乙烯对绿豆芽下胚轴生长代谢的调控效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿豆芽具有良好的营养保健功能越来越受到人们的青睐,但是随着我国对芽菜食品安全的重视,取缔了6-BA和赤霉素在豆芽生产中的使用,而用清水生产出的绿豆芽不能满足消费者对豆芽感官和品质的要求。乙烯是一种气体植物生长调节剂,广泛应用于果实催熟等过程中。以往研究表明,乙烯可以抑制绿豆芽的生长,改善绿豆芽的营养品质,然而乙烯影响绿豆芽生长和品质改善的机理还不清楚。本试验在研究乙烯对绿豆芽下胚轴差异蛋白质组的基础上,进一步分析了乙烯对绿豆芽活性氧代谢、酚类物质代谢、蔗糖代谢和细胞壁代谢的影响,揭示了乙烯改善绿豆芽外观品质和营养品质以及诱导抗性的变化机制。研究结论如下:
     (1)本研究利用TMT技术结合质谱分析,对绿豆芽下胚轴蛋白质进行了有效分离和检测。共筛选鉴定蛋白1765个,其中选出上调蛋白共30个,占所有鉴定蛋白总数的1.7%,下调蛋白40个,占所有鉴定蛋白总数的2.3%。差异蛋白等电点范围为4.68-11.6,蛋白质分子量分布范围为9.79-210.93kDa,主要分布范围为9.79-97.14kDa。差异蛋白大多具有结合功能和催化活性等功能,参与到了胁迫抵御、内源乙烯合成、苯丙胺类代谢等代谢过程中。
     (2)乙烯显著影响到绿豆芽下胚轴的活性氧代谢。乙烯显著增加了过氧化氢等活性氧成分,其中试验处理后第1和第2天,乙烯处理极显著增加了绿豆芽中H202含量,分别是对照的1.24倍和1.15倍,使绿豆芽下胚轴MDA含量增加,造成膜脂过氧化,打破了绿豆芽体内的氧化还原平衡。为抵御乙烯对绿豆芽造成的氧化胁迫,绿豆芽体内的酶促氧化系统和非酶促氧化系统得到了加强。酶促氧化系统中SOD、POD和CAT活性增强,非酶促氧化系统中G6PDH和PAL促进了酚类物质的合成,且酚类物质含量随着乙烯浓度的升高而增大,其中乙烯处理后第1天100mg/L乙烯利处理绿豆芽总酚含量为最高达0.59mg/g,是对照的1.31倍,从而增加绿豆芽下胚轴的抗氧化能力。
     (3)乙烯促进了绿豆芽下胚轴的蔗糖代谢。乙烯增强了绿豆芽下胚轴SS.AI和SPS活性,促进了蔗糖从子叶到下胚轴的转运和蔗糖的分解,使得绿豆芽下胚轴葡萄糖和果糖含量升高,其中乙烯处理后第4天绿豆芽下胚轴葡萄糖和果糖含量最高,分别为184.67mg/g和186.90mg/g,为豆芽的呼吸消耗和植物细胞的生长提供了物质基础。
     (4)乙烯抑制了绿豆芽下胚轴的纵向生长,促进了绿豆芽下胚轴的横向生长,改善了绿豆芽的外观品质。在乙烯处理后第4天,乙烯增加了绿豆芽下胚轴体积和鲜重,分别是对照的1.21倍和1.11倍,从而增加了绿豆芽的产量。绿豆芽下胚轴体积和鲜重可作为衡量乙烯对绿豆芽生长影响的指标。乙烯促进了绿豆芽下胚轴细胞壁的合成代谢,使得下胚轴细胞壁含量增加;同时某种程度提高了细胞壁降解酶活性,总体上促进了下胚轴的生长。
     乙烯诱导了绿豆芽的抗性,改善了绿豆芽的外观品质和营养品质,增加了绿豆芽的产量。研究结果对工厂化绿豆芽高效安全生产提供一定的理论和技术支持。
With the nutrition value andhealthyfunction, mungbean sprouts is becoming more and more popular. But along with our country's emphasis on food safety, the application of6-BA and gibberellic acid are banned in mung bean sprouts production. While mung bean sprouts produced with fresh watercannotmeetthedemand of bean sprouts quality and senses. Ethylene, a gas hormone, is been widely used in fruit ripening and other process. Past research has shown thatethylene can inhibit the growth of mungbean sprout, improve the nutrition quality of mungbean sprout, while the mechanism of ethylene affecting the mungbean sprout growth and quality is still unclear. On the basis of the effect of ethylene on mungbean sprout differential proteome research, the effects of ethylene on mungbean sprout hypocotyl active oxygen metabolism, sucrose metabolism and cell wall metabolism were studied, revealed variation mechanisms of ethylene improving mung bean sprouts appearance and nutrient qualityas well as increasing resistance. Specific research conclusions are as follows:
     (1) Mungbean sprout hypocotyl protein was separated and detected efficientlyusing the TMT technology and mass spectrometry analysis.1765proteins were screened,30proteins were up-regulated, accounted for1.7%cof screened proteins,40proteins were down-regulated, accounted for2.3%of screened proteins. The isoelectric point range of differential protein is4.68-11.6, the molecular weight distribution rangeof differential protein is9.79-210.93kDa and the main distribution range is9.79-97.14kDa. Most of differential protein have the function of combination and catalytic activity, are involved in resistance to stress, the synthesis of endogenous ethylene, phenylalanine metabolismand other metabolic process.
     (2) Ethylene affectedsignificantly the active oxygen metabolism of mungbean sprouts hypocotyl.Ethylene increasedsignificantly the hydrogen peroxide and other reactive oxygen species composition, then MDA content of mungbean sprout hypocotyl was increased and membrane lipid peroxidationhappened, and finally the redox balance of mungbean sprouthypocotyl was broken. To protectagainst oxidativestress ethylene causedto mungbean sprout, enzymatic oxidation system and the enzymatic oxidation system of mungbean sproutswere enhanced. SOD, POD and CATactivityin enzymatic oxidation system increased.The increase of G6PDH and PAL activity promoted the synthesis of phenolic substances, thereby antioxidant capacity of.mungbean sprout hypocotyl was enhanced. The increase of phenolics increased the nutritional value of mungbean sprout.
     (3)Ethylene promotedthe sucrose metabolism of mungbean sprouts hypocotyl. The increase of SS、Aland SPS activity ethylene caused promoted thesucrosetransport from cotyledon to hypocotyl and sucrose decomposition, then glucose and fructose content of mung bean sprouts hypocotylwas elevated. So the the nutritional quality of mungbean sprouts was improved and meanwhile it provided a material basisfor bean sprouts respiration consumption and the plant cell growth.
     (4) Ethylene inhibited the longitudinal growthof mungbean sprouts hypocotyl and promoted the lateral growth of mungbean sprouts hypocotyl, and then the appearance quality of mungbean sproutgreatly improved. Hypocotyl volume and fresh weight were promoted in four days after ethylene treatment, were1.21times and1.11times compared with controls respectively, thus the production of mungbean sprout hypocotyl was increased. The mungbean sprouts hypocotyl volume volume and fresh weight can be used as an index of measuring the mungbean sprouts growth. Ethylene promoted the synthesis of cell wall metabolism of the mungbean sprouts hypocotyl, so the cell wallcontent was increased, at the same time the cell wall degradation enzymes activity was increased, the growth of the hypocotyl as a whole was promoted.
     The ethylene induced resistance, improved the appearance quality and nutritional quality of the mungbean sprout, and finally could increase the yield of mungbean sprout. Our research provides theory and technique supports for safe and efficient factory production of mungbean sprouts.
引文
[1]曾嵘,夏其昌.蛋白质组学研究进展与趋势.中国科学院院刊,2002,17(3):166-169.
    [2]陈昆松,李方.猕猴桃果实成熟进程中木葡萄聚糖内糖基转移酶mRNA水平的变化.植物学报:英文版,1999,41(11):1231-1234.
    [3]陈文瑞,张武军.乙烯利对玉米生长和产量的影响.四川农业大学学报,2001,19(2):129-130.
    [4]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程.生命科学,1996,8(2):8-11.
    [5]陈豫梅,陶雪娟,覃柳仙,等.乙烯利对黄瓜生长发育的影响.安徽农业科学,2009,37(8):3386-3387.
    [6]陈玉萍,刘后利.甘蓝型油菜子油分的积累与某些生理变化关系的研究.植物科学学报,1995,13(3):240-246.
    [7]程须珍.绿豆品种与豆芽产量质量关系的初步探讨.作物品种资源,1990(01):14-15.
    [8]崔建东,李艳,牟德华.苯丙氨酸解氨酶(PAL)的研究进展.食品工业科技,2008(7):306-308.
    [9]丁俊胄,尹涛,余翔,等.外源赤霉素,6-苄基腺嘌呤及矿物质对水培绿豆芽生长的影响.植物生理学报,2011,47(5):501-504.
    [10]杜近义,胡国赋.植物次生供谢产物的生态学意义.生物学杂志,1999,16(5):9-10.
    [11]高丽君,崔建华,刘风云,等.植物次生代谢物的应用和开发.生物学通报,2004,39(7):15-17.
    [12]高微微,佟建明,郭顺星.植物次生代谢产物的生态学功能研究进展.中国药学杂志,2006,41(13):961-964.
    [13]高雪.植物苯丙氨酸解氨酶研究进展.现代农业科技,2009(1):30-33.
    [14]韩一凡,李明亮.乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制.林业科学,2000,36(4):77-84.
    [15]黄六容,蔡梅红,仲元华,等.发芽温度对绿豆芽抗氧化成分和抗氧化能力的影响.安徽农业大学学报,2011(01):31-34.
    [16]黄森,张院民,王建芳,等.乙烯吸收剂处理对柿果实采后生理效应的影响.西北农业学报,2006,15(6):140-143.
    [17]黄啸.生物信息学在蛋白质组学上的应用.安徽农业科学,2006,34(23):6142-65144.
    [18]焦春香.活性氧与植物防卫反应.大理学院学报:综合版,2006,5(10):73-76.
    [19]景亚武,易静,高飞,等.活性氧:从毒性分子到信号分子——活性氧与细胞的增殖,分化和凋亡及其信号转导途径.细胞生物学杂志,2003,25(4):197-202.
    [20]康玉凡,程须珍.豆类芽菜学.北京:高等教育出版社.2013.7-8.
    [21]康玉凡,陶礼明,毛振宾,等.工厂化豆芽成为现代加工食品新宠.长江蔬菜,2008(14):73-76.
    [22]康玉凡,谷瑞娟,王保民,等ETH, KT和6-BA对绿豆幼苗形态建成和生化成分的效应研究.中国农学通报,2009,25(09):19-25.
    [23]寇晓虹,朱本忠,罗云波,等.番茄果实中乙烯与多聚半乳糖醛酸酶的关系.植物生理与分子生物学学报,2005,30(6):675-680.
    [24]李合生.现代植物生理学.高等教育出版社.2002.
    [25]李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2000.
    [26]李永才,安黎哲,毕阳.微管骨架在植物适应低温胁迫中的功能研究进展.西北植物学报,2006,26(7):1500-1504.
    [27]李振华,康玉凡,程须珍,等.绿豆品种芽用特性的初步评价.中国农业大学学报,2010,5:31-36.
    [28]李振华,段玉,康玉凡.豆类芽苗菜生产工艺的研究进展.中国农学通报,2011(10):76-81.
    [29]廖永霞,康玉凡,王保民,等.乙烯,6-BA对大豆幼苗生长,生化成分及细胞组织结构的效应.大豆科学,2009,28(1):41-45.
    [30]林植芳,刘楠.活性氧调控植物生长发育的研究进展.植物学报,2012,47(1):74-86.
    [31]刘福霞,刘乃森,何莉,等.浸种时间对黑豆芽苗菜产量及蛋白质和Vc含量的影响.安徽农业科学,2007(31):9855-9860.
    [32]刘红开,康玉凡.芽用大豆品种遗传改良研究进展.中国油料作物学报,2011,6:637-41.
    [33]刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展.植物学通报,2002,19(6):666-674.
    [34]刘胜辉,臧小平,张秀梅,等.乙烯利诱导菠萝[Ananas comosus (L.) Merril]花芽分化过程与内源激素的关系.热带作物学报,2010(9):1487-1492.
    [35]刘新,应万涛,钱小红.比较蛋白质组学研究中的稳定同位素标记技术.化学通报,2007,35(2):84-88.
    [36]卢昌琳,徐忠传,蔡国超,等.磁处理水对绿豆芽生长及维生素C含量的影响.常熟理工学院学报,2013,2:61-64.
    [37]罗治文.质谱技术研究进展.国外医学:生物医学工程分册,2005,28(3):134-137.
    [38]农向,伍红,秦天莺,等.纤维素酶的研究进展.西南民族大学学报(自然科学版),2005,ZK:29-33.
    [39]马怀宇,刘国成,吕德国,等.‘寒富’苹果花芽呼吸代谢途径对低温胁迫的响应特征.果树学报,2012,29(3):317-321.
    [40]苗颖.大豆发芽降低植酸效果及其高钙豆乳的研究:[硕士学位论文].东北农业大学,2003.
    [41]聂智星,吴小园,张黎萍,等.大豆种质发芽特性和籽粒形态的遗传变异与相关分析.安徽农业科学,2008(09):3586-3588.
    [42]曲颖,王弋博,冯虎元,等.UV-B辐射对豌豆伸长生长和细胞壁多糖组分的影响.辐射研究与辐射工艺学报,2012,5:303-308.
    [43]阮松林,马华升,王世恒,等.植物蛋白质组学研究进展Ⅰ.蛋白质组关键技术.遗传,2006,28(11):1472-1486.
    [44]石兰蓉,吴岚芳,徐立,等.乙烯利促进观赏凤梨花芽分化的生理机制初探.热带农业科学,2005,25(1):10-13.
    [45]孙立影,于志晶,李海云,等.植物次生代谢物研究进展.吉林农业科学,2009,34(4):4N10.
    [46]田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005,41(2):235-241.
    [47]王贵禧.猕猴桃果实中PME, PG及其抑制因子的研究(综述).中国农业大学学报,1998,3(1):88-94.
    [48]王红梅.磁场处理对绿豆芽鲜重和芽长的影响.核农学报,2010,24(3):575-579.
    [49]王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展.武汉植物学研究,2007,25(5):500-508.
    [50]王永章,张大鹏.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控.园艺学报,2000,27(6):391-395.
    [51]肖伶俐,康玉凡,陶礼明,等.不同大豆品种芽用特性比较.大豆科学,2008,6:955-959.
    [52]徐一兰,官春云,谭太龙,等.油菜种子形成中含油量与其合成相关酶活性的变化及其相关性.作物学报,2008,34(10):1854-1857.
    [53]薛鑫,张芊,吴金霞.植物体内活性氧的研究及其在植物抗逆方面的应用.生物技术通报,2013(10):6-11.
    [54]颜季琼.高等植物细胞壁的结构和功能(一).生物学通报,1999,1:6-7.
    [55]杨国堂,李艳艳,张伟,等.蛋白质组学及其技术体系.食品与药品,2010,12(5):206-209.
    [56]杨力.乙烯对苹果细胞壁组分降解效应及其机理的研究[D]:[硕士学位论文].西北农林大学,2009.
    [57]姚瑞亮,李杨瑞,黄玉辉,等.甘蔗生长后期乙烯利处理对节间转化酶活性的影响及与蔗糖分积累的关系.广西农业科学,2005,36(2):106-109.
    [58]姚雪,侯和胜.高等植物ACO基因研究进展.安徽农学通报,2013(1):16-17.
    [59]翟建盛,侯和胜.高等植物ACS基因家族及其功能研究进展.天津农业科学,2012,18(1):35-39.
    [60]张德纯,王德槟.芽菜种类发展与芽菜的定义.北方园艺,1998(Z1):48-49.
    [61]张鹏,朱育强,陈新娟,等.园艺植物差异蛋白质组学研究进展.浙江农业科学,2011,1:7.
    [62]张欣,曹君迈,贝盏临.差异蛋白质组学在植物科学研究中的应用.广东农业科学,2011,38(7):151-153.
    [63]张永清.发芽条件对豆芽生产的影响研究:[硕士学位论文].南京农业大学,2007.
    [64]钟启文,李屹,孙雪梅,等.干旱胁迫下菊芋苗期糖代谢响应研究.西南农业学报,2012,25(4):1238-1241.
    [65]庄海燕,安锋,张硕新,等.乙烯利刺激橡胶树增产机制研究进展.林业科学,2010,46(4):120-125
    [66]Abdel-Hameed ES. Total phenolic contents and free radical scavenging activity of certain egyptian ficus species leaf samples. Food chemistry,2009,114(4):1271-1277.
    [67]Abeles FB, Morgan PW, Saltveit Jr ME. Ethylene in plant biology. Academic press.1992.
    [68]Achard P, Cheng H, De Grauwe L, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science,2006,311(5757):91-94.
    [69]Adams DO, Yang SF. Ethylene biosynthesis:identification of 1-minocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences,1979,76(1):170-174.
    [70]Agarwal S. Increased antioxidant activity in cassia seedlings under uv-b radiation. Biologia plantarum,2007,51(1):157-160.
    [71]Alba R, Payton P, Fei Z, et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell Online,2005,17(11): 2954-2965.
    [72]Alonso JM, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in arabidopsis. Science,1999,284(5423):2148-2152.
    [73]Amor Y, Haigler CH, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proceedings of the National Academy of Sciences,1995,92(20):9353-9357.
    [74]An L, Xu X, Tang H, et al. Ethylene production and 1 - aminocyclopropane - 1 - carboxylate (ACC) synthase gene expression in tomato (lycopsicon esculentum mill.) Leaves under enhanced UV -b radiation. Journal of Integrative Plant Biology,2006,48(10):1190-1196.
    [75]Anderson JP, Badruzsaufari E, Schenk PM, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in arabidopsis. The Plant Cell Online,2004,16(12):3460-3479.
    [76]Anderson NL, Anderson NG. Proteome and proteomics:new technologies, new concepts, and new words. Electrophoresis,1998,19(11):1853-1861.
    [77]Ansari MW, Tuteja N. Stress-induced ethylene in postharvest losses of perishable products. Stewart Postharvest Review,2013,9(4):1-5.
    [78]Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.,2004,55:373-399.
    [79]Aravind P, Prasad MNV. Zinc alleviates cadmium- induced oxidative stress in ceratophyllum demersum 1.:A free floating freshwater macrophyte. Plant Physiology and Biochemistry,2003,41(4): 391-397.
    [80]Asai S, Yoshioka M, Nomura H, et al. A plastidic glucose-6-phosphate dehydrogenase is responsible for hypersensitive response cell death and reactive oxygen species production. Journal of General Plant Pathology,2011,77(3):152-162.
    [81]Balague C, Watson CF, Turner AJ, et al. Isolation of a ripening and wound-induced cDNA from cucumis melo L. Encoding a protein with homology to the ethylene-forming enzyme. European journal of biochemistry,1993,212(1):27-34.
    [82]Baldwin EA, Pressey R. Pectic enzymes in pectolyase separation, characterization, and induction of ethylene in fruits. Plant physiology,1989,90(1):191-196.
    [83]Barnawal D, Maji D, Bharti N, et al. ACC deaminase-containing bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in trigonella foenum-graecum under drought stress. Journal of Plant Growth Regulation,2013,32(4):809-822.
    [84]Barrelt DM, Gonzalez C. Activity of softening enzymes during cherry maturation. Journal of Food Science,1994,59(3):574-577.
    [85]Betz GA, Gerstner E, Olbrich M, et al. Effects of abiotic stress on gene transcription in european beech:ozone affects ethylene biosynthesis in saplings of fagus sylvatica L. iForest-Biogeosciences and Forestry,2009,2(3):114-118.
    [86]Biancaflor EB, Hasenstein KH. Organization of cortical microtubules in graviresponding maize roots. Planta,1993,191(2):231-237.
    [87]Blancaflor EB, Zhao L, Harrison MJ. Microtubule organization in root cells ofmedicago truncatula during development of an arbuscular mycorrhizal symbiosis withglomus versiforme. Protoplasma,2001, 217(4):154-165.
    [88]Blancaflor EB, Hasenstein KH. Growth and microtubule orientation of zea mays roots subjected to osmotic stress. International journal of plant sciences,1995:774-783.
    [89]Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Annual review of cell and developmental biology,2000,16(1):1-18.
    [90]Boerjan W, Bauw G, Van Montagu M, et al. Distinct phenotypes generated by overexpression and suppression of S-adenosyl-1-methionine synthetase reveal developmental patterns of gene silencing in tobacco. The Plant Cell Online,1994,6(10):1401-1414.
    [91]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual review of plant biology,2003,54(1): 519-546.
    [92]Bolwell GP, Davies DR, Gerrish C, et al. Comparative biochemistry of the oxidative burst produced by rose and french bean cells reveals two distinct mechanisms. Plant Physiology,1998,116(4): 1379-1385.
    [93]Borch J, Jorgensen TJ, Roepstorff P. Mass spectrometric analysis of protein interactions. Current opinion in chemical biology,2005,9(5):509-516.
    [94]Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in plant science,2000,5(6):241-246.
    [95]Caldwell MM, Bornman JF, Ballare CL, et al. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences, 2007,6(3):252-266.
    [96]Cao W, Liu J, He X, et al. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology,2007,143(2):707-719.
    [97]Cao WH, Liu J, Zhou QY, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant, cell & environment,2006,29(7):1210-1219.
    [98]Cartea ME, Francisco M, Soengas P, et al. Phenolic compounds in brassica vegetables. Molecules, 2010,16(1):251-280.
    [99]Casal JJ, Fankhauser C, Coupland G, et al. Signalling for developmental plasticity. Trends in plant science,2004,9(6):309-314.
    [100]Cervato G, Carabelli M, Gervasio S, et al. Antioxbdant properties of oregano (origanum vulgare) leaf extracts. Journal of Food Biochemistry,2000,24(6):453-465.
    [101]Chacon ID, Riley-Saldana CA, Gonzalez-Esquinca AR. Secondary metabolites during early development in plants. Phytochemistry Reviews,2013,12(1):47-64.
    [102]Chae HS, Kieber JJ. Eto brute? Role of acs turnover in regulating ethylene biosynthesis. Trends in plant science,2005,10(6):291-296.
    [103]Chandra Shekara AC, Navarre D, Kachroo A, et al. Signaling requirements and role of salicylic acid in hrt - and rrt - mediated resistance to turnip crinkle virus in arabidopsis. The Plant Journal,2004, 40(5):647-659.
    [104]Chassaigne H, Tregoat V, Norgaard JV, et al. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, western blotting and q-tof mass spectrometry. Journal of proteomics,2009,72(3):511-526.
    [105]Chen K, Gong H, Chen G, et al. Acc and macc biosynthesis and ethylene production in water-stressed spring wheat. Acta Botanica Sinica,2001,44(7):775-781.
    [106]Chen R, Binder BM, Garrett WM, et al. Proteomic responses in arabidopsis thaliana seedlings treated with ethylene. Molecular Biosystems,2011,7(9):2637-2650.
    [107]Cheng GW, Breen PJ. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science,1991,116(5):865-869.
    [108]Cheng J, Seeley KA, Sung ZR. Rm11 and rm12, arabidopsis genes required for cell proliferation at the root tip. Plant Physiology,1995.107(2):365-376.
    [109]Chervin C, Terrier N, Ageorges A, et al. Influence of ethylene on sucrose accumulation in grape berry. American journal of enology and viticulture,2006,57(4):511-513.
    [110]Cho U, Seo N. Oxidative stress in arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science,2005,168(1):113-120.
    [I11]Chong BF, Mills E, Bonnett GD, et al. Early exposure to ethylene modifies shoot development and increases sucrose accumulation rate in sugarcane. Journal of plant growth regulation,2010,29(2): 149-163.
    [112]Chung K, Igari K, Uchida N, et al. New perspectives on plant defense responses through modulation of developmental pathways. Mol Cells,2008,26(2):107-112.
    [113]Cicchino MA, Rattalino Edreira JI, Otegui ME. Maize physiological responses to heat stress and hormonal plant growth regulators related to ethylene metabolism. Crop Science,2013,53(5): 2135-2146.
    [114]Cobo Molinos A, Abriouel H, Lopez RL, et al. Combined physico-chemical treatments based on enterocin AS-48 for inactivation of gram-negative bacteria in soybean sprouts. Food and Chemical Toxicology,2008,46(8):2912-2921.
    [115]Cosgrove DJ. Enzymes and other agents that enhance cell wall extensibility. Annual review of plant biology,1999,50(1):391-417.
    [116]Cosgrove DJ. Growth of the plant cell wall. Nature reviews molecular cell biology,2005,6(11): 850-861.
    [117]Cosgrove DJ. Relaxation in a high-stress environment:the molecular bases of extensible cell walls and cell enlargement. The Plant Cell,1997,9(7):1031.
    [118]Cosgrove DJ. Loosening of plant cell walls by expansins. Nature,2000,407(6802):321-326.
    [119]Crozier A, Jaganath IB, Clifford MN. Phenols, polyphenols and tannins:an overview. Plant secondary metabolites:Occurrence, structure and role in the human diet,2006:1-24.
    [120]Danesi EDG, Miguel ASM, Rangel-Yagui CDO, et al. Effect of carbon:nitrogen ratio (C:N) and substrate source on glucose-6-phosphate dehydrogenase (G6PDH) production by recombinant saccharomyces cerevisiae. Journal of food engineering,2006,75(1):96-103.
    [121]Dat JF, Pellinen R, Van De Cotte B, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. The Plant Journal,2003,33(4):621-632.
    [122]de Hoog CL, Mann M. Proteomics. Annual Review of Genomics and Human Genetics,2004,5(1): 267-293.
    [123]de Oliveira JMPF, de Graaff LH. Proteomics of industrial fungi:trends and insights for biotechnology. Applied microbiology and biotechnology,2011,89(2):225-237.
    [124]Del Campillo E, Abdel-Aziz A, Crawford D, et al. Root cap specific expression of an endo-β-1, 4-glucanase (cellulase):a new marker to study root development in arabidopsis. Plant molecular biology, 2004,56(2):309-323.
    [125]Delmer DP, Amor Y. Cellulose biosynthesis. The Plant Cell,1995,7(7):987.
    [126]Desikan R, Hancock JT, Bright J, et al. A role for etrl in hydrogen peroxide signaling in stomatal guard cells. Plant Physiology,2005,137(3):831-834.
    [127]Desikan R, Last K, Harrett Williams R, et al. Ethylene-induced stomatal closure in arabidopsis occurs via atrbohf-mediated hydrogen peroxide synthesis. The Plant Journal,2006,47(6):907-916.
    [128]Desouza L, Diehl G, Rodrigues MJ, et al. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cIACT with multidimensional liquid chromatography and tandem mass spectrometry. Journal of proteome research,2005,4(2):377-386.
    [129]Di az J, Ten Have A, van Kan JA. The role of ethylene and wound signaling in resistance of tomato to botrytis cinerea. Plant Physiology,2002,129(3):1341-1351.
    [130]Dixon RA, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defence-a genomics perspective. Molecular Plant Pathology,2002,3(5):371-390.
    [131]Djeridane A, Yousfi M, Nadjemi B, et al. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry,2006,97(4):654-660.
    [132]Doblado R, Frias J, Vidal-Valverde C. Changes in vitamin c content and antioxidant capacity of raw and germinated cowpea (vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chemistry,2007,101(3):918-923.
    [133]Dong J, Jiang Y, Chen R, et al. Isolation of a novel xyloglucan endotransglucosylase (OSXET9) gene from rice and analysis of the response of this gene to abiotic stresses. African Journal of Biotechnology,2011,10(76):17424-17434.
    [134]Droge W. Free radicals in the physiological control of cell function. Physiological reviews,2002, 82(1):47-95.
    [135]Dugardeyn J, Van Der Straeten D. Ethylene:fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant science,2008,175(1):59-70.
    [136]Durbin ML, Lewis LN. Cellulases in phaseolus vulgaris. Methods in enzymology,1988,160: 342-351.
    [137]Duthie SJ, Narayanan S, Brand GM, et al. Dna stability and genomic methylation status in colonocyte isolated from methyl-donor-deficient rats. European Journal of Nutrition,2000,39(3): 106-111.
    [138]Ecker JR. The ethylene signal transduction pathway in plants. Science,1995,268(5211): 667-675.
    [139]El-Beltagi HS, Ahmed OK, El-Desouky W. Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (rosmarinus officinalis L.) Callus culture. Radiation Physics and Chemistry,2011,80(9):968-976.
    [140]Esposito S, Carfagna S, Massaro G, et al. Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localisation of the isoforms. Planta,2001,212(4):627-634.
    [141]Eyidogan F,oz MT. Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologiae Plantarum,2007,29(5):485-493.
    [142]Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Science,2000,154(1):1-11.
    [143]Fey SJ, Larsen PM.2D or not 2D. Current opinion in chemical biology,2001,5(1):26-33.
    [144]Fischer RL, Bennett AB. Role of cell wall hydrolases in fruit ripening. Annual review of plant biology,1991,42(1):675-703.
    [145]Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum,2003,119(3):355-364.
    [146]Fridovich I. Superoxide radical and superoxide dismutases. Annual review of biochemistry,1995, 64(1):97-112.
    [147]Fry SC. Polysaccharide-modifying enzymes in the plant cell wall. Annual review of plant biology, 1995,46(1):497-520.
    [148]Fry SC. Primary cell wall metabolism:tracking the careers of wall polymers in living plant cells. New phytologist,2004,161(3):641-675.
    [149]Fukuda A, Yoshinaga S, Nagata K, et al. Rice cultivars with higher sucrose synthase activity develop longer coleoptiles under submerged conditions. Plant production science,2008,11(1):67-75.
    [150]Gane R. Production of ethylene by some ripening fruits. Nature,1934,134(1008):1056-1058.
    [151]Gao S, Ouyang C, Wang S, et al. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in jatropha curcas L. Seedlings. Plant Soil Environ,2008,54(9): 374-381.
    [152]Garg N, Manchanda G. Ros generation in plants:boon or bane? Plant Biosystems,2009,143(1): 81-96.
    [153]Gendreau E, Traas J, Desnos T, et al. Cellular basis of hypocotyl growth in arabidopsis thaliana. Plant Physiology,1997,114(1):295-305.
    [154]Ghosh S, Pal A. Identification of differential proteins of mungbean cotyledons during seed germination:a proteomic approach. Acta Physiologiae Plantarum,2012,34(6):2379-2391.
    [155]Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry,2010,48(12):909-930.
    [156]Gonzalez A, Tames RS, Rodriguez R. Ethylene in relation to protein, peroxidase and polyphenol oxidase activities during rooting in hazelnut cotyledons. Physiologia Plantarum,1991,83(4):611-620.
    [157]Grichko VP, Glick BR. Ethylene and flooding stress in plants. Plant Physiology and Biochemistry, 2001,39(1):1-9.
    [158]Guo H, Ecker JR. The ethylene signaling pathway:new insights. Current opinion in plant biology, 2004,7(1):40-49.
    [159]Guo R, Yuan G, Wang Q. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Scientia Horticultura, 2011a,128(3):159-165.
    [160]Guo R, Yuan G, Wang Q. Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food Chemistry,2011b,129(3):1080-1087.
    [161]Guo X, Li T, Tang K, et al. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (vigna radiatd). Journal of agricultural and food chemistry,2012,60(44): 11050-11055.
    [162]Guzman P, Ecker JR. Exploiting the triple response of arabidopsis to identify ethylene-related mutants. The Plant Cell Online,1990,2(6):513-523.
    [163]Haigler CH, Ivanova-Datcheva M, Hogan PS, et al. Carbon partitioning to cellulose synthesis. Springer.2001.29-51.
    [164]Hashimoto T, Kato T. Cortical control of plant microtubules. Current opinion in plant biology, 2006,9(1):5-11.
    [165]He H, Serraj R, Yang Q. Changes in osxth gene expression, aba content, and peduncle elongation in rice subjected to drought at the reproductive stage. Acta Physiologiae Plantarum,2009,31(4): 749-756.
    [166]Heredia JB, Cisneros-Zevallos L. The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food chemistry, 2009,115(4):1500-1508.
    [167]Herrmann KM, Weaver LM. The shikimate pathway. Annual review of plant biology,1999,50(1): 473-503.
    [168]Hershkovitz V, Friedman H, Goldschmidt EE, et al. Induction of ethylene in avocado fruit in response to chilling stress on tree. Journal of plant physiology,2009,166(17):1855-1862.
    [169]Himmelspach R, Wymer CL, Lloyd CW, et al. Gravity-induced reorientation of cortical microtubules observed in vivo. The Plant Journal,1999,18(4):449-453.
    [170]Hinneburg I, Damien Dorman HJ, Hiltunen R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry,2006,97(1):122-129.
    [171]Hiwasa K, Kinugasa Y, Amano S, et al. Ethylene is required for both the initiation and progression of softening in pear (pyrus communis L.) Fruit. Journal of experimental botany,2003, 54(383):771-779.
    [172]Hong S, Roze LV, Linz JE. Oxidative stress-related transcription factors in the regulation of secondary metabolism. Toxins,2013,5(4):683-702.
    [173]Hoson T. Apoplast as the site of response to environmental signals. Journal of plant research, 1998,111(1):167-177.
    [174]Hsu YT, Kao CH. Heat shock-mediated H2O2 accumulation and protection against cd toxicity in rice seedlings. Plant and soil,2007,300(1-2):137-147.
    [175]Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in arabidopsis thaliana. Cell,1998,94(2):261-271.
    [176]Huang B, Chu C, Chen S, et al. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cellular & molecular biology letters,2006,11(2): 264-278.
    [177]Huang J, Zhang H, Wang J, et al. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stressa. Molecular biology reports, 2003,30(4):223-227.
    [178]Hush JM, Hawes CR, Overall RL. Interphase microtubule re-orientation predicts a new cell polarity in wounded pea roots. Journal of cell science,1990,96(1):47-61.
    [179]Iqbal N, Trivellini A, Masood A, et al. Current understanding on ethylene signaling in plants:the influence of nutrient availability. Plant Physiology and Biochemistry,2013,73:128-138.
    [180]Ishida K, Katsumi M. Immunofluorescence microscopical observation of cortical microtubule arrangement as affected by gibberellin in d5 mutant of zea mays 1. Plant and cell physiology,1991, 32(3):409-417.
    [181]Ishida K, Katsumi M. Effects of gibberellin and abscisic acid on the cortical microtubule orientation in hypocotyl cells of light-grown cucumber seedlings. International journal of plant sciences (USA),1992.
    [182]Issaq HJ, Chan KC, Janini GM, et al. Multidimensional separation of peptides for effective proteomic analysis. Journal of Chromatography B,2005,817(1):35-47.
    [183]Iwata K, Hogetsu T. The effects of light irradiation on the orientation of microtubules in seedlings of avena sativa L. and pisum sativum L. Plant and cell physiology,1989,30(7):1011-1016.
    [184]Izhaki A, Shoseyov O, Weiss D. A petunia cdna encoding S-adenosylmethionine synthetase. Plant physiology,1995,108(2):841.
    [185]Jaillon O, Aury J, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, nature,2007,449(7161):463-467.
    [186]Janick J, Whipkey A. Trends in new crops and new uses. ASHS Press Alexandria, VA.2002.
    [187]Jeong M, Choi BS, Bae DW, et al. Differential expression of kenaf phenylalanine ammonia-lyase (pal) ortholog during developmental stages and in response to abiotic stresses. Plant OMICS:Journal of Plant Molecular Biology & Omics,2012,5(4).
    [188]Jom KN, Frank T, Engel K. A metabolite profiling approach to follow the sprouting process of mung beans (vigna radiata). Metabolomics,2011,7(1):102-117.
    [189]Jorrin JV, Maldonado AM, Castillejo MA. Plant proteome analysis:a 2006 update. Proteomics, 2007,7(16):2947-2962.
    [190]Kakani VG, Reddy KR, Zhao D, et al. Effects of ultraviolet-b radiation on cotton (gossypium hirsutum L.) Morphology and anatomy. Annals of Botany,2003,91(7):817-826.
    [191]Kaku T, Tabuchi A, Wakabayashi K, et al. Action of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls. Plant and cell physiology,2002,43(1):21-26.
    [192]Kaneta T, Kakimoto T, Shibaoka H. Actinomycin d inhibits the ga3-induced elongation of azuki bean epicotyls and the reorientation of cortical microtubules. Plant and cell physiology,1993,34(7): 1125-1132.
    [193]Kim JH, Cho H, Kende H. a-expansins in the semiaquatic ferns marsilea quadrifolia and regnellidium diphyllum:evolutionary aspects and physiological role in rachis elongation. Planta,2000, 212(1):85-92.
    [194]Kim K, Park C, Ham B, et al. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to tobacco mosaic virus in capsicum annuum. Plant cell reports,2006,25(4): 359-364.
    [195]Kim Y, Jeong JC, Park S, et al. Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves. Journal of plant physiology,2012,169(11):1112-1120.
    [196]Kim Y, Nandakumar MP, Marten MR. Proteomics of filamentous fungi. TRENDS in Biotechnology,2007,25(9):395-400.
    [197]Kukreja S, Nandwal AS, Kumar N, et al. Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of cicer arietinum roots as affected by salinity. Biologia Plantarum, 2005,49(2):305-308.
    [198]Kumar A, Abrol E, Koul S, et al. Seasonal low temperature plays an important role in increasing metabolic content of secondary metabolites in withania somnifera (L.) dunal and affects the time of harvesting. Acta Physiologiae Plantarum,2012,34(5):2027-2031.
    [199]Kundu S, Chakraborty D, Pal A. Proteomic analysis of salicylic acid induced resistance to mungbean yellow mosaic india virus in vigna mungo. Journal of proteomics,2011,74(3):337-349.
    [200]Kurosumi A, Sasaki C, Kumada K, et al. Novel extraction method of antioxidant compounds fromsasa palmata(bean) nakai using steam explosion. Process Biochemistry,2007,42(10):1449-1453.
    [201]Kutchan TM. Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant physiology,2001,125(1):58-60.
    [202]Le J, Vandenbussche F, De Cnodder T, et al. Cell elongation and microtubule behavior in the arabidopsis hypocotyl:responses to ethylene and auxin. Journal of plant growth regulation,2005,24(3): 166-178.
    [203]Le J, Vandenbussche F, Van Der Straeten D, et al. Position and cell type-dependent microtubule reorientation characterizes the early response of the arabidopsis root epidermis to ethylene. Physiologia Plantarum,2004,121(3):513-519.
    [204]Lee J, Shannon JG, Jeong Y, et al. A simple method for evaluation of sprout characters in soybean. Euphytica,2007,153(1):171-180.
    [205]Lee SH, Park KY, Lee HS, et al. Genetic mapping of qtls conditioning soybean sprout yield and quality. Theoretical and Applied Genetics,2001,103(5):702-709.
    205] Lei G, Shen M, Li ZG, et al. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in arabidopsis. Plant, cell & environment,2011,34(10): 1678-1692.
    [207]Lelievre JM, Latche A, Jones B, et al. Ethylene and fruit ripening. Physiologia plantarum,1997, 101(4):727-739.
    [208]Lerouxel O, Cavalier DM, Liepman AH, et al. Biosynthesis of plant cell wall polysaccharides-a complex process. Current opinion in plant biology,2006,9(6):621-630.
    [209]Li G, Shi Y, Liu H, et al. Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats. European Food Research and Technology,2006, 222(5):733-736.
    [210]Li H, Guo H. Molecular basis of the ethylene signaling and response pathway in arabidopsis. Journal of Plant Growth Regulation,2007,26(2):106-117.
    [211]Liang X, Wang H, Mao L, et al. Involvement of copl in ethylene-and light-regulated hypocotyl elongation. Planta,2012,236(6):1791-1802.
    [212]Liang Z, Ma Y, Xu T, et al. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PloS one,2013,8(9):e72806.
    [213]Lieberman M, Mapson LW. Genesis and biogenesis of ethylene. Nature,1964,204:343-345.
    [214]Lieberman M, Kunishi AT. Ethylene production from methionine. Biochem. J,1965,97: 449-459.
    [215]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. Journal of experimental botany,2009,60(12):3311-3336.
    [216]Lingle SE. Sugar metabolism during growth and development in sugarcane internodes. Crop Science,1999,39(2):480-486.
    [217]Liu L, Wei J, Zhang M, et al. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of experimental botany,2012,63(16):5751-5761.
    [218]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative per and the 2-AACT method, methods,2001,25(4):402-408.
    [219]Lohani S, Trivedi PK, Nath P. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana:effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology,2004,31(2):119-126.
    [220]Lu W, Nakano R, Kubo Y, et al. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening. Acta Botanica Sinica,2004,46(3):355-362.
    [221]Lueking A, Horn M, Eickhoff H, et al. Protein microarrays for gene expression and antibody screening. Analytical biochemistry,1999,270(1):103-111.
    [222]Lunn JE, Macrae E. New complexities in the synthesis of sucrose. Current opinion in plant biology,2003,6(3):208-214.
    [223]Lynch J, Brown KM. Ethylene and plant responses to nutritional stress. Physiologia Plantarum, 1997,100(3):613-619.
    [224]Mang HG, Kang EO, Shim JH, et al. A proteomic analysis identifies glutathione S-transferase isoforms whose abundance is differentially regulated by ethylene during the formation of early root epidermis in arabidopsis seedlings. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2004,1676(3):231-239.
    [225]Marnett LJ. Lipid peroxidation - dna damage by malondialdehyde. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1999,424(1):83-95.
    [226]Matamoros MA, Dalton DA, Ramos J, et al. Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiology,2003,133(2):499-509.
    [227]Mato J, Alvarez L, Ortiz P, et al. S-adenosylmethionine synthesis:molecular mechanisms and clinical implications. Pharmacology & therapeutics,1997,73(3):265-280.
    [228]Mccree KJ. Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. Crop science,1974,14(4):509-514.
    [229]Mcdougall GJ, Fry SC. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiology,1990,93(3):1042-1048.
    [230]Merchante C, Alonso JM, Stepanova AN. Ethylene signaling:simple ligand, complex regulation. Current opinion in plant biology,2013,16(5):554-560.
    [231]Mewis I, Schreiner M, Nguyen CN, et al. UV-b irradiation changes specifically the secondary metabolite profile in broccoli sprouts:induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology,2012,53(9):1546-1560.
    [232]Milla MAR, Maurer A, Huete AR, et al. Glutathione peroxidase genes in arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal, 2003,36(5):602-615.
    [233]Milone MT, Sgherri C, Clijsters H, et al. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany,2003,50(3):265-276.
    [234]Moeder W, Barry CS, Tauriainen AA, et al. Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-l-carboxylic acid synthase and 1-aminocyclopropane-l-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiology,2002,130(4):1918-1926.
    [235]Morgan PW, Drew MC. Ethylene and plant responses to stress. Physiologia Plantarum,1997, 100(3):620-630.
    [236]Mubarak AE. Nutritional composition and antinutritional factors of mung bean seeds (phaseolus aureus) as affected by some home traditional processes. Food Chemistry,2005,89(4):489-495.
    [237]Muto S, Asahi T, Uritani I. Increase in the dehydrogenase activities of the pentose phosphate pathway in sweet potato root tissue after slicing. Agricultural and Biological Chemistry,1969,33(2): 176-189.
    [238]Naik PK, Mohapatra PK. Ethylene inhibitors enhanced sucrose synthase activity and promoted grain filling of basal rice kernels. Functional Plant Biology,2000,27(11):997-1008.
    [239]Nehring RB, Ecker JR. Ethylene responses in seedling growth and development. Springer.2010. 358-376.
    [240]Neljubov D. Molecular basis of the ethylene signaling and response pathway in arabidopsis. Pflanzen Beih Bot Zentralb,1901(10):128-139.
    [241]Neverova I, Van Eyk JE. Role of chromatographic techniques in proteomic analysis. Journal of Chromatography B,2005,815(1):51-63.
    [242]Nick P, Bergfeld R, Schafer E, et al. Unilateral reorientation of microtubules at the outer epidermal wall during photo-and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta,1990,181(2):162-168.
    [243]Nick P. Signaling to the microtubular cytoskeleton in plants. International review of cytology, 1998,184:33-80.
    [244]Nicolas IL, Echeverria MA, Sanchez-Bravo J. Influence of ethylene and Ag+on hypocotyl growth in etiolated lupin seedlings. Effects on cell growth and division. Plant growth regulation,2001,33(2): 95-105.
    [245]Ning B, Kubo Y, Inaba A, et al. Softening characteristics of chinese pear" yali" fruit with special relation to changes in cell-wall polysaccharides and their degrading enzymes. Scientific Reports of the Faculty of Agriculture-Okayama University (Japan),1997.
    [246]No HK, Lee KS, Kim ID, et al. Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of food science,2003,68(2):680-685.
    [247]O'Farrell PH. High resolution two--imensional electrophoresis of proteins. Journal of biological chemistry,1975,250(10):4007-4021.
    [248]Ogawa A, Ando F, Toyofuku K, et al. Sucrose metabolism for the development of seminal root in maize seedlings. Plant production science,2009,12(1):9-16.
    [249]Ortega Garcia F, Peragon J. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree(olea europaea L. Cv. Picual). Journal of the Science of Food and Agriculture,2009,89(9):1565-1573.
    [250]Panda SK. Oxidative response of green gram seeds under salinity stress. Indian journal of plant physiology,2001,6(4):438-440.
    [251]Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. Current opinion in plant biology,2006,9(6):571-578.
    [252]Patterson SD, Aebersold RH. Proteomics:the first decade and beyond. Nature genetics,2003,33: 311-323.
    [253]Paucar-Menacho LM, Berhow MA, Mandarino JMG, et al. Effect of time and temperature on bioactive compounds in germinated brazilian soybean cultivar brs 258. Food research international, 2010,43(7):1856-1865.
    [254]Paucar-Menacho LM, Berhow MA, Mandarino JMG, et al. Optimisation of germination time and temperature on the concentration of bioactive compounds in brazilian soybean cultivar brs 133 using response surface methodology. Food chemistry,2010,119(2):636-642.
    [255]Peretto R, Favaron F, Bettini V, et al. Expression and localization of polygalacturonase during the outgrowth of lateral roots in allium porrum L. Planta,1992,188(2):164-172.
    [256]Perozich J, Nicholas H, Wang BC, et al. Relationships within the aldehyde dehydrogenase extended family. Protein Science,1999,8(1):137-146.
    [257]Petersen M, Sander L, Child R, et al. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase frombrassica napus. Plant molecular biology,1996,31(3):517-527.
    [258]Phommalth S, Jeong Y, Kim Y, et al. Effects of light treatment on isoflavone content of germinated soybean seeds. Journal of agricultural and food chemistry,2008,56(21):10123-10128.
    [259]Plaxton WC. The organization and regulation of plant glycolysis. Annual review of plant biology, 1996,47(1):185-214.
    [260]Plett JM, Mathur J, Regan S. Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in arabidopsis thaliana. Journal of experimental botany,2009,60(13): 3923-3933.
    [261]Polko JK, van Zanten M, van Rooij JA, et al. Ethylene - induced differential petiole growth in arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytologist,2012, 193(2):339-348.
    [262]Poor P, Kovacs J, Szopko D, et al. Ethylene signaling in salt stress-and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma,2013,250(1):273-284.
    [263]Prayitno J, Imin N, Rolfe BG, et al. Identification of ethylene-mediated protein changes during nodulation in medicago t runcatula using proteome analysis. Journal of proteome research,2006,5(11): 3084-3095.
    [264]Randhir R, Shetty K. Elicitation of the proline-linked pentose phosphate pathway metabolites and antioxidant enzyme response by ascorbic acid in dark germinated fava bean sprouts. Journal of food biochemistry,2007,31(4):485-508.
    [265]Randhir R, Kwon Y, Shetty K. Improved health-relevant functionality in dark germinated mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors. Bioresource technology,2009, 100(19):4507-4514.
    [266]Randhir R, Lin Y, Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry,2004,39(5):637-646.
    [267]Randhir R, Shetty P, Shetty K. L-dopa and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry,2002,37(11): 1247-1256.
    [268]Ranwala AP, Iwanami S, Masuda H. Acid and neutral invertases in the mesocarp of developing muskmelon (cucumis melo 1. Cv prince) fruit. Plant physiology,1991,96(3):881-886.
    [269]R6hm M, Lindemann E, Hiller E, et al. A family of secreted pathogenesis-related proteins in candida albicans. Molecular microbiology,2013,87(1):132-151.
    [270]Romera FJ, Alcantara E. Ethylene involvement in the regulation of Fe-deficiency stress responses by strategy i plants. Functional Plant Biology,2004,31(4):315-328.
    [271]Rose JK, Lee HH, Bennett AB. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proceedings of the National Academy of Sciences,1997,94(11):5955-5960.
    [272]Rossignol M, Peltier JB, Mock HP, et al. Plant proteome analysis:a 2004-2006 update. Proteomics,2006,6(20):5529-5548.
    [273]Rufty TW, Huber SC. Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sink alterations. Plant physiology, 1983,72(2):474-480.
    [274]Rui L, Jianxiong H, Haijie L, et al. Application of electrolyzed functional water on producing mung bean sprouts. Food Control,2011,22(8):1311-1315.
    [275]Sagisaka S. Injuries of cold acclimatized poplar twigs resulting from enzyme inactivation and substrate depression during frozen storage at ambient temperatures for a long period. Plant and cell physiology,1985,26(6):1135-1145.
    [276]Sakihama Y, Cohen MF, Grace SC, et al. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology,2002,177(1):67-80.
    [277]Sakiyama-Sogo M, Shibaoka H. Gibberellin a3 and abscisic acid cause the reorientation of cortical microtubules in epicotyl cells of the decapitated dwarf pea. Plant and cell physiology,1993, 34(3):431-437.
    [278]Sakoda M, Hasegawa K, Ishizuka K. Mode of action of natural growth inhibitors in radish hypocotyl elongation - influence of raphanusanin on auxin - mediated microtubule orientation. Physiologia Plantarum,1992,84(4):509-513.
    [279]Saltveit ME. Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut'iceberg'lettuce. Postharvest biology and technology,2004,34(1):75-80.
    [280]Schaffer AA, Sagee O, Goldschmidt EE, et al. Invertase and sucrose synthase activity, carbohydrate status and endogenous iaa levels during citrus leaf development. Physiologia plantarum, 1987,69(1):151-155.
    [281]Scheibe R, Geissler A, Fickenscher K. Chloroplast glucose-6-phosphate dehydrogenase:km shift upon light modulation and reduction. Archives of biochemistry and biophysics,1989,274(1):290-297.
    [282]Seagull RW, Gunning B. The plant cytoskeleton. Critical reviews in plant sciences,1989,8(2): 131-167.
    [283]Sels J, Mathys J, De Coninck B, et al. Plant pathogenesis-related (PR) proteins:a focus on pr peptides. Plant Physiology and Biochemistry,2008,46(11):941-950.
    [284]Shi Y, Xiang R, Horvath C, et al. The role of liquid chromatography in proteomics. Journal of Chromatography A,2004,1053(1):27-36.
    [285]Shibaoka H, Nagai R. The plant cytoskeleton. Current opinion in cell biology,1994,6(1):10-15.
    [286]Shibaoka H. Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annual review of plant biology,1994,45(1):527-544.
    [287]Shiono K, Takahashi H, Colmer TD, et al. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Science,2008,175(1):52-58.
    [288]Shirasu K, Nakajima H, Rajasekhar VK, et al. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. The Plant Cell Online, 1997,9(2):261-270.
    [289]Shoji T, Suzuki K, Abe T, et al. Salt stress affects cortical microtubule organization and helical growth in arabidopsis. Plant and cell physiology,2006,47(8):1158-1168.
    [290]Siddikee MA, Chauhan PS, Sa T. Regulation of ethylene biosynthesis under salt stress in red pepper (capsicum annuum L.) By 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Journal of Plant Growth Regulation,2012,31(2):265-272.
    [291]Simova-Stoilova L, Vaseva I, Grigorova B, et al. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiology and Biochemistry, 2010,48(2):200-206.
    [292]Sinclair J, Metodieva G, Dafou D, et al. Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-IC-MS/MS with tandem mass tagging. Journal of proteomics,2011,74(4): 451-465.
    [293]Slade WO, Ray WK, Williams PM, et al. Effects of exogenous auxin and ethylene on the arabidopsis root proteome. Phytochemistry,2012,84:18-23.
    [294]Smalle J, Haegman M, Kurepa J, et al. Ethylene can stimulate arabidopsis hypocotyl elongation in the light. Proceedings of the National Academy of Sciences,1997,94(6):2756-2761.
    [295]Smalle J, Straeten D. Ethylene and vegetative development. Physiologia Plantarum,1997,100(3): 593-605.
    [296]Solecka D,|ebrowski J, Kacperska A. Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Annals of botany,2008,101(4):521-530.
    [297]Song J, Kim J, Lee D, et al. Developmental regulation of the expression of 1-aminocyclopropane-l-carboxylic acid (ace) synthase and ace oxidase genes in hypocotyls of etiolated mung bean seedlings. Plant Science,2005,168(5):1149-1155.
    [298]Song J, Choi KH, Eu Y, et al. Differential expression of ace synthase and ace oxidase genes in mung bean leaves under saline and oxidative stresses. Journal of Plant Biology,2001,44(2):118-126.
    [299]Song J, Lee C, Lee D, et al. Wound-induced expression of ace synthase genes in etiolated mung bean hypocotyls. Journal of plant Biology,2003,46(3):199-203.
    [300]Soto-Vaca A, Gutierrez A, Losso JN, et al. Evolution of phenolic compounds from color and flavor problems to health benefits. Journal of agricultural and food chemistry,2012,60(27):6658-6677.
    [301]Sp B, Ea B. Ethylene action and the ripening of fruits. Science,1965(148):1190-1196.
    [302]Staiger CJ, Lloyd CW. The plant cytoskeleton. Current opinion in cell biology,1991,3(1):33-42.
    [303]Stearns JC, Glick BR. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances,2003,21(3):193-210.
    [304]Stuart DA, Durnam DJ, Jones RL. Cell elongation and cell division in elongating lettuce hypocotyl sections. Planta,1977,135(3):249-255.
    [305]Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant physiology,1999,121(1):1-8.
    [306]Takahashi H, Kawahara A, Inoue Y. Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (lactuca sativa L.) Seedlings. Plant and cell physiology,2003,44(9):932-940.
    [307]Theriault M, Caillet S, Kermasha S, et al. Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food chemistry,2006,98(3):490-501.
    [308]Thompson JE, Fry SC. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. The Plant Journal,2001,26(1):23-34.
    [309]Thordal-Christensen H. Fresh insights into processes of nonhost resistance. Current opinion in plant biology,2003,6(4):351-357.
    [310]Tian W, Braunstein LD, Pang J, et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. Journal of Biological Chemistry,1998,273(17):10609-10617.
    [311]Trouverie J, Chateau-Joubert S, Thevenot C, et al. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta,2004,219(5):894-905.
    [312]Valderrama R, Corpas FJ, Carreras A, et al. The dehydrogenase-mediated recycling of nadph is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, cell & environment,2006,29(7):1449-1459.
    [313]Vantard M, Cowling R, Delichere C. Cell cycle regulation of the microtubular cytoskeleton. Springer.2000.147-159.
    [314]Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines. Plant Science,2000,151(1):59-66.
    [315]Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A mads-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science,2002,296(5566):343-346.
    [316]Vreeburg RA, Benschop JJ, Peeters AJ, et al. Ethylene regulates fast apoplastic acidification and expansin a transcription during submergence - induced petiole elongation in rumex palustris. The Plant Journal,2005,43(4):597-610.
    [317]Vriezen WH, De Graaf B, Mariani C, et al. Submergence induces expansin gene expression in flooding-tolerant rumex palustris and not in flooding-intolerant r. Acetosa. Planta,2000,210(6): 956-963.
    [318]Wakabayashi K, Chun J, Huber DJ. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (perseaamericana) ripening involves concerted action of polygalacturonase and pectinmethylesterase.108. Munksgaard International Publishers.2000.345-352.
    [319]Wamelink M, Strays EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway:a review. Journal of inherited metabolic disease,2008,31(6):703-717.
    [320]Wan L, Zhang J, Zhang H, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PloS one,2011,6(9): e25216.
    [321]Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in arabidopsis. Plant and cell physiology,2007,48(11):1534-1547.
    [322]Wang G, Gao Y, Wang J, et al. Overexpression of two cambium-abundant chinese fir (cunninghamia lanceolata) α-expansin genes clexpal and clexpa2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant biotechnology journal, 2011,9(4):486-502.
    [323]Wasinger VC, Cordwell SJ, Cerpa Poljak A, et al. Progress with gene-product mapping of the mollicutes:mycoplasma genitalium. Electrophoresis,1995,16(1):1090-1094.
    [324]Wegrzyn TF, Macrae EA. Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience,1992,27(8):900-902.
    [325]Wei J, Miao H, Wang Q. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes inbrassica sprouts. Scientia Horticulturae,2011,129(4):535-540.
    [326]Wi SJ, Jang SJ, Park KY. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in nicotiana tabacum. Molecules and cells,2010,30(1):37-49.
    [327]Wilkins MR, Sanchez J, Gooley AA, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic engineering reviews,1996,13(1):19-50.
    [328]Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics. Analytical chemistry,2001,73(23):5683-5690.
    [329]Woodson WR, Park KY, Drory A, et al. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiology,1992,99(2):526-532.
    [330]Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cIACT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF. Journal of proteome research,2006, 5(3):651-658.
    [331]Wu Y, Jeong B, Fry SC, et al. Change in xet activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. Planta,2005,220(4):593-601.
    [332]Xu D, Sung SS, Loboda T, et al. Characterization of sucrolysis via the uridine diphosphate and pyrophosphate-dependent sucrose synthase pathway. Plant physiology,1989,90(2):635-642.
    [333]Xu MJ, Dong JF, Zhu MY. Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. Journal of the Science of Food and Agriculture,2005,85(6):943-947.
    [334]Yamagami T, Tsuchisaka A, Yamada K, et al. Biochemical diversity among the 1-amino-cyclopropane-l-carboxylate synthase isozymes encoded by the arabidopsis gene family. Journal of Biological Chemistry,2003,278(49):49102-49112.
    [335]Yamane K, Mitsuya S, Kawasaki M, et al. Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant production science,2009,12(3):319-326.
    [336]Yan JX, Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of escherichia coli. Proteomics,2002, 2(12):1682-1698.
    [337]Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology,1984,35(1):155-189.
    [338]Yao Y, Cheng X, Ren G. Contents of d- chiro-inositol, vitexin, and isovitexin in various varieties of mung bean and its products. Agricultural Sciences in China,2011,10(11):1710-1715.
    [339]Yoon V, Nodwell JR. Activating secondary metabolism with stress and chemicals. Journal of industrial microbiology & biotechnology,2014,41(2):415-424.
    [340]Yuan G, Wang X, Guo R, et al. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food chemistry,2010,121(4):1014-1019.
    [341]Zandomeni K, Schopfer P. Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma,1994,182(3-4):96-101.
    [342]Zhang H, Liu W, Wan L, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic research,2010, 19(5):809-818.
    [343]Zhang T, Qiao Q, Zhong Y. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase (ACS) gene family. Computational biology and chemistry, 2012,38:10-16.
    [344]Zhang X, Wei P, Xiong Y, et al. Overexpression of the arabidopsis a-expansin gene atexpal accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant cell reports,2011, 30(1):27-36.
    [345]Zhang Z, Li F, Li D, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta,2010,232(3):165-174.
    [346]Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LEERF2 is modulated by ethylene biosynthesis. Plant molecular biology, 2010,73(3):241-249.
    [347]Zhao R, Xie H, Lv S, et al. Lemapk4 participated in cold-induced ethylene production in tomato fruit. Journal of the Science of Food and Agriculture,2013,93(5):1003-1009.
    [348]Zheng Q, Song J, Campbell-Palmer L, et al. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment. Journal of proteomics,2013,93:276-294.
    [349]Zhong H, Lauchli A. Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. Journal of experimental botany,1993,44(4):773-778.
    [350]Zhong S, Shi H, Xue C, et al. A molecular framework of light-controlled phytohormone action in arabidopsis. Current Biology,2012,22(16):1530-1535.
    [351]Zhu YJ, Komor E, Moore PH. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiology,1997,115(2):609-616.
    [352]Zrenner R, Schuler K, Sonnewald U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta,1996,198(2):246-252.