Cu(Ⅱ)及Zn(Ⅱ)对竹浆纤维抗菌和抗紫外功能的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹浆纤维是以竹材为原料,经碱法水解及多段漂白制成浆粕,然后再经湿法纺丝制得,其加工工艺与粘胶纤维生产相似。但在生产制作及后序的染整过程中,由于大量地碱性处理,使得竹纤维原有的抗菌性基本上消失,加之其耐光性也较差,所以如何赋予竹浆纤维以抗菌性和抗紫外性,成为其改性的一个重要方向。
     本文的研究目的是基于金属离子Cu(Ⅱ)与Zn(Ⅱ)等具有抗菌性和抗此紫外性等功能,通过一定的途径使它们与竹浆纤维很好地结合起来,实现竹浆纤维功能化改性。
     本研究的实验方法是用铜氨溶液和锌氨溶液处理纤维表面。该方法在常温常压下进行,操作方便,简捷实用。处理好的竹浆纤维织物应达到三个目标要求:一是具有一定的结合牢度(水洗牢度);二是保持原有竹浆纤维织物的力学性能;三是取得预期的抗菌和抗紫外性能。
     配制出一定浓度的铜氨溶液,用以处理竹浆纤维。处理后的铜氨络合竹浆纤维,首先进行抗菌试验,同时,还要进行水洗牢度试验和典型的力学性能测试;然后通过SEM、TG、XRD、FTIR、XPS等实验,进行结构与性能分析;最后研究了影响因素,即反应浓度、处置浴比以及反应时间,并测试了其抗紫性能。
     配制出锌氨溶液,用以处理竹浆纤维织物。处理后的锌氨改性竹浆纤维进行抗菌试验、水洗牢度试验和典型的力学性能测试;然后进行结构分析;最后研究影响因素,测试其抗紫性能。
     结果表明,竹浆纤维经铜氨溶液处理后,形成铜氨络合竹浆纤维,Cu(Ⅱ)与竹浆纤维的羟基发生金属络合反应。铜氨络合竹浆纤维具有很好的抗菌功能,它的力学性能保持在原有水平,并保有一定的水洗牢度。此外,铜氨络合竹浆纤维还具有很好的抗紫外功能。
     竹浆纤维采用锌氨溶液处理后,形成锌氨改性竹浆纤维,ZnO吸附在竹浆纤维表面之上。锌氨改性竹浆纤维具有很好的抗菌功能,达到了生态纺织品的抗菌整理要求,它的力学性能保持在原有水平,并拥有一定的水洗牢度;此外,锌氨改性竹浆纤维还具有很好的抗紫外功能。
     使用铜氨溶液和锌氨溶液处理竹浆纤维都完成了上述三个目标要求。
     本文的创新性在于,一是独特的思维和简捷的方法,它是受生产铜氨纤维的启示,将铜氨溶液控制在尚不足以溶解纤维素的溶度之下,达到竹浆纤维吸附Cu(Ⅱ)的效果;该方法在常温常压下进行,易于操控。二是采用铜氨溶液改性竹浆纤维,并产生了很好的抗菌效果和抗紫外效果。三则是更进一步,在铜氨溶液启发下,再配制出锌氨溶液用以处理竹浆纤维,该方法独辟蹊径,国内外尚无相关报道;它也是在常温常压下进行,无需对ZnO进行纳米分散处理,简便实用。四是竹浆纤维经锌氨溶液改性后,取得了很好的抗菌效果和抗紫外效果。
     总之,竹浆纤维经铜氨溶液和锌氨溶液处理后,赋予了抗菌性与抗紫外性能,表明该思维方法是竹浆纤维功能化的一种良好途径;同时,对其它纤维素类纤维如棉纤维等,也不失为一种改性的新思路;再者,该方法工艺并不复杂,工业化前景广阔。
Bamboo pulp fiber is made from cellulose of bamboo in the form of dissolving pulp which is manufactured by chemical manners like alkaline hydrolysis and multistage bleaching, and then turned out via wet spinning. The processing is similar to that of traditional viscose fiber. Generally bamboo pulp fiber has lost the antibacterial property lain inherently in bamboo resulting from the treatment with alkali in the processing and finishing. Besides, the light permanency is bad. So, it is getting an important aspect to endow bamboo pulp fiber with antibacterial and UV-blocking properties
     It is the objective of this research. Basically Cu(Ⅱ) and Zn(Ⅱ) have good antibacterial and UV-blocking properties, bamboo pulp fiber will be combined with them effectively by someway. So the bamboo pulp fiber gets functional with antibacterial and UV-blocking properties.
     The experiment approach is to treat surface of bamboo pulp fiber with the copper liquor and the zinc liquor, which are prepared in a definite concentration not dissolving cellulose. There are three targets should be gained for the treated bamboo pulp fabrics. Firstly, it has to possess washing fastness in some extent. Secondly, it must be retaining the mechanical property original. Lastly, the antibacterial and UV-blocking properties are achieved according to the design.
     Bamboo pulp fiber is treated with the copper liquor. The treated one i.e. Cu(Ⅱ) Complex Bamboo Pulp Fabric is tested by antibacterial, washing fastness and mechanical properties experimentations. Next, structure and properties analysis are performed by SEM, TG, XRD, FTIR and XPS. Finally, The factors dealing with the concentration, reacting time and bath ratios ae used to study the impact to the Cu(Ⅱ) complex bamboo pulp fiber. The UV-blocking property is tested too.
     Bamboo pulp fiber is treated with the zinc liquor. The treated one i.e. Bamboo Pulp Fabrics Modified by the zinc liquor is tested by antibacterial, washing fastness and mechanical properties experimentations. Next, structure analysis is performed; finally, the factors are studied, and the UV-blocking property is tested too.
     The results shows after treatment of [Cu(NH3)4]2+, that Cu(Ⅱ) is bonded with hydroxyl of cellulose in the fiber forming Cu(Ⅱ) complex bamboo pulp fabric, which demonstrates excellent antibacterial activity, retains the original mechanical property and possesses washing fastness in some extent. Cu(Ⅱ) complex bamboo pulp fabric has a good UV-blocking property farther more.
     The results shows after treatment of [Zn(NH3)4]2+, that ZnO is absorbed onto the surface of the fiber forming bamboo pulp fiber modified by Zn(Ⅱ), which demonstrates a good antibacterial activity, retains the original mechanical property and possesses washing fastness in some extent. This is a finishing way to be ecological textiles. Bamboo pulp fiber modified by Zn(Ⅱ) has a good UV-blocking property too.
     Bath of them implements the three targets above-mentioned.
     Innovation of this research is represented in the several aspects. Firstly, it is an original ideal and an easy approach, which is inspired by the processing of cuprammonium fiber. Bamboo pulp fiber is treatment with the copper liquor in a definite concentration that can not dissolve cellulose and this is an easy way to do in room temperature. Secondly, not only a good antibacterial but an UV-blocking property is achieved for bamboo pulp fiber after the copper liquor treatment. Thirdly, upon that illumined by the copper liquor, the zinc liquor is prepared to treat bamboo pulp fiber too. This innovates a new and easy way avoiding the dispersion processing of nano-ZnO. Fourthly, as a result of the zinc liquor treatment, bamboo pulp fiber is endowed with good antibacterial and UV-blocking properties.
     To sum up, it is a good technique to modify bamboo pulp fiber by the treatment of [Cu(NH3)4]2+ and [Zn(NH3)4]2+. At the same time, it is can be referenced by the other cellulose fibers such as cotton. Once more, the process can be put in practice in an easy way. So it has a better perspective for industrialization.
引文
[1]肖长发,尹翠玉,张华,等.化学纤维概论[M].北京:中国纺织出版社,2001.
    [2]李栋高.纤维材料学[M].北京:中国纺织出版社,2006.
    [3]叶代勇,黄洪,傅和青,陈焕钦.纤维素化学研究进展[J].化工学报,2006,58(8):1782-1791.
    [4]熊键,叶君,马劲.纤维素学科对人类文明和社会发展的推动作用[J].科学对社会的影响,2006,(1).
    [5] Shilin Liu, Jian Zeng, Dandan Tao, et al. Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment[J]. Cellulose, 2010, 17:1159–1169.
    [6] Daniel C, la Grange, Riaan den Haan, et al. Engineering cellulolytic ability into bioprocessing organisms[J]. Appl Microbiol Biotechnol, 2010, 87:1195–1208.
    [7]秦益民. Cupron铜基抗菌纤维的性能和应用[J].纺织学报, 2009, 30(12):134-136.
    [8] N A Bagrovskaya, O V. Alekseeva, O V Rozhkova, et al. Extracting heavy metals with cellulose-containing materials[J]. Protection of Metals, 2008, 44(4):394-396.
    [9]陈俊盛.纺织原料新宠——改性纤维素纤维[J].中国纤检,2005,(7):28-30.
    [10]周建萍.竹原纤维和竹浆纤维的结构与性能研究[J].上海纺织科技,2006,34(5):59-60.
    [11]瞿彩莲,窦明池.再生竹纤维的纺纱工艺研究[J].现代纺织技术,2006,(4):1-3.
    [12]潘祖仁.高分子化学[M](第二版).北京:化学工业出版社,2001.
    [13] M A Moharram,Osama M Mahmoud.X-Ray Diffraction Methods in the Study of the Effect of Microwave Heating on the Transformation of Cellulose I into Cellulose II During Mercerization[J]. J Appl Polym Sci, 2007, 105:2978-2983.
    [14]王越平,高绪珊.天然竹纤维与竹浆粘胶纤维的结构性能比较[J].中国麻业,2006,28(2):97-100.
    [15]王越平,高绪珊,邢声远,等.几种天然纤维素纤维的结构研究[J].棉纺织技术,2006,34(2):72-76.
    [16]杨元.几种新型再生纤维及其鉴别方法[J].现代纺织技术,2005,(1):44-47.
    [17]万雅波,王善元.Tencel纤维的结构的性能特征[J].上海纺织科技,1999,27(3):5-8.
    [18]章伟,邢顾华.Tencel织物产品开发及工艺研究[J].现代纺织技术,2006,(2):36-39.
    [19]杨美华,杨东洁.Lyocell纤维结构与性能的关系[J].成都纺织高等专科学校学报,2002,65(3):10-12.
    [20]许海霞,李振国,张滇溪,等.纤维素新溶剂的研究进展[J].合成纤维,2006,(9):18-21.
    [21] Xiaohui Wu,Linge Wang,Hui Yu,Yong Huang.Effect of Solvent on Morphology of Electrospinning Ethyl Cellulose Fibers[J].J Appl Polym Sci, 2005, 97:1292-1297.
    [22] Dong Ruan,Lina Zhang,Ang Lue,et al.A Rapid Process for Producing Cellulose—Multi-Filament Fibers from a NaOH/Thiourea Solvent Systema [J].Macromol. Rapid Commun., 2006(27):1495-1500.
    [23] Yen-Ning Kuo,Juan Hong.Investigation of solubility of microcrystalline cellulose in aqueous NaOH[J].Polym. Adv. Technol., 2005,(16):425-428.
    [24] Audrey Frenot , Maria Walenius Henriksson , Pernilla Walkenstro¨m.Electrospinning of Cellulose-Based Nanofibers[J].J Appl Polym Sci, 2007, 103:1473-1482.
    [25] Seong Ok Han,Won Keun Son,Ji Ho Youk,Won Ho Park.Electrospinning of Ultrafine Cellulose Fibers and Fabrication of Poly(butylene succinate) Biocomposites Reinforced by Them [J].J Appl Polym Sci, 2008,107:1954-1959.
    [26] Chunhui Xiang,Margaret W. Frey,Alan G. Taylor,Mary E. Rebovich. Selective Chemical Absorbance in Electrospun Nonwovens[J].J Appl Polym Sci, 2007,106: 2363-2370.
    [27] Choo-Won KIM,Margaret W. Frey,Manuel Marquez,Yong-lak JOO.Preparation of Submicron-Scale, Electrospun Cellulose Fibers via Direct Dissolution [J].J Polym Sci Part B:Polym Phys, 2005, 43:1673-1683.
    [28]康卫民,程博闻,庄旭品,丁长坤.静电纺纳米级纤维复合膜及其过滤性能[J].纺织学报,2006,27(10):6-9.
    [29] Denis Mihaela Panaitescu,Dan Donescu,Cristiana Bercu,et al.Polymer Composites With Cellulose Microfibrils[J].POLYM. ENG .SCI, 2007,4:1228-1234.
    [30] Wei Dong Li,En Yong Ding.Preparation and Characterization of Poly(ethylene terephthalate) Fabrics Treated by Blends of Cellulose Nanocrystals and Polyethylene Glycol [J].J Appl Polym Sci, 2007, 105:373-378.
    [31] Philippe Roche.A New and Simple Way of Preparing Polycation-Grafted Fibrous Cellulose [J].J Appl Polym Sci, 2006, 102:3149-3157.
    [32] J. Morales,M. G. Olayo,G. J. Cruz,P. Herrera-Franco,R. Olayo. Plasma Modification of Cellulose Fibers for Composite Materials [J].J Appl Polym Sci, 2006, 101:3821-3828.
    [33] E.Marsano , Gconnio , R.Martino , A.Turturro , E.Bianchi . Fibers Based on Cellulose-Chitin Blends [J].J Appl Polym Sci, 2002, 83:1825-1831.
    [34] E. Marsano,M.Canetti,G.Conio,P.Corsini,G. Freddi.Fibers Based on Cellulose–Silk Fibroin Blend [J].J Appl Polym Sci, 2007, 104:2187-2196.
    [35] Piotr Czarnecki.Thermal and rheological characterization of cellulose spinning dopes modified with nanosilica and antibacterial agents[J]. Polym. Adv. Technol., 2007, 18:845-852.
    [36]张鸿,韩英波.抗菌粘胶纤维的开发[J].上海纺织科技,2004(32)4:9-10.
    [37]李辉芹.生物活性纤维———海丝系列纤维[J].毛纺科技,2005,(4):49-52.
    [38]刘世清,李皓桓,彭昊,徐怡.新型纤维素导管桥接周围神经缺损的研究[J].中华实验外科杂志,2005, 22(5):593-595.
    [39] Viviana P. Cyras, Ma. Soledad Commisso,Adriana N. Mauri,et al.Biodegradable Double-Layer Films Based on Biological Resources:Polyhydroxybutyrate and Cellulose [J].J Appl Polym Sci, 2007, 106:749-756.
    [40] G. M. Ganjyal,N. Reddy,Y. Q. Yang,M. A. Hanna.Biodegradable Packaging Foams of Starch Acetate Blended with Corn Stalk Fibers [J]. J Appl Polym Sci, 2004, 93:2627-2633.
    [41] Huiru Zhang,Mingwei Tong.Infuence of Hemicelluloses on the Structure andProperties of Lyocell Fibers[J].POLYM. ENG. SCI, 2007, 47:702-706.
    [42] Huiru Zhang,Huihui Zhang,Mingwei Tong,et al.Comparison of the Structures and Properties of Lyocell Fibers from High Hemicellulose Pulp and High a-Cellulose Pulp[J].J Appl Polym Sci 2008, 107:636-641.
    [43] Sang Syoo Lim,Tae Won Son,Dong Won Lee,et al.Novel Regenerated Cellulose Fibers from Rice Straw[J].J Appl Polym Sci, 2001, 82:1705-1708.
    [44]张建兴,陈洪章.秸秆醋酸纤维素的制备[J].化工学报,2007,58(10):2548-2553.
    [45] Young-seok Koo,Young-soo Wang,Sang-hoon You,Han-do Kim.Preparation and Properties of Chemical Cellulose from Ascidian Tunic and Their Regenerated Cellulose Fibers[J].J Appl Polym Sci., 2002, 85:1634-1643.
    [46] Sunkyu Park,Richard A Venditti,David G Abrecht,et al. Surface and Pore Structure Modification of Cellulose Fibers Through Cellulase Treatment[J].J Appl Polym Sci, 2007, 103:3833-3839.
    [47]孙居娟.竹纤维抗菌性能的研究[D].天津:天津工业大学,2007.
    [48]刘广平,王然,李瑞洲,等.竹浆纤维抗菌性研究[J].毛纺科技,2004,(11):41-43.
    [49]张峰.超支化聚合物的制备及对棉纤维的功能化改性[D].苏州:苏州大学,2009.
    [50]詹怀宁,李志强,蔡再生.纤维化学与物理[M].北京:科学技术出版社,2005.
    [51] Feng Zhang, Xiaolan Wu, Yuyue Chen, et al. Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish [J]. Fibers and Polymers, 2009, 10,(4):496-501.
    [52]刘艳,张峰,张广宇,等.真丝织物的汽蒸法纳米银抗菌整理[J].丝绸, 2009, (8):29-31.
    [53] Mary G, Bajpai S K, Chand N. Copper(II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci, 2009,113(2): 757-766.
    [54] Son W-K, Youk J-H, Lee T-S, et al. Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles[J]. Macromol Rapid Comm. 2004, 25, 1632-1637.
    [55] Sachinvala N, Parikh D V, Sawhney P, et al. Silver (I) antimicrobial cotton nonwovens and printcloth[J]. Polym for Adv Technol. 2007, 18(8): 620–628.
    [56] Sharma R, Agarwal S K, Rawat S, et al. Synthesis, characterization and antibacterial activity of some transition metalcis-3,7-dimethyl-2,6-octadiensemicarbazone complexes[J]. Transition Met Chem , 2006, 31:201-206.
    [57] Jeewoth T, Bhowon M G, Wah H L K. Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3-diamino-pyridine[J]. Transition Met Chem, 1999, 24: 445-448.
    [58] Anacona J R, Bastardo E, Camus J. Manganese(II) and palladium(II) complexes containing a new macrocyclic Schiff base ligand: antibacterial properties[J]. Transition Met. Chem., 1999, 24, 478-480.
    [59] Sau D K, Butcher R J, Chaudhuri S, et al. Spectroscopic, structural and antibacterial properties of copper(II) complexes with bio-relevant 5-methyl-3-formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone[J]. Molecular Cellular Biochem, 2003, 253: 21-29.
    [60] Takenaka S, Ihara T, Takagi M. Cleavage of Double Helical DNA by Cu2+ Ion in the Presence of Bisintercalator Containing Penta(ethy1eneglycol) Connector Chain[J]. J Molecular Recognition, 1990, 3(4): 156-162.
    [61]陈文兴,沈之荃,刘冠峰,白井汪芳.高分子学报,1998,(4): 431-437.
    [62] Miyamoto I, Inamoto M, Matsui T,et al. Polym J,1995,27:1113-1122.
    [63]秦益民,朱长俊,陈洁.含锌及含铜甲壳胺纤维的抗菌性能[J].国际纺织导报,2010,(1):12-15.
    [64] L. Zhang, Y. Jiang, Y. Ding, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofuids) [J]. J Nanoparticle Res (Netherlands), 2007,9:479-489.
    [65] S.-C. Li, Y.-N. Li. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. J Appl Polym Sci, 2010, 116(5): 2965-2969.
    [66] R. Klucker, H. Nelkowski, Y. S. Park, M. Skibowski. T. S. Wagner, et al. Optical anisotropy of ZnO in the ultraviolet region[J]. Physica Status Solidi (b), 2006, 26(1):265-272.
    [67] Viola A. Schwarz, Sabine D. Klein, RenéHornung, et al. Skin protection for photosensitized patients[J]. Lasers in Surgery and Medicine, 2001, 29(3):252-259.
    [68] P. Hoyer, R. Eichberger, H. Weller. Spectroelectrochemical Investigations ofNanocrystalline ZnO Films[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 2010,97(4):630-635.
    [69] Daoli Zhang, Jianbing Zhang, Qiming Wu , et al. Microstructure, Morphology, and Ultraviolet Emission of Zinc Oxide Nanopolycrystalline Films by the Modified Successive Ionic Layer Adsorption and Reaction Method[J]. Journal of the American Ceramic Society, Published Online: 28, May, 2010.
    [70] F. Masuoka , K. Ooba, H. Sasaki, et al. Applicability of ZnO single crystals for ultraviolet sensors[J]. Physica Status Solidi (c), 2006,3(3):1238-1241.
    [71] GB/T 18830-2002.纺织品防紫外性能的评定.
    [72]张鹏. HBP-NH2改性竹浆纤维(织物)结构和性能研究[D].苏州:苏州大学,2009.
    [73]张焱,程学新,刘颙颙,等.光化学合成维生素D[J].精细与专用化学品,2005,13(5):5-7.
    [74]朱志伟.阳光维生素——维生素D[J].大学化学(增刊),2010,25:69-71.
    [75] A.V. Gudkova, K.I.Kienskaya, V. V. Nazarov, et al. Synthesis and Use of Highly Dispersed Zinc Oxide[J]. Russ J Appl Chem, 2005, 78(11):1792-1795.
    [76] V. A. Schwarz, S. D. Klein, R. Hornung, et al. Skin protection for photosensitized patients[J]. Lasers Surg Med (USA), 2001, 29(3):252-259.
    [77] T. Ohshima, T. Ikegami, K. Ebihara, et al. Photo-Excited Photonic Characteristics of ZnO Thin Films Deposited by Laser Ablation Method[J]. Electr. Eng. Jpn. (USA), 2003,144(3):1-7.
    [78]程友刚,林红,张峰,等.纳米ZnO处理桑蚕丝织物的抗菌抗紫外性能研究[J].印染助剂,2008,25(4):35-37
    [79]陈孟,许绿丝,吴升晖,等.纳米ZnO表面改性及抗紫外性能研究[J].材料导报,2008,22:106-108.
    [80]周璐瑛. ZnO纳米材料抗紫外与抗菌织物的研究[J].棉纺织技术,2001,29(10):588-590.
    [81] B. Xu, Z. Cai. Trial-manufacture and UV-blocking property of ZnO nanorods on cotton fabrics[J]. J Appl Polym Sci, 2008, 108(6): 3781-3786.
    [82] A. Yadav, V. Prasad, A. A. Kathe, et al, Bull Mater Sci 2006, 29:641.
    [83]赵旭,余逸男,周兴平. ZnO掺杂PET超细纤维无纺布的制备与性能研究[J].纺织科技进展,2010,(3):16-18.
    [84]徐德增,栾宇,郭静,等. TiO/ZnO超细粉体对PET纤维抗紫外性能及力学性能的影响[J].大连工业大学学报,2009, 28(2):124-127.
    [85]曹建军,郭刚,汪斌华,等. PP/TiO2纳米复合材料的研制及其抗老化机理分析[J].工程塑料应用,2004, 32(7):43-46.
    [86] G. Peng, Q. Li, Y. Yang, et al, Polym Adv Technol, 2008,19(11):1629-1634.
    [87]刘佳,李顺祥,贾树盛. LLDPE/ZnO纳米复合材料的制备工艺优化与性能[J].高分子材料科学与工程,2010,26,(9):132-135.
    [88] T. Mookherji. Electron spin resonance of ultraviolet radiation induced defects in ZnO thermal control coating pigment[J]. physica status solidi (a), 2006, 13,(1):293-301.
    [89]王雪松,方积年.糖类的金属络合物[J].化学通报,2004,(12):883-890.
    [90]杜鹃,张新申,陈谨.新型两性球型离子交换纤维素的制备[J].离子交换与吸附,1999,15(6):561-566.
    [91] Zhanping Yang, Songwei Xu, Xiaolong Ma, et al. Characterization and acetylation behavior of bamboo Pulp. Wood Sci Technol. 2008, 42:621–632.
    [92] Abhijit P.,Deshpande,M. Bhaskar Rao ,C. Lakshmana Rao. Extraction of bamboo fibers and their use as reinforcement in polymeric composites[J]. J Appl Polym Sci 2000, 76(1):83-92.
    [93] Jianxin He , Shizhong Cui , Shan-yuan Wang. Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate[J]. J Appl Polym Sci, 2008, 107(2):1029-1038.
    [94] Chou W-L, Yu D-G, Yang M-C. The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment[J]. Polym Adv Technol, 2005, 16(8):600-607.
    [95] Tapeiro H, Townsend D M, Tew K D. Trace elements in human physiology and pathology. Copper. 2003, 57(9):386-398.
    [96] Klein G L, Herndon D N, Longman C B,et al. Bone 1995, 17, 455.
    [97] FZ/T 73023-2006.抗菌针织品.
    [98] GB/T 3923.1-1997.纺织品织物拉伸性能.
    [99] Peng S, Shao H, Hu X. Lyocell fibers as the precursor of carbon fibers[J] J Appl Polym Sci, 2003,90:1941-1947.
    [100] Han S-O, Son W-K, Youk J-H, et al. Electrospinning of Ultrafine Cellulose Fibers and Fabrication of Poly(butylene succinate) Biocomposites Reinforced by Them[J]. J Appl Polym Sci, 2008,107:1954-1959.
    [101] Barr T L, J. Vac. Sci. Technol A, 1991, 9(3):1793-1805.
    [102] Barr T L, J Phys Chem, 1978, 82(16):1801-1810.
    [103]大连工学院无机化学教研室.无机化学(下册),二版[M].北京:人民教育出版社,1982.
    [104] GB/T 3921-2008.纺织品色牢度试验耐皂洗色牢度.
    [105] En13758-1:2001. Textiles, Solar UV protective properties. Method of test for apparel fabrics.
    [106] GB/T 18830-2002.纺织品防紫外线性能的评定
    [107] GB/T 18885-2002.生态纺织品技术要求.
    [108] GB/T 3922-1995.纺织品耐汗渍色牢度试验方法.
    [109] GB/T 17593.1-2006.纺织品重金属的测定.
    [110] G. Haemes, J.J. Verbist, S. Maroie, Appl Surf Sci, 1984,17:463.
    [111] E.C. Onyiriuka. Zinc phophate glass surfaces studied by XPS [J]. Journal of Non-Crystalline Solids, 1993,163:268-273.
    [112]无机化学:(下册,第二版);北京师范大学,华中师范大学,南京师范大学无机化学教研室.高等教教育出版社,1986
    [113]陈忠伟,余爱萍,罗美芳,等.抗紫外纳米ZnO粉体的表面改性与脂肪酸改性机理探讨[J].化学世界,2005,(5):227-232.
    [114]郑敏,廖霞,周月.新型紫外线屏蔽剂Nano-SUV的研制及其在棉织物上的应用[J].印染助剂,2005,22(3):19-23.