蒽醌化合物光解动力学及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒽醌化合物是重要的染料和医药中间体,由于应用广泛,在生产和消耗过程中难免会进入环境中。光解是有机物在环境中的重要归趋之一,因此有必要研究蒽醌化合物的光解行为。
     本研究以高压汞灯为光源,测定了15种蒽醌化合物的光解速率常数(k),讨论了化学结构(取代基位置、数目及种类)、溶剂(二甲基亚砜、二甲基亚砜+水)对其光解速率的影响。选取9种氨基蒽醌,应用偏最小二乘算法(PLS),建立了光解速率常数的定量结构-性质关系模型(QSPR),得出影响这些氨基蒽醌光解速率的主要因素是:分子生成热、氢原子所带最大正电荷、碳原子所带最大负电荷,此外分子最低未占据轨道与最高占据轨道的能量差对这些氨基蒽醌的光解也有一定影响。
     以1-氨基-4-羟基蒽醌为研究对象,比较了不同类型溶剂对其光解速率的影响,发现极性非质子型溶剂可以加快其光解。光敏性是蒽醌化合物的重要性质之一,间接法检测表明,光照条件下1-氨基-4-羟基蒽醌能产生超氧负离子自由基(O_2~(·-))和单线态氧(~1O_2),同时考察了1-氨基-4-羟基蒽醌的光解动力学,得出其光解反应中直接光解占43.0%,间接光解占57.0%,其中~1O_2和O_2~(·-)的贡献分别为26.1%和30.9%。前线电子密度法预测并通过GC/MS分析验证,得到1-氨基-4-羟基蒽醌光解产物主要为1,4-二羟基蒽醌。结合理论分析、实验结果及前人研究,提出了三种可能的1-氨基-4-羟基蒽醌光解途径:直接光解途径,受到~1O_2攻击的反应途径和受到O_2~(·-)攻击的反应途径;推测1-氨基-4-羟基蒽醌产生光致毒性的原因可能是光敏化作用;1-氨基-4-羟基蒽醌光解生成1,4-二羟基蒽醌是一种对环境有利的转化。
Anthraquinones are a group of important intermediate of dye and medicament. Because of widely applying, they would enter into the environment during producing and consuming. Note that the photolysis is one of important transformations of these chemicals in the environment, it is necessary to investigate the photolysis of anthraquinones.
    The study determined the photolysis rate constants of 15 anthraquinones irradiated by high-pressure mercury lamp and discussed the effects of the position, number and species of substituted group on photolysis rates. Also, the effect of solvents, dimethyl sulfoxide (DMSO) and DMSO containing water, on photolysis rate was investigated. To study the photolysis mechanism of the anthraquinones, 9 aminoanthraquinones were selected to establish the quantity structure-properties relationship (QSPR) using partial least square (PLS). The results indicated that the factors affecting the photolysis rate were the heat of formation, the most positive net atomic charges on a hydrogen atom, the largest negative atomic charge on a carbon atom, and the energy gap between the lowest unoccupied molecular orbital and the highest occupied molecular orbital.
    On the other hand, the effect of solvents on the photolysis of 1-amino-4-hydroxyanthraquinone was discussed and it can be concluded that the polarity and nonprotonic solvent can accelerate the photolysis rate. Under the condition of light irradiation, 1-amino-4-hydroxyanthraquinone can generate O_2~(·-) and ~1O_2. In the course of its photolysis, direct photolysis and indirect photolysis occupied 43.0% and 57.0% respectively. In view of indirect photolysis, ~1O_2 and O_2~(·-) contributed 26.1% and 30.9% respectively. The results obtained from the frontier electron density calculation and GC/MS further proved that 1,4-dihydroxyanthraquinone was the primary photoproduct of 1-amino-4-hydroxyanthraquinone. Based on the currently experimental results, theoretical analysis and availably previous studies, three pathways of 1-amino-4-hydroxyanthraquinone photodegradation were proposed: direct photolysis pathway, ~1O_2 attack pathway and O_2~(·-) attack pathway. It confirmed that the photoinduced toxicity of 1-amino-4-hydroxyanthraquinone maybe induced by photosensitization mechanism. Moreover, the phototransformation from 1-amino-4-hydroxyanthraquinone to 1,4-dihydroxyanthraquinone was a process of environmentally acceptable.
引文
[1] Morley J O. Theoretical study of tautomerism in the reduced forms of 1, 4-disubstituted anthraquinones. Journal of Physical Chemistry, 1995, 99(16):5956-5960.
    [2] Alderden R A, Mellor H R, Modok S et al. Cytotoxic efficacy of an anthraquinone linked platinum anticaneer drug. Biochemical Pharmacology, 2006, 71 (8):1136-1145.
    [3] Sadeghi-Aliabadi H, Tabarzadi M, Zarghi A. Synthesis and cytotoxic evaluation of two novel anthraquinone derivatives. IL FARMACO, 2004, 59(8):645-649.
    [4] 吉兴香,陈嘉川,杨桂花等.蒸煮助剂在化学制浆中的应用与发展趋势.纸和造纸,2005,6:25-28
    [5] 聂凌鸿.芦荟的开发利用.食品研究与开发,2006,27(2):144-148.
    [6] 陈西波,孟祥堃,慕旭宏等.磁稳定床反应器用于2-乙基蒽醌加氢生产过氧化氢研究.化工进展,2005,24(2):208-211.
    [7] Santos A B, Bisschops I A E, Cervantes F J et al. The transformation and toxicity of anthraquinone dyes during thermophilic (55℃) and mesophilic (30℃) anaerobic treatments. Journal of Biotechnology, 2005, 115(4):345-353.
    [8] Epolito W J, Lee Y H, Bottomley L A et al. Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes and Pigments, 2005, 67(1):35-46.
    [9] Yen J H, Lin K H, Wang Y S. Acute lethal toxicity of environmental pollutants to aquatic organisms. Ecotoxicology and Environment Safety, 2002, 52(2):113-116.
    [10] Mallakin A, McConkey B J, Miao G et al. Impacts of structural photomodification on the toxicity of environmental contaminants: anthracene photooxidation products. Ecotoxicology and Environmental Safety, 1999, 43(2):204-212.
    [11] 王连生.有机污染化学.北京:高等教育出版社,2004.
    [12] 刘湘,汪秋安.天然产物化学.北京:化学工业出版社,2005.
    [13] 徐任生.天然产物化学.北京:科学出版社,2004.
    [14] 李峰,蒽醌染料紫外光谱的量子化学CNDO/2研究,光谱实验室,2001,18(2):241-243.
    [15] 于顺平.蒽醌型分散染料的化学结构对颜色耐光牢度和升华度的影响.四川纺织科技,1994,4:30-33.
    [16] 张玉珍,谭说萍.弱酸性蒽醌紫色染料的化学结构与颜色、应用性能的研究,染料工业,1996,33(2):1-7.
    [17] 吴赛苏.蒽醌型离子染料的合成及应用,化学工程师,2001,84(3):6-7.
    [18] 高晓红.氨纶分散染料染色工艺研究.南通大学学报(自然科学版),2005,4(1):32-35.
    [19] 冯新星,陈建勇,许丹等.天然染料大黄防紫外性能的研究.纺织学报,2004,25(1):13-15.
    [20] 杨明华,俞未一.大黄抑制内毒素对牙周膜细胞作用的研究.临床口腔医学杂志,2004,20(3):148-150.
    [21] 饶静等.大黄酚光敏化产生自由基和单重态氧.中国科学(B辑),2004,34(3):211-21.
    [22] 陈立.不同蒽环类抗肿瘤药物在急性白血病化疗中疗效观察.现代临床医学生物工程学杂志,2005,11(2):123-124.
    [23] 邵静波,蒋慧.蒽环类抗肿瘤药物治疗儿童急性白血病.世界临床药物,2003,24(7):413-416.
    [24] 石去,陈宏.芦荟的药理作用及其在皮肤科的应用.中国中西医结合皮肤性病学杂志,2006,5(1):59-61.
    [25] 何燕.蒽醌生产应用与市场分析.化工中间体,2002,23:22-23.
    [26] 李虎,黄美荣,李新贵.多功能性氨基蒽醌聚合物的合成及其电子元件.电子元件与材料,2005,24(7):69-73.
    [27] 齐菊锐,李陟,许宏鼎.四羟基蒽醌修饰活性炭碳糊电极阳极溶出法测铜.分析化学研究简报,2005,33(12):1740-1742.
    [28] 蔺存国,张桂玲,董飒英等.1,2,4-三羟基蒽醌-铝体系核酸荧光探针的研究、应用.福州大学学报(自然科学版),1999,27(1):84-85.
    [29] 季军安,倪爱武.蒽醌型光盘染料的合成研究.信息记录材料,2001,2(2):9-13.
    [30] 陈荣圻,王建平.禁用染料及其代用(第二版).北京:中国纺织出版社,1998.
    [31] 钱崇濂.致癌染料-芳香胺的致癌机理.染整技术,1996,18(2):30-32.
    [32] 章杰.有关环保型染料的几个热点问题.上海化工,2000,25(12):4-8.
    [33] El-Alawi Y S, McConkey B J, Dixon D G et al. Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicology and Environmental Safety, 2002, 51(1):12-21.
    [34] 周琪,赵由才.染料对人体健康和生态环境的危害.环境与健康杂志,2005,22(3):229-231.
    [35] OECD. SIDS initial assessment report for SIAM4. Japan: Organisation for Economic Co-operation and Development, 1996.
    [36] Grote M, Schuurmann G, Altenburger R. Modeling photoinduced algal toxicity of polycyelic aromatic hydrocarbons. Environmental Science and Technology, 2005, 39(11):4141-4149.
    [37] Mallakin A, McConkey B J, Miao G et al. Impacts of structural photomodification on the toxicity of environmental contaminants: anthracene photooxidation products. Ecotoxicology and Environmental Safety, 1999, 43(2): 204-212.
    [38] 孙敬艳,黄丽萍,乔显亮等.1,8-二羟基蒽醌对大型溞的毒性效应.应用生态学报,2005,6(6):1180-1182.
    [39] 汪丽,陈景文,林晶等.蒽醌化合物对大型溞的急性光致毒性研究.生态毒理学报,2006,1(1):52-57.
    [40] 邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003.
    [41] 王连生.环境有机化学.化学工业出版社,2004.
    [42] 戴树桂.环境化学.北京:高等教育出版社,2003.
    [43] Khan M S, Khan Z H. Electronic absorption spectra of amino substituted anthraquinones and their interpretation using the ZINDO/S and AMl methods. Spectrochimica Acta Part A, 2003, 59(7): 1409-1426.
    [44] 赵维绳,陈彬,汪维凤.还原染料.北京:化学工业出版社,1993.
    [45] 陈景文.有机污染物定量结构-性质关系与定性结构-活性关系.大连:大连理工大学出版社,1999.
    [46] Ponomareva R P, Studzinskii O P. Photolysis of Aminoanthraquinones in Matrices. Russian Journal of General Chemistry, 2001, 71(5):759-762.
    [47] Allen N S, Bentley P, Mckellar J F. The light fastness of anthraquinone disperse dye on polyethylene terephthalate. Journal of the Society of Dyers and Colourists, 1975, 91:366-369
    [48] Aftergut S, Cole H S. Photodecomposition Rates of Some Anthraquinone Dyes in Liquid Crystals. Molecular Crystals and Liquid Crystals, 1982, 89:37-45.
    [49] Giles C H, Sinclair R S. Photodecomposition of Anthraquinone Disperse Dyes on Polyethylene Terephthalate. Journal of the Society of Dyers and Colourists, 1973, 89:54-56.
    [50] Shah M, Allen N S, Edge M et al. Photochemistry and photoinitiation activity of radical polymerization of 2-substituted anthraquinone derivatives. Ⅲ. nanosecond laser flash photolysis study. Journal of Applied Polymer Science, 1996, 62(2):319-340.
    [51] Mallakin A, Dixon D G, Greenberg B M. Pathway of anthracene modification under simulated solar radiation. Chemosphere 2000, 40(12): 1435-1441.
    [52] Mothilal K K, Inbaraj J J, Gandhidasan R et al. Photosensitization with anthraquinone derivatives: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. Journal of Photochemistry and Phntobiology A: Chemistry, 2004, 162(1):9-16.
    [53] Rajendran M, Inbaraj J J, Gandhidasan R et al. Photodynalnie action of damnacanthal and nordamnacanthal. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2-3):615-623.
    [54] Rajendran M, Ramasamy S, Rajamanickam C et al. Photodynamic effects of two hydroxyanthraquinones. Biochimiea et Biophysiea Acta, 2003, 1622(2):65-72.
    [55] Rajendran M, Gandhidasan R, Murugesan R. Photosensitisation and photoinduced DNA cleavage by four naturally occurring anthraquinones. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168(1-2):67-73.
    [56] Inbaraj J J, Krishna M C, Gandhidasan R et al. Cytotoxicity, redox cycling and photodynamic action of two naturally occurring quinines. Biochimica et Biophysica Acta, 1999, 1472(3):462-470.
    [57] Inbaraj J J, Gandhidasan R, Murugesan R. Photogeneration of reative oxygen species from ketocoumarins. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 117(1):21-25.
    [58] Montoya S C N, Comini L R, Sarmiento M et al. Natural anthraquinone probeb as Type Ⅰ and Type Ⅱ photosenditizers: singlet oxygen and superoxide anion production. Journal of Photochemistry and Photobiology B: Biology, 2005, 78(1):77-83.
    [59] 李冠武,王广策,李振刚等.藻红蛋白介导光动力治疗的光化学机制研究.激光生物学报,2001,10(2):116-119.
    [60] 丁光辉.PLS和GA应用于部分有机污染物的QSAR研究:(博士学位论文).大连:大连理工大学,2006.
    [61] Peijnenburg W J G M, Beer K G M, Haan M W A et al. Development of a Structure-Reactivity Relationship for the Photohydrolysls of Substituted Aromatic Halides. Environmental Science Technology, 1992, 26(11):2116-2121.
    [62] Chen J W, Peijnenburg W J G M, Quan X et al. The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 37(6):1169-1186.
    [63] Chen J W, Peijnenburg W J G M, Quan X et al. The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere, 2000, 40(12): 1319-1326.
    [64] Chen J W, Kong L R, Zhu C M et al. Correlation between photolysis rate of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere, 1996, 33(6):1143-1150.
    [65] Chen J W, Quan X, Yan Y et al. Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aeroso. Chemosphere, 2001, 42(3):263-270.
    [66] Chen J W, Peijnenburg W J G M, Quan X et al. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight?, Environmental Pollution, 2001, 114(1):137-143.
    [67] 陈景文,王帅杰,邹善伟等.不同量子化学算法在多环芳烃光解行为定量结构-性质关系(QSPR)中的应用.中国环境科学,1999,19(2):102-105.
    [68] 牛军峰,余刚,施玮.苯酚类化合物光解量子产率与结构性质的定量关系.中国环境科学。2004,24(1):81-84.
    [69] 牛军峰,余刚,韩文亚.应用遗传算法建立云杉针叶表面PCDD/Fs光解半衰期的预测模型.环境科学,2005,26(2):28-33.
    [70] 毕刚,谷莹红,牛菲等.卤代苯类化合物光解速率与结构参数关系的研究.环境科学研究,1998,11(4):6-8.
    [71] Koyamaa J, Moritaa I, Kobayashia N et al. Correlation between reduction potentials and inhibitory effects on Epstein-Barrvirus activation of polysubstituted anthraquinones. Cancer Letters, 2005, 225(2):193-198.
    [72] Koyamaa J, Moritaa I, Tagaharaa K et al. Inhibitory effects of anthraquinones and bianthraquinones on Epstein-Barr virus activation. Cancer Letters, 2001, 170(1): 15-18.
    [73] Koyamaa J, Tagaharaa K, Osakaib T et al. Inhibitory effects on Epstein-Barr virus activation of anthraquinones: correlation with redox potentials. Cancer Letters, 1997, 115(2):179-183.
    [74] 梁剑平,李蓉,卫增泉.六茜素及其衍生物抗菌活性的QSAR研究.中兽医医药杂志,2002,1:13-15.
    [75] Shamsipur M, Hemmateenejad B, Akhond M et al. Quantitative structure-property relationship study of acidity constants of some 9, 10-anthraquinone derivatives using multiple linear regression and partial least-squares procedures. Talanta, 2001, 54(6): 1113-1120.
    [76] Hemmateenejad B, Sharghi H, Akhond M et al. The Importance of Polarity/Polarizability Interaction on the Acidity Behavior of 9, 10-Anthraquinone and 9-Anthrone Derivatives in Methanol-Water Mixed Solvents Using Target Factor Analysis and QSPR Approaches. Journal of Solution Chemistry, 2003, 32(3):215-226.
    [77] Zhokhova N I, Baskin I I, Palyulin V A et al. A Study of the Affinity of Dyes for Cellulose Fiber within the Framework of a Fragment Approach in QSPR, Russian Journal of Applied Chemistry, 2005, 78(6):1013-1017.
    [78] Polanski J, Gieleciak R, Wyszomirski M. Comparative Molecular Surface Analysis (CoMSA) for Modeling Dye-Fiber Affinities of the Azo and Anthraquinone Dyes. Journal of Chemical Information and Computer Science, 2003, 43(6):1754-1762.
    [79] 刘靖疆.基础量子化学与应用.北京:高等教育出版社,2004.
    [80] 孙小玲.一元取代苯邻、间、对位亲电取代反应活性的几种判据.上海应用技术学院学报,2005,5(4):243-248.
    [81] Lee B D, Iso M, Hosomi M. Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density, Chemosphere 2001, 42(4):431-435.
    [82] Katsumata H, Kaneco S, Suzuki T et al. Degradation of polychlorinated dibenzo-p-dioxins in aqueous solution by Fe(Ⅱ)/H_2O_2/UV system. Chemosphere, 2006, 63(4):592-599.
    [83] Zhua X L, Feng X G, Yuan C W et al. Photoeatalytie degradation of pesticide pyridaben in suspension of TiO2: identification of intermediates and degradation pathways. Journal of Molecular Catalysis A: Chemical. 2004, 214(2):293-300.
    [84] 傅玉普.物理化学.大连:大连理工大学出版社,1998.
    [85] Eriksson J, Green N, Marsh G et al, Photochemical Decomposition of 15 Polybrominated Diphenyl Ether Congeners in Methanol/Water. Environmental Science Technology, 2004, 38(11): 3119-3125.
    [86] 连慧琴,吴学,崔秀国.喹啉氧基并四苯二醌的合成和光致变色性质.应用化学,2005,22(3):308-311.
    [87] 马建华,林维真,王文锋.不同极性溶剂中2-蒽醌磺酸钠三重态特征瞬态吸收谱及动力学研究.分析试验室,2002,21(5):46-49,
    [88] Choi J, Choi W. Solvent-Specific Photolytic Behavior of Octachlorodibenzo-p-dioxin. Environmental Science Technology, 2004, 38(7):2082-2088.
    [89] 袁履冰.物理有机化学导论.大连:大连理工大学出版社,2004.
    [90] 胡继业,张文吉,李建中等.2-烯丙基苯酚在液相中的光化学降解研究.环境科学学报,2004,24(5):815-821.
    [91] Edhlund B L, Arnold W A, Mcneill K. Aquatic photochemistry of nitrofuran antibiotics. Environmental Science Technology, 2006, 40(17):5422-5427.
    [92] Brinson R G, Hubbard S C, Zuidema D R et al, Two New Anthraquinone Photoreactions. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175(2):118-128.
    [93] Ray A, Deheri G M. CNDO/Ⅱ Study on the Fading of Anthraquinone Dyes. Dyes and Pigments, 1995, 27(4):327-33.
    [94] 卢桂宁,党志,陶雪琴等.多环芳烃光解活性的量子化学研究.环境化学,2005,24(4):459-462.
    [95] 李宗石,程侣柏.分子轨道理论在染料化学中的应用(Ⅴ)-用P.P.P.自洽场-组态相互作用分子轨道方法计算蒽醌衍生物的吸收光谱.高等学校化学学报,1982,4(3):509-515.
    [96] Baughman G L, Weber E J. Transformation of dyes and related compounds in anoxic sediment: Kinetics and products. Environmental Science Technology, 1994, 28(2):267-276.
    [97] Pizarro-Urzua N A, Nunez-Vergara L J. Nifedipine and nitrendipine reactivity toward singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175(2-3): 129-137.
    [98] Karapire C, Kolancilar H, Oyman U et al. Fluorescence emission and photooxidation studies with 5,6-and 6,7-benzocoumarins and a 5,6-benzochromone under direct and concentrated sun light. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153(1-3): 173-184.
    [99] Li Y, Hu H Y, Ye J P et al. Reaction modes and mechanism in indolizine photooxygenation reactions. Journal of Organic Chemistry, 2004, 69(7):2332-2339.