et al. Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar-related genes. J Integr Plant Biol, 2009,51(2):184~193.
    [124] Liang H, Lu Y, Liu H, et al. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J Exp Bot, 2008, 59 (11): 3111~3120.
    [125] Lin, Q, Barbas C F, Schultz P G. Small-molecule switches for zinc finger transcription factors J Am Chem Soc, 2003, 125 (3): 612~613.
    [126] Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem, 1999, 262: 247~257.
    [127] Liu HQ, Wu WR, Duan YL, et al. Towards the positional cloning of a spikelet identity gene frizzle panicle (FZP) in rice (Oryza sativa L.). Yi Chuan Xue Bao, 2003, 30 (9): 811-816.
    [128] Lorenzo O, Piqueras R, Sánchez-Serrano JJ, et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense.Plant Cell, 2003, 15 (1):165~178.
    [129] Lorenzo O, Chico JM, Sánchez-Serrano JJ, et al. Jasmonate-insensitive 1encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell, 2004, 16: 1938~1950.
    [130] Low PS, Merida JR. The oxidative burst in plant defense: function and signal transduction. Physiologia Plantarum, 1996, 96: 533~542.
    [131] Marie JC , Dora RB , San S. Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-responses of monocot gene. The Plant Journal ,1994, 6 (2): 141~150.
    [132] Martin C, Paz-ares J. MYB transcription factors in plants. Trends Genet, 1997, 13 (2): 67~73.
    [133] Mauch-Mani B, Slusarenko AJ. Production of salicylic acid precursors is a major function of phenyl-alanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell, 1996, 8: 203~212.
    [134] Meller Y, Sessa G, Eyal Y, et al. DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol. Biol, 1993, 23: 453~463.
    [135] Mcfadden HG, Chapple R, Feyter RDE, et al. Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae.Physiological and Molecular Plant Pathology, 2001, 58: 119~131.
    [136] McGrath KC, Dombrecht B, Manners JM, et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.Plant Physiol, 2005, 139 (2): 949~959.
    [137] Memelink J. Regulation of gene expression by jasmonate hormones.Phytochemistry, 2009, 70 (13-14): 1560~1570.
    [138] Meyer A, Slater V, Dubery IA. et al. A phytotoxic protein-lipopolysaccharide complex produced by Verticillium dehliae. Phytochemistry, 1994, 35:1449~1453.
    [139] Midoro-Horiuti T, Brooks EG, Goldblum RM. Pathogenesis-related proteins of plants as allergens Ann Allergy Asthma Immunol, 2001, 87 (4): 261~271.
    [140] Moose SP, Sisco PH. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermalcell identity. Genes Dev, 1996, 10:3018~3027.
    [141] Nakano T, Suzuki K, Fujimura T, et al. Genome-wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiology, 2006, 140: 411~432.
    [142] Nielsen KK, Nielsen JE, Madrid SM, et al. Charaeterization of a new antifungal chitin-binding peptide from sugar beet leaves.Plant Physiol, 1997, 113: 83~91.
    [143] Nurnberger T, Nennstiel D, Jabs T, et al. High affinity binding of a fungal oligopeptide elici- tor to parsley plasma membranes triggers multiple defense responses, Cell, 1994, 78: 449~ 460.
    [144] Ohme-Takagi M, Shinshi H. Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol, 1990, 15: 941~946.
    [145] Ohme-Takagi M, Shinshi H. Ethylene-Inducible DNA Binding Proteins That Interact with an Ethylene- Responsive Element. The Plant Cell, 1995, 7: 173~182.
    [146] Ohta M, Matsui K, Hiratsu K, et al. Repression domains of classII ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959~1968.
    [147] Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Sci. USA, 1997, 94: 7076~7081.
    [148] O?ate-Sánchez L, Anderson JP, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol, 2007, 143 (1): 400~409.
    [149] Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco.Plant Cell, 2001, 13 (5): 1035~1046.
    [150] Pedras MSC, Okanga FI, Zaharia IL, et al. Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry, 2000, 53: 161~176.
    [151] Peebles CA, Hughes EH, Shanks JV, et al. Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng, 2009, 11 (2): 76~86.
    [152] Pieterse CMJ, Van Wees SCM, Van Pelt JA, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell, 1998, 10: 1571~1580.
    [153] PréM, Atallah M, Champion A, et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, 2008, 147(3): 1347~1357.
    [154] Qiao ZX, Huang B, Liu JY. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum). Biochimica et Biophysica Acta, 2008, 1779: 122~127.
    [155] Qin J, Zuo KJ, Zhao JY, et al. Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in tansgenic tobacco. J. Biosci, 2006, 31(2): 255~263.
    [156] Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1 improves rice
    [157] Riechmann JL, Heard J, Martin G, et al. Arabidopsis Transcription Factors: Genome-wide Comparative Analysis Among Eukaryotes. Science, 2000, 290 (5499): 2105~2110.
    [158] Robert JG, Elizabeth P, Georgina ML, et al. Green-fluorescent protein fusions for efficient characterization of nuclear targeting.The Plant Journal, 1997, 11(3): 573~586.
    [159] Rounsley SD, Ditta GS, Yanofsky MF. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 1995, 7(8): 1259~1269.
    [160] Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance, The Plant Cell, 1996, 8: 1809~1819.
    [161] Sakuma Y, Liu Q, Joseph G, et al. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidop- sis DREBs, Transcription Factors Involved in Dehydration- and Cold- Inducible Gene Expression. Biochemical and Biophysical Research Communications, 2002, 290: 998~1009.
    [162] SáNCHEZ-SERRANO J, Schmidt R, Schell J, et al. Nucleotide sequence of a proteinase inhibitor II encoding cDNA of potato and its mode of expression . Molecular General Genetics, 1986, 203: 15~20.
    [163] Schnathorst WC, Mathre, DE. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 1966, 56: 1155~1161.
    [164] Shan DM. Genetic engineering for fungal and bacterial diseases, Current Opinion in Bio- technology, 1997, 8 (2): 208~214.
    [165] Singh K, Foley RC, O?ate-Sánchez L. Transcription factors in plant defense and stress responses.Curr Opin Plant Biol, 2002, 5 (5): 430~436.
    [166] Smit F, Dubery IA. Cell wall reinforcement in cotton hypocotyls in response to a V. dahliae elicitor. Phytochemistry, 1997, 44: 811~815.
    [167] Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev, 1998, 12 (23): 3703~3714.
    [168] Song, CP, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 2005, 17(8): 2384~2396.
    [169] Stone BA, Clarke AE.‘Chemistry and biology of(1→3)-β-D-glucans.’Melbourne: La Trobe University Press, 1992.
    [170] Stokes T. ORCAstrating plant primary and secondary metabolism.Trends Plant Sci., 2000, 5 (9): 366.
    [171] Takatsuji H. Zinc-finger transcription factors in plant. Cell Mol Life Sci, 1998, 54(6): 582~596.
    [172] Thara VK, Tang X, Gu YQ, et al. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes pti4 and pti5 independent of ethylene, salicylate and jasmonate. Plant J., 1999, 20 (4): 475~483.
    [173] Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis?. Functional Plant Biology, 2005, 32: 1~19.
    [174] Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repressiondomain.Plant Cell, 2004,16: 533~543.
    [175] Trujillo LE, Sotolongo M, Menéndez C, et al. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol, 2008, 49 (4): 512~525.
    [176] Tsukagoshi H, Saijo T, Shibata D, et al. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor. Plant Physiology,2005,138: 675~685.
    [177] Turner RJ.‘Immunology:a comparative approach.’. London: John Wiley and Sons Ltd., 1994.
    [178] Uknes S, Winter A, Delaney T, et al. Biological induction of systemic acquired resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 1993, 6: 692~698.
    [179] V?geli-Lange R, Hansen-Gehri A, Boller T, et al. Induction of the defense-related glucano- hydrolases,β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci., 1988, 54: 171~176.
    [180] Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 2004, 9: 203~209.
    [181] Van der Graaff E, Dulk-Ras AD, Hooykaas PJ, et al. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana.Development, 2000, 127 (22): 4971~4980.
    [182] Van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 2000, 289 (5477): 295~297.
    [183] Van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J, 2001, 25 (1): 43~53.
    [184] Van der Graaff E, Hooykaas PJ, Keller B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J, 2002, 32 (5): 819~830.
    [185] Van der Graaff E, Nussbaumer C, Keller B. The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene. Mol Genet Genomics, 2003, 270 (3): 243~252.
    [186] Vom Endt D, Soares e Silva M, Kijne JW, et al. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol, 2007, 144 (3): 1680~1689.
    [187] Wang CT, Liu H, Gao XS, et al. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep, 2010, 29 (8): 887~894.
    [188] Ward JM, Smith AM, Shah PK, et al. A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell, 2006, 18 (1): 29~39.
    [189] Weigel D. Letter to the editor: The APETALA2 Domain Is Related to a Novel Type of DNA Binding Domain. The Plant Cell, 1995, (4) : 388~389.
    [190] Wu K, Tian L, Hollingworth J, et al. Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol, 2002, 128 (1): 30~37.
    [191] Xu P, Ling J, Li D, et al. Bressan RA.Identification of a novel DNA-binding protein to osmotin promoter. Sci China C Life Sci, 1998, 41 (6): 657~663.
    [192] Yang Y, Shah J, Klessing DF. Signal perception and transduction in plant defense responses. Genes and Development, 1997, 11: 1621~1639.
    [193] Yang Z, Tian L, Latoszek-Green M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58 (4): 585~596.
    [194] Yang S, Wang S, Liu X, et al. Four divergent Arabidopsis ethylene- responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. FEBS J, 2009; 276 (23): 7177~7186.
    [195] Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35, 155~189.
    [196] Yi SY, Kim JH, Joung YH, et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol, 2004, 136: 2862~2874.
    [197] Zarei A, K?rbes AP, Younessi P, et al. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol, 2011, 75 (4-5): 321~331.
    [198] Li YZ, Zheng XH, Tang HL, et al. Increase ofβ-1,3-Glucanase and Chitinase Activities in Cotton Callus Cells Treated by Salicylic Acid and Toxin of Verticillium dahliae. Acta Botanica Sinica, 2003, 45 (7): 802~808.
    [199] Hongxing Z, Benzhong Z, Bianyun Y, et al. Cloning and DNA-binding properties of ethylene response factor, LeERF1 and LeERF2, in tomato. Biotechnol Lett. , 2005, 27(6):423~428.
    [200] Zhang Z, Zhang H, Quan R, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol, 2009, 150 (1): 365~377.
    [201] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis.Plant Mol Biol, 2010; 73 (3): 241~249.
    [202] Zhang G, Chen M, Chen X, et al. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep., 2010, 37 (2): 809~818.
    [203] Zhang H, Zhang D, Chen J, et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol., 2004, 55 (6): 825~834.
    [204] Zhang H, Li W, Chen J, et al. Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Mol Biol., 2007, 63 (1): 63~71.
    [205] Zhang H, Yang Y, Zhang Z, et al. Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Planta, 2008, 228 (5): 777~787.
    [206] Zhang W, Zou A, Miao J, et al. LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon. Plant Biol (Stuttg), 2011, 13 (2): 343~348.
    [207] Zhang YH, Wang G, Ji J, et al. Construction of a plant expression vector with tomato transcription factor gene Pti5 and studies on transgenic tobaccos.[Article in Chinese] Yi Chuan., 2003, 25 (5): 563~566.
    [208] Zhou J, Tang X, Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16 (11): 3207~3218.
    [209] Zhou J, Zhang H, Yang Y, et al. Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot, 2008, 59 (3): 645~652.
    [210] Zhu Q, Zhang J, Gao X, et al.The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene, 2010, 457 (1-2): 1~12.
    [211] Zhuang J, Cai B, Peng RH, et al. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochemical and Biophysical Research Communications, 2008, 371: 468~474.
    [212] Zuo KJ, Qin J, Zhao JY, et al. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391: 80~90.