海岛棉Rar1、Sgt1、Rac1、KTN1基因及中棉cab基因启动子的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是一种重要的经济作物,在国民经济中具有重要作用。当前我国棉花生产中存在两个关键问题:一是棉花黄萎病危害严重,二是棉纤维品质需进一步改良。针对以上问题,本论文从基因的角度进行了以下三部分研究:
     (1) 海岛棉(Gossypium barbadense)防卫反应相关基因GbRar1、GbSgt1,GbRac1的克隆及转基因烟草的抗病性分析。
     Rar1、Sgt1、Rac1是三个R防卫反应途径的基因,功能定位于R蛋白下游与活性氧激发之间。用简并引物PCR及3’RACE等技术,从海岛棉品种7124中克隆了GbRar1、GbSgt1、GbRac1等三种基因。Southern杂交证明GbRar1、GbRac1在海岛棉基因组中都以单拷贝形式存在。Northern blot表明,三种基因经棉花黄萎病菌诱导后,mRNA表达量显著增加,暗示GbRar1、GbSgt1、GbRac1可能参与海岛棉对黄萎病菌的防卫反应。
     构建了植物表达载体pSgt、pRar和pRac,用根瘤农杆菌LBA4404分别转化烟草品种NC89,Southern杂交证明GbRar1、GbSgt1、GbRac1基因都已分别整合到烟草基因组中。采用离体叶片接种法,用烟草赤星病菌对转基因植株进行抗病性鉴定,以非转基因烟草为对照,结果显示转GbSgt1、GbRar1、GbRac1基因的烟草分别有5株、7株、4株抗性明显提高。
     据我们所知,目前尚没有Rar1和Sgt1在转基因植物中抗病性分析的报道,本实验为植物防卫反应相关蛋白在植物抗病基因工程中的应用进一步提供了实验证据。
     (2) 海岛棉GbKTN1基因的克隆和过量表达对酵母细胞伸长的影响。
     KTN1是一种微管切断蛋白,已知拟南芥KTN1在纤维细胞起始伸长、持续延伸及细胞壁合成过程中起重要作用。用5’RACE/3’RACE从海岛棉7124开花后10d的纤维细胞中分离获得了GbKTN1的cDNA序列。Southern杂交证明GbKTN1在海岛棉基因组中以单拷贝形式存在。半定量RT-PCR结合Southern杂交分析表明,GbKTN1在海岛棉根、茎、叶及纤维细胞中均有表达,以纤维细胞中的表达最高,叶中最低。推测GbKTN1在厚壁组织细胞中的表达要高于其它类型的细胞,但这尚需用实验进一步证明。
     利用裂殖酵母系统,初步分析了GbKTN1对细胞伸长的功能,发现该基因在酵母细胞中过量表达使细胞长度增加2~3倍,部分细胞呈不规则形状,这暗示GbKTN1在海岛棉中可能具有调控纤维细胞伸长的功能。对GbKTN1与纤维细胞
    
     ①8
    细胞壁合成和细胞伸长的关系作进一步的深入研究,揭示它与棉纤维发育的相关
    性,可能会为棉花纤维品质改良的基因工程提供一些有益的思路。
     门)中棉(Gos地ium arboreum)光诱导基因 Gacab启动子的克隆及其功
    能研究。
     高等植物的捕光叶绿素a儿蛋白复合体基因(ca)是一类光诱导表达的基
    因。利用加接头法,从金华中棉中分离获得了Gacab编码区5’上游的调控序列
    1009 hp,命名为 Gacab P,与公布的其它植物 cab启动子序列比较,没有明显
    的同源性。将 Gacab P和 197、504、779 hp的 5’端缺失体分别与 gus(md A)
    基因融合,构建植物表达载体。GUS组织化学分析 Gacab P::gus在烟草不同
    器官中的稳定表达,发现 Gacab P驱动 gus基因在叶片及绿色幼嫩组织中表达。
    在暗培养的转基因烟草叶片中 Gacab P不表现活性,而光能够诱导 gus基因的
    表达。这些结果表明,Gacab P是一种光诱导型启动子。用基因枪轰击水稻愈伤
    组织,结果显示 Gacab P及三种不同长度的缺失体均可驱动 gus基因的瞬时表
    达,以 504 hp缺失体活性最高,197 hp、779 hp和 1009 hp的表达减弱。由此
    推测 Gacab基因的基本启动子存在于-197一fop,-504一197 hp间包含
    Gacab启动子的正调控元件,-1009一504 hp间包含负调控元件。另外,504 hp
    缺失体驱动 gSS的瞬时表达水平明显高于 3 5 S启动子,这一现象值得进一步探
    讨。根据目前文献报道,本文获得的序列是从棉属植物中分离得到的第一个 cab 5’
    上游调控序列,这为植物基因工程与光调控的研究提供了可用的元件。
Cotton, as one of the most important economic crops, has played an important role in our national economy development. Currently two key problems are facing in cotton production in China that is the prevention from infection of Verticllium wilt and the upgrade of fiber quality. Targeting to solve these two problems at a gene level, three parts of studies have been carried out in this thesis as following:
    (1) Cloning of GbRar1, GbSgt1, and GbRacl genes from Gossypium barbadense and analysis of disease resistance of transgenic tobacco plants
    The coding sequence of the three defense signaling components, Rar1, Sgt1 and Racl proteins, known act at a position between downstream of R gene and oxidative burst, was cloned respectively from G. barbadense. Southern blot analysis indicated GbRarl and GbRacl genes were existed in G barbadense as a single copy. Northern-blot showed the level of mRNAs of GbRarl, GbSgtl or GbRac1 was dramatically increased upon induction with Verticllium dehliae inoculation. It suggests that the GbRar1, GbSgt1 or GbRacl may involve in the defense response of G. barbadense to Verticllium wilt infection.
    Three plant expression vectors pSgt, pRar and pRac, harboring GbRar1, GbSgtl or GbRacl gene driven by CaMV 35S promoter, were constructed and used for transformation of Nicotiana tabacum var. NC89, respectively. Southern-blot demonstrated that all these three genes were integrated into the genome of tobacco. Disease challenge test of leaves of transgenic plants in vitro by inoculation of Alternaria alternata showed that the resistance was enhanced compared with the non-transgenic plants. This implicates that they may have a potential application in genetic engineering of plants with enhanced disease resistance.
    (2) Cloning of GbKTN1 gene from G. barbadense and effect of GbKTNl over-expression on yeast cell elongation
    Katanin is a protein with a function of coupled ATP hydrolysis and microtubule severing. It is well known that the homologous gene coding for katanin-like protein in Arabidopsis has a significant role in cell elongation and cell wall biosynthesis. The cDNA of GbKTNl gene was isolated from 10 DPA fiber cells of G. barbadense using 5'RACE/3'RACE techniques. Southern-blot hybridization indicates it is a single copy
    
    
    
    gene in G.barbadense. Semi-quantitative RT-PCR combined with southern-blot analysis revealed that GbKTN1 was expressed in roots, hypocotyls, leaves and fibers. However, the transcripts mRNA of GbKTNl was most abundant in fiber cells, while it was lowest in leaves. It is likelihood that GbKTN1 gene is preferentially expressed in the sclerenchyma cells than that in other types of cells.
    The GbKTNl cDNA was transformed into S. pombe to confirm its function on cell elongation. Results showed that most yeast cells over-expressing GbKTNl gene were elongated dramatically with a cell length of 2-3 fold increase than that of non-transformed cells. Its implication is the GbKTN1 gene may correlate with the cell elongation in G.barbadense.
    (3) Cloning and functional analysis of a light-inducible Gacab promoter from Gossypium arboreum
    A 1009 bp promoter sequence of cab gene encodes chlorophyll a/b binding protein belonging to a class of light-inducible proteins was cloned from G. arboreum. Sequence analysis showed no obvious homology to the published cab promoters. The full-length Gacab P and 5' end deletions with a length of 197 bp, 504 bp or 779 bp was fused with gus (uid A) gene respectively and plant expression vectors constructed. Construct with Gacab P:: gus was used for transformation of Nicotiana tabacum var. NC89 and transgenic tobacco plants generated. GUS histochemical assay showed that GUS was specifically expressed in leaves and young green tissues. GUS was not detected in leaves of transgenic plants grown in the dark for 6d, whereas GUS was highly expressed in leaves of these plants further induced with light for 6d, demonstrating Gacab P was a light-inducible promoter. Transit GUS expression in rice calli indicated that the expression level of 504 bp
引文
1.窦道龙。棉花抗黄萎病基因工程研究及防卫反应基因的克隆。中科院植物研究所博士学位论文,2002
    2.马存,简桂良,孙文姬。我国棉花抗黄萎病育种现状、问题及对策。中国农业科学,1997,30:58~64
    3. Aarts N, Metz M, Holub E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 1998, 95: 10306-10311.
    4. Austin MJ, Muskett P, Kahn K, et al. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 2002, 295:2077-2080
    5. Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science. 2002, 295:2073-2076
    6. Banerjee D, Zhang X, Bent AF. The LRR domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics. 2001,158:439-450
    7. Baulcombe DC. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol.1999, 2:109-113
    8. Bent, A. Function meets structure in the study of plant disease resistance genes. Plant Cell. 1996, 8:1757-1771
    9. Bisgrove SR, Simonich MT, Smith NM, et al. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell.1994, 6:927-933
    10. Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating proteinprotein interactions. Bioessays. 1999, 21:932-939
    11. Bokoch GM. Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr. Opin. Cell Biol. 1994, 6:212-218
    12. Bonnet P, Bourdon E, Ponchet M,et al. Acquired resistance triggered by elicitins in tobacco and other plants. Eur J Plant Pathol.1996,102:181-192
    13. Boyes DC, Nam J, Dangl JL. The Arabidopsis thaliana RPMI disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl. Acad. Sci. U.S.A.1998, 95:15849-15854
    
    
    14. Bryan GT, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000, 12:2033-2046
    15. Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A. 1998, 95:6531-6536
    16. Century KS, Holub EB, Staskawicz BJ. NDR1, a locus ofArabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci U S A.1995, 92:6597-6601
    17. Century KS, Shapiro AD, Repetti PP, et al. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science. 1997, 278:1963-1965
    18. Cessna SG, Sears VE, Dickman MB, Low PS. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell. 2000, 12:2191-2200
    19. Charne DG, et al. Production of pathogen resistance plants. Patent application. 1999,WO9904012<http://ep.espacenet.com>
    20. Chern MS, Fitzgerald HA, Yadav RC, et al. Evidence for a disease-resistance pathway in rice similar to the NPRl-mediated signaling pathway in Arabidopsis. Plant J. 2001, 27:101-113
    21. Collmer A. Determinants of pathogenicity and avirulence in plant pathogenic bacteria. Curr Opin Plant Biol. 1998, 1:329-335
    22. Costet, L, et al. Relationship between localized acquired resistance (LAR) hypersensitive response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol Plant-Microbe Interact. 1999, 12:655-662
    23. Dangl JL & Jones JDG. Plant pathogens and integrated defence response to infection. Nature,2001, 411:826-833
    24. Daub ME,Ehrenshaft M.THE PHOTOACTIVATED CERCOSPORA TOXIN CERCOSPORIN:Contributions to Plant Disease and Fundamental Biology. Annu Rev Phytopathol.2000, 38:461-490
    25. De Wit, PJGM. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev.Phytopathol.1992, 30:391-418
    26. Del Pozo JC, Estelle M. F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol. 2000, 44:123-128
    
    
    27. Delaney, et al. A central role of salicylic acid in plant disease resistance. Science. 1994, 266:1247-1250
    28. Delmer DP, Pear JR, Andrawis A, et al. Mol. Gen. Genet. 1995, 248:43-51
    29. Deshaies RJ. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol.1999,15:435-67.
    30. Desikan R, Hancock JT, Coffey MJ, et al. Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett. 1996, 382:213-217
    31. Dickman, M.B. Trans-species transfer of apoptotic genes and transgenic plants developed thereby. Patent application. 2000, WO0026391<http://ep.espacenet.com>
    32. Dinesh-Kumar SP, Baker BJ. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A. 2000, 97: 1908-1913
    33. Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol.1995,108:1741-1746
    34. Dorey, S., et al. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol Plant-Microbe Interact. 1997, 10:646-655
    35. Dwyer SC, Legendre L, Low PS, et al. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta. 1996, 1289:231-237
    36. Ellis J, Dodds P, Pryor T: The generation of plant disease resistance gene specificities.Trends Plant Sci. 2000, 5:373-379
    37. Ellis JG, Lawrence G J, Luck JE, Dodds PN.Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell. 1999, 11:495-506
    38. Ellis, J., Dodds, P & Pryor, T. Structure, function, and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 2000, 3:278-284
    39. Eulgem T, Rushton PJ,Robatzek S, Somssich IE.The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5:199-206
    
    
    40. Faik A, Feys BJ, Frost LN, et al. EDS I, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases.Proc Natl Acad Sci U S A.1999,96:3292-3297
    41. Feys BJ, Moisan LJ, Newman M-A, Parker JE. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 2001, 20:5400-5411
    42. Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet.2000, 16:449-455
    43. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971, 9: 275-296
    44. Freialdenhoven A, Scherag B, Hollricher K, et al. Nar-1 and Nar-2, Two Loci Required for Mlal2-Specified Race-Specific Resistance to Powdery Mildew in Barley. Plant Cell. 1994, 6:983 -994
    45. Gabriel DW, Rolfe BG. Working models of specific recognition in plant-microbe interactions.Annu Rev Phytopathol. 1990, 28:365-391
    46. Galan JE, Collmer A. Type Ⅲ secretion machines: bacterial devices for protein delivery into host cells. Science. 1999, 284:1322-1328
    47. Gassmann W, Dahlbeck D, Chesnokova O, et al. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv.vesicatoria. J Bacteriol. 2000, 182:7053-7059
    48. Glazebrook J, Rogers EE, Ausubel FM. Use of Arabidopsis for genetic dissection of plant defense responses. Annu Rev Genet. 1997, 31:547-569
    49. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis--2001 status. Curr Opin Plant Biol. 2001, 4:301-308
    50. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis--2001 status. Curr Opin Plant Biol. 2001, 4:301-308
    51. Govrin EM, Levine A.The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curt Biol. 2000, 10:751-757
    52. Grant M, Mansfield J. Early events in host-pathogen interactions. Curr Opin Plant Biol. 1999,2:312-319
    53. Gray WM, del Pozo JC, Walker L, et al. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999, 13:1678-1691
    54. Gray WM, Kepinski S, Rouse D, et al. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001, 414:271-276
    
    
    55. Gray WM. Plant defence: a new weapon in the arsenal. Curr Biol. 2002, 12:352-354
    56. Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993, 361:153-156
    57. Hammond-Kosack KE & Jones JDG. Resistance gene-dependent plant defense responses. Plant Cell.1996, 8:1773-1791
    58. Harry BS. Signal transduction in systemic acquired resistance. Plant Cell. 2000. 12:179-181
    59. Hartman CI, Sarjit J & Schmitt MS. Newly characterized oxalate oxidase and uses therefore.Patent application. 1992, WO9214824<http ://ep.espacenet.com>
    60. He XZ, Dixon RA. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4'-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell. 2000, 12:1689-1702
    61. He Z, Wang ZY, Li J, Zhu Q, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science. 2000, 288:2360-2363
    62. He, Z., et al. Perception of Brassinosteriods by the extracellular domain of the receptor kinase BRI1. Science, 2000, 288:2360-2363
    63. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998, 67:425-479
    64. Hipskind JD, Paiva NL. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact. 2000, 13:551-562
    65. Hirt H, Scheel D. Receptor-mediated MAP kinase activation in plant defense. Results Probl Cell Differ. 2000, 27: 85-93.
    66. Hoffman T, Schmidt JS, Zheng X, Bent AF. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol.1999, 119:935-950
    67. Holt BF 3rd, Mackey D, Dangl JL. Recognition of pathogens by plants. Curr Biol. 2000, 10(1):R5-7
    68. Holub EB. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2001, 2:516-527
    69. Horsch RB, Fry JE, Hoffman NL, et al. A simple and general method for transferring genes into plants. Science. 1985, 227:1229-1231
    70. Initiative, T. A. G. Analysis of the genome of flowering plant Arabidopsis thaliana. Nature,
    
    2000, 408:796-815
    71. Jia Y, McAdams SA, Bryan GT, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 2000, 19:4004-4014
    72. Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize.Science. 1992, 258:985-987
    73. Jones DA, Jones JDG. The role of leucine-rich repeat proteins in plant defences. Adv Bot Res.1997, 24:89-167
    74. Jones MA, Shen JJ, Fu Y, et al.The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell. 2002, 14:763-776
    75. Jones, J.D.G. Putting knowledge of plant disease resistance genes to work. Curt. Opin. Plant Biol. 2001, 4:281-287
    76. Joosten MH, Cozijnsen TJ, De Wit PJ. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature. 1994, 367:384-386
    77. Jrgensen JH. Effect of three suppressors on the expression of powdery mildew resistance in barley. Genome 1996, 39:492-498
    78. Jrgensen JH. Genetic analysis of barley mutants with modifications of powdery mildew resistance gene MI-al2. Genome 1988, 30:129-132
    79. Kajava AV. Structural diversity of leucine-rich repeat proteins.J Mol Biol 1998, 277: 519-527
    80. Kamoun S, van West P, Vleeshouwers VG, et al. Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INF 1 Plant Cell.1998,10:1413-1426
    81. Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact. 1995, 8:939-948
    82. Kawasaki T, Henmi K, Ono E, et al. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci U S A. 1999, 96:10922-10926
    83. Keen N, Gelvin S, Long S. Summary of IS-MPMI meeting, July 1999, Amsterdam. Mol Plant Microbe Interact 1999, 12:835-838
    84. Keen NT. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet.1990, 24:447-463
    85. Keller H, Pamboukdjian N, Ponchet M, et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance.
    
    Plant Cell. 1999, 11: 223-235
    86. Keller T, Damude HG, Werner D, et al. A plant homolog of the neutrophil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell.1998, 10:255-266
    87. Kesarwani M, Azam M, Natarajan K, et al. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem. 2000, 275:7230-7238
    88. Kieffer F, Simon-Plas F, Maume BF, et al. Tobacco cells contain a protein, immunologically related to the neutrophil small G protein Rac2 and involved in elicitor-induced oxidative burst. FEBS Lett. 1997, 403:149-153
    89. Kirsch C, Logemann E, Lippok B, et al. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J.2001, 26:217-227
    90. Kitagawa K, Skowyra D, Elledge SJ, et al. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell. 1999, 4:21-33
    91. Kjemtrup S, Nimchuk Z, Dangl JL: Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr Opin Microbiol. 2000, 3:73-78
    92. Kooman-Gersmann M, Vogelsang R, Hoogendijk EC, De Wit PJ. Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity. Mol Plant Microbe Interact. 1997, 10:821-829
    93. Lahaye T, Bonas U: Molecular secrets of bacterial type Ⅲ effector proteins. Trends Plant Sci. 2001, 6:479-485
    94. Lauge R, Joosten M H A J, Van den Ackerveken G F J M, et al.. The In -Planta produced evtracellular proteins ECP1 and ECP2 of Cladosporiun fulvumare virulence factors.Molecular plant-Microbe Interaction. 1997, 10:725-734
    95. Leslie CA & Romani RJ. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol.1988, 88:833-837
    96. Lin Y & Yang Z. Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth.Plant Cell. 1997, 9:1647-1659
    
    
    97. Lin Y, Wang Y, Zhu JK, Yang Z. Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell. 1996, 8:293-303
    98. Liu Y, Schiff M, Marathe R, et al. Tobacco Rarl, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 2002, 30:415-429
    99. Lob YT, Zhou J, Martin GB: The myristylation motif of Pto is not required for disease resistance. Mol Plant-Microbe Interact. 1998, 11:572-576
    100. Luck JE, Lawrence G J, Dodds PN, et al. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell. 2000, 12: 1367-1377
    101. Lyapina S, Cope G, Shevchenko A, et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science. 2001, 292:1382-1385
    102. M.Brancaccio, S.Guazzone, N.Menini, et al. Melusin: a new muscle-specific interactor for b1 integrin cytoplasmic domain. J. Biol. Chem. 1999, 274:29282-29288
    103. Martin GB, Brommonschenkel SH, Chunwongse J, et al.Map-based cloning of a proteinkinase gene conferring disease resistance in tomato. Science. 1993, 262:1432-1436
    104. McDowell JM, Cuzick A, Can C, et al. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J. 2000, 22:523-529
    105. Melchers LS, Stuiver MH. Novel genes for disease-resistance breeding. Curr Opin Plant Biol. 2000, 3:147-152
    106. Molendijk A J, Bischoff F, Rajendrakumar CS, et al. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J. 2001, 20:2779-2788
    107. Morel JB & Dangl JL. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 1997, 4:671-683
    108. Morel JB, Dangl JL. Suppressors of the arabidopsis lsd5 cell death mutation identify genes involved in regulating disease resistance responses. Genetics. 1999, 151: 305-319
    109. Murry MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res.1980, 8:4321-4325
    110. Muskett PR, Kahn K, Austin MJ, et al. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell. 2002, 14:979-992
    111. Napoli C, Staskawicz B. Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987,
    
    169:572-578
    112.Nawrath C, Metraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell.1999, 11:1393-1404
    113.Nimchuk Z, Marois E, Kjemtrup S, et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type Ⅲ effector proteins from Pseudomonas syringae. Cell. 2000, 101:353-363
    114.Nishimura, M. & Somerville, S. Resistance attack. Science. 2002, 295:2032-2033
    115.Nol L, Moores TL, van der Biezen EA, et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 1999, 11:2099-2112
    116.Ono E, Wong HL, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A. 2001, 98:759-764
    117.Park J, Choi HJ, Lee S, et al. Rac-related GTP-binding protein in elicitor-induced reactive oxygen generation by suspension-cultured soybean cells. Plant Physiol. 2000, 124:725-732
    118.Parker JE, Aarts N, Austin MA, et al. Genetic analysis of plant disease resistance pathways. Novartis Found Symp. 2001, 236:153-161
    119.Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ. Characterization of edsl, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell.1996, 8:2033-2046
    120.Parniske M, Hammond-Kosack KE, Golstein C, et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997, 91:821-832
    121.Peart JR, Cook G, Feys B J, et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 2002, 29:569-579
    122.Pennell RI, Lamb C. Programmed Cell Death in Plants. Plant Cell.1997, 9:1157-1168
    123.Pickart AM. Ubiquitin enters the new millennium. Mol Cell. 2001, 8:499-504
    124.Piedras P, Rivas S, Droge S, Hillmer S, Jones JDG: Functional, c-myc-tagged Cf-9 resistance gene products are plasma-membrane localized and glycosylated. Plant J. 2000, 21:529-536
    125.Pieterse CM, van Loon LC. Salicylic acid-independent plant defence pathways.Trends Plant Sci. 1999, 4:52-58
    
    
    126. Pink D, Puddephat Ⅱ. Deployment of disease resistance genes by plant transformation -a 'mix and match' approach. Trends Plant Sci. 1999, 4:71-75
    127. Pontier D, Balague C, Bezombes-Marion I, et al. Identification of a novel pathogenresponsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response. Plant J. 2001, 26:495-507
    128. Potikha TS, Collins CC, Johnson DI, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers Plant Physiol. 1999, 119:849-858
    129. Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact. 1995, 8:593-601
    130. Punja ZK & Raharjo SHT. Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Disease. 1996, 80:999-1005
    131. Puri N, Jenner C, Bennett M, Stewart R, et al. Expression of avrPphB, an avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the hypersensitive reaction in bean. Mol Plant-Microbe Interact 1997,10:247-256
    132. Ren T, Qu F, Morris TJ. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell. 2000, 12: 1917-1926
    133. Reymond P, Farmer EE. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol. 1998, 1: 404-411
    134. Riely BK, Martin GB. Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proc Natl Acad Sci U S A. 2001, 98:2059-2064
    135. Rommens CM, Kishore GM. Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol. 2000, 11:120-125
    136. Salghetti SE, Caudy AA, Chenoweth JG, et al. Regulation of transcriptional activation domain function by ubiquitin. Science. 2001, 293:1651-1653
    137. Salmeron JM, Oldroyd GED, Rommens CMT, et al. Tomato Prf is a member of the leucinerich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene-cluster. Cell 1996, 86:123-133
    138. Sambrook, J. et al, Molecular Cloning: A Laboratory Manual, 1989, Cold Spring Harbor Laboratory.
    
    
    139. Saraste M, Sibbald PR & Wittinghofer A. The P-loop—a common motif in ATP- and GTP-binding proteins.Trends Biotechnol. 1990, 15,430-435
    140. Schafer W. The role of cutinase in fungal pathogenicity. Trends Microbiol. 1993, 1:69-71
    141. Schulze-Lefert P, Vogel J. Closing the ranks to attack by powdery mildew.Trends Plant Sci.2000, 5:343-348
    142. Schwechheimer C, Serino G, Callis J, et al.Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science. 2001, 292:1379-1382
    143. Shah J, Klessig DF.(1996) Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant J. 10:1089-10101
    144. Shapiro AD, Zhang C. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol. 2001, 127:1089-1101
    145. Shirasu K and Schulze-Lefert P. Regulators of cell death in disease resistance. Plant Mol Biol. 2000, 44:371-385
    146. Shirasu K, Lahaye T, Tan MW, et al. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell. 1999,99:355-366
    147. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J. Dynamics of disease resistance polymorphism at the Rpml locus of Arabidopsis. Nature. 1999, 400:667-671
    148. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE. Common and contrasting themes of plant and animal diseases. Science. 2001, 292:2285-2289
    149. Sweigard JA, Carroll AM, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell. 1995, 7: 1221-1233.
    150. Swiderski MR, Innes RW: The Arabidopsis PBS 1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001, 26:101-112
    151. Tanaka A, Shiotani H, Yamamoto M, et al. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact. 1999, 12:691-702
    152. Tenhaken R, Levine A, Brisson L, et al. Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A. 1995, 92:4158-4163
    
    
    153.Thomma BP, Penninckx IA, Broekaert WF, et al. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol. 2001, 13:63-68
    154.Thompson GA Jr, Okuyama H. Lipid-linked proteins of plants. Prog Lipid Res. 2000, 39: 19-39
    155.Tor M, Gordon P, Cuzick A, et al. Arabidopsis SGTlb is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell. 2002, 14:993-1003
    156.Tornero P, Merritt P, Sadanandom A, et al. RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell. 2002, 14:1005-1015
    157.Torp J, Jrgensen JH. Modification of barley powdery mildew resistance gene MI-al2 by induced mutation. Can J Gen Cytol. 1986, 28:725-731
    158.Torres MA, Dangl JL, Jopnes JDG. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA. 2002, 99:517-522
    159.Torres MA, Onouchi H, Hamada S, et al. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gpg1 phox). Plant J. 1998, 14:365-370
    160.Tsiamis G, Mansfield JW, Hockenhull R, et al. Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv.phaseolicola, the cause of bean halo-blight disease. EMBO J. 2000, 19:3204-3214
    161.Van den Ackerveken G, Marois E, Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell. 1996, 87:1307-1316
    162.Van der Biezen EA, Jones JDG. Plant disease-resistance proteins and the gene-for-gene concept.Trends Biochem Sci. 1998, 23:454-456
    163.Vaux DL & Korsmeyer SJ. Cell death in development. Cell. 1999, 96:245-254
    164.Vivian A, Arnold DL: Bacterial effector genes and their role in host-pathogen interactions. J Plant Pathol. 2000, 82: 163-178.
    165.Walton JD. Host-selective toxins: agents of compatibility. Plant Cell. 1996, 8:1723-1733
    166.Wang GL, Ruan DL, Song WY, et al. Xa21D encodes a receptor-like molecule with a leucinerich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell. 1998, 10(5):765-779
    167.Warren RF, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy
    
    mildew resistance genes. Plant Cell. 1998, 10:1439-1452
    168. Warren RF, Merritt PM, Holub E et al. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics.1999, 152:401-412
    169. White FF, Yang B, Johnson LB: Prospects for understanding avirulence gene function. Curr Opin Plant Biol. 2000, 3:291-298
    170. Winge P, Brembu T & Bones AM. Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana. Plant Mol. Biol. 1997, 35:483-495
    171. Xiao S, Ellwood S, Calis O, et al:Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science. 2001, 291:118-120
    172. Xing,T., Higgins, V. J. & Blumwald, E. Activation of the oxidative burst in aequorintransformed Nicotiana tabacum cells is mediated by protein kinase-and anion channeldependent release of Ca2+ from internal stores. Plant Cell. 1997, 9:249-259
    173. Yang Z & Watson JC. Molecular Cloning and Characterization of Rho, a Ras-Related Small GTP-Binding Protein from the Garden Pea. Proc. Natl. Acad. Sci. USA.1993, 90: 8732-8736
    174. Yang ZB. Small GTPase: versatile signaling switches in plants. Plant Cell. 2002 (supplement): 375-387
    175. Zhou F, Kurth J, Wei F, et al. Cell-Autonomous Expression of Barley Mla1 Confers Race-Specific Resistance to the Powdery Mildew Fungus via a Rar1-Independent Signaling Pathway. Plant Cell. 2001, 13:337-350