多温区控制系统算法研究及鲁棒性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,多温区控制系统已经应用于工业生产及我们的日常生活当中。本文研究的对象:多温区热风回流焊机是应用于SMT焊接的设备,为了使热风回流焊机的控温精度更高,可以采用更先进的控制算法来实现。然而在各种应用于热风回流焊系统的算法中,为了评价算法对控制系统控制的优劣,就需要分析控制系统的鲁棒性能。本文将对采用两种算法的多温区回流焊控制系统进行鲁棒性能分析,从而分辨出两种算法对系统控制效果的优劣。
     在介绍鲁棒基础知识和系统鲁棒性能尺度以及分析多温区热风回流焊机的结构基础上,针对热风回流焊工作在工况2和工况3的每个温区建立一个不确定模型,并确定该不确定模型为具有反馈结构不确定模型。首先采用Z—N PID算法对该控制系统进行仿真;然后提出了基于的灵敏度最小的H_∞控制的鲁棒PID,同时针对热风回流焊不确定模型进行仿真。并且对两种算法组成系统的仿真结果进行了比较。
     通过比较,可以发现,采用鲁棒PID算法的控制系统的动态性能优于采用Z—N PID算法的控制系统;再通过MATLAB仿真对两种算法分别组成的系统进行积分误差分析,采用鲁棒PID算法的控制系统的稳态性能较好。因此,可以得出结论:采用鲁棒PID算法的多温区热风回流焊控制系统的鲁棒性能比采用Z—N PID算法的控制系统更好。
Along with the development of science and technology, the multitemperatual zones control system has already applied to the industrial production and our daily life. The object of paper studies is the multitemperatual zones reflow soldering machine which is applied to soldering of SMT. In order to improve the temperature control precision of the reflow soldering machine, it need to use more advanced control algorithm. To estimate the algorithm applied in the reflow soldering system, it analyzes the robust performance of the control system. By comparing the robust performance of the control system applying two algorithms, it distinguishes the effect of two algorithms to control performance of the control system.
     Based on the introduction of robust knowledge, the system robust performance criterion and the analysis of reflow soldering machine's structure, an uncertain model is established for each warm area when machine works in the operating mode 2 and 3. The uncertain model has the feedback structure. Firstly, it carries on the simulation to control system using Z-N PID algorithm to, then a sensitivity minimal H_∞control robust PID is proposed. The simulation of the uncertain model is executed simultaneously. And it makes comparison with the simulation results of two algorithms.
     Through the comparison, it shows that, dynamic performance of system which uses the robust PID algorithm surpasses the one using Z-N PID algorithm. Based on MATLAB simulation to the control system which applies two algorithms, integral error is analyzed, it shows that the stability performance of the control system which adopts robust PID algorithm is better than the other algorithm. The conclusion is: the robust performance of the multitemperatual zones control system using the robust PID algorithm is better than the one using Z-N PID algorithm.
引文
[1] 宋绍京.温度控制系统研究.红外.2004.1:25~29,38
    [2] 吴为民,王仁丽.温控系统的发展概况.工业炉.2002.24.(2):18~21
    [3] 杨伟启,陈以.常用温度控制法的对比.兵工自动化.2005.24(6):86~88
    [4] 郑芳经,冯晓刚,周昌民.多温区电加热炉的智能控制.上海大学学报.1996.2(2):176~181
    [5] 罗军.空间多温区炉温度梯度电控移动研究.1995.2:55~61
    [6] 陈庆春.多温区冰箱渐入佳境.中国电子报2004.6:3
    [7] 熊孟清,顾瑞英,刘咸定.多温区窄点温差的窄点技术.[J]1996.28(3):256~258
    [8] 陶世宏.多温区传送带炉的计算机控制系统[J].仪器仪表学报.1998.19(2):200~202
    [9] LiYuanyua. Simulation of a Multi-Oven Temperature Control System [J]. Journal of Guyuan Teachers College (Natural Science). 2004. 25(6): 23~27
    [10] 张文典.21世纪发展趋势SMT及对策[J].电子工艺技术,2001,22(1):1~2
    [11] 胡志勇.贴装设备发展的新趋势[J].世界电子元器件,2001,(10):39~40
    [12] 史建卫,何鹏,钱乙余,袁和平.再流焊技术的新发展[J],电子工业专用设备,2005,(1):63~67
    [13] Lutz Groll, ralf Mikut, Hartmut Sauermann. A Concept for the Fuzzy-adaptive Temperature Control of MIMO Systems[J]. SAMA, 1998. 13: 50~58
    [14] 陶吉利.热风回流焊温控系统的研制与开发.中南大学硕士论文.2004.4:13~15
    [15] Nicanor Quijano, Kevin M.Passino. Resource Allocation Strategies for Mulitizone Temperature Control. IFAC. 2004. 19(3): 12~27
    [16] 吴国庆,刘辉.今年冰箱市场决战“多温区”.浙江经济报.2004.04(30):8
    [17] 黄皎,高敏,刘建国.多温区回流焊温度控制系统的开发与设计.制造业自动化.2004.26(5):63~65
    [18] H. SAUERMANN, CH. STENZEL, S. KEESMANN, B. BONDUELLE. High-Stability Control of Multizone Furnaces using Optical Fibre Thermometers. Cryst. Res. Technol. 2001. 12(36): 1329~1343
    [19] M. Ariola, J. B. Lister, A. Pironti. Design and Experimental Testing of Robust MIMO Controllers on TCV. Proceedings of the 2000 IEEE International Conference on Control Applications. 2000. 9: 25~27
    [20] Rita Di Mascio. Service process control: conceptualising a service as a feedback control system. Process Control[J]. 2002. 12: 221~231
    [21] 吴敏,桂卫华.现代鲁棒控制.中南工业大学出版社.1998.10:3~5
    [22] 唐宗军,杨凤艳,库德强.强耦合多变量模糊温度控制系统的研究.自动化与仪器仪表2006.4:12~13,26
    [23] T. Yucelen, O. Kaymakciand, S. Kurtulan. Adaptive PI-D Controller Using Ziegler Nichols based Self-Tuning Method's Parameters for Programmable Logic Controllers. Proceedings of 5th International Symposium on Intelligent Manufacturing Systems, May 29-31, 2006: 381~393
    [24] W.D.Zhang, Y.X.Sun, X.M.Xu. Modified PID Controller Based on H_∞ Theory. Proceedings of The IEEE International Conferencetrial Technology. 1996: 9~12
    [25] Park, Jin. Uncertainty and sensitivity analysis in support vector machines: Robust optimization and uncertain programming approaches. [D]. Doctor Degree Dissertation. The University of Oklahoma. American: 1~2
    [26] Hiroaki NAKANISHI, Koichi INOUE. Methods to Design Robust Controllers against Nonlinear and Multiple Uncertainties by Use of Neural Networks. IEEE. 2000.1(7).
    [27] 李玉清.智能控制的研究方法及其应用最新动态.PLC&FA.2005.2.
    [28] Curtain, R. F.. A robust LQG-controller design for DPS. International Journal of Control, 2006. 79(2): 162~170
    [29] Wang, Yiyang. Robust model predictive control. [D]. Doctor Degree Dissertation. The University of Wisconsin-Madison. 2002: 70~73
    [30] 张显库,贾欣乐,王欣成等.H_∞鲁棒控制理论发展十年的回顾.控制与决策.1999.14(4):289~297
    [31] Jakob Stoustrup. Robust Control. teaching materials of Section of Automation & Control Department of Electronic Systems, Aalborg University teaching materials.
    [32] Huang. Yun-Ping. Robust control of uncertain time-delay systems. [D]. Doctor Degree Dissertation. Louisiana State University and Agricultural & Mechanical College. 2001: 8~10
    [33] W. Tan, T. Chen, H. J. Marquez Robust Controller design and PID tuning for multivariable process. Asian Journal of Control. 2002. 4(4): 439~451.
    [34] Suhardjo, Johanes. Frequency domain techniques for control of civil engineering structures with some robustness considerations. [D]. Doctor Degree Dissertation. University of Notre Dame. 1990: 51~57
    [35] 方保镕,李医民.矩阵论基础[M].河海大学出版社.1999:201~206
    [36] Liu.Pengxiang. Robust analysis and control of smart structural systems. [D]. Doctor Degree Dissertation. University of Missouri-Rolla. 2003.
    [37] 黎善斌,王智,孙优贤.网络控制系统的自整定鲁棒数字PID控制[J].浙江大学学报(工学版).2004.38(12):1580-1585
    [38] 李云峰.求取控制系统时域性能指标的计算机方法[J].计算技术与自动化.1994.13(2):14-17
    [39] 卞如芳.选择再流焊炉的最佳方案[J].电子工艺技术.1998.19(5):196
    [40] 黄丙元:韩国明:樊强等.SMT再流焊工艺及其仿真研究现状[J].电子工艺技术.2004.25(6):234~238
    [41] 温和荣.做好红外热风再流焊炉的选型工作[J].世界电子元器件.1997,(12):67~70
    [42] 席秉钧.N__2再流焊炉[J].电子工业专用设备.1994.23[4]:61~67
    [43] Motohiro Yamane, Nobuaki Orita, Koichi Miyazaki and Weiming Zhou. Development of New Model Reflow Oven for Lead-Free Soldering [J]. Furukawa Review. 2004. 26: 31~36
    [44] 曹白杨,赵小青,梁万雷.回流焊温度曲线热容研究.华北航天工业学院学报.[J].2005.15(3):6~9
    [45] 郝应征,王彩云.再流焊接的一般要求及温度测试方法[J].电子工艺技术,1999,20(4):151~153
    [46] 俊伟,聂延平,赵志平.再流区工艺参数对焊接可靠性的影响[J].电子工艺技术.2001,22(2):62~63
    [47] 张宏亮.鲁五一.阳同光.多温区控制系统采样通道的硬件设计[J].世界电子元器件.2006.10:58~29
    [48] 李刚,林凌.与8051兼容的高性能、高速单片机—C8051F×××[M].北京:北京航空航天大学出版社,2002.2
    [49] 曹军.仪器放大器AD620性能及其应用[J].电子器件,1997,20(9):62~66
    [50] 赵向华,高军,王兆安.一种实用的线性隔离检测电路[J].电工技术杂志,2002(10):24~25,33
    [51] 杨欣荣.智能仪器原理、设计与发展[M].长沙:中南大学出版社,2003:35
    [52] 赵小明,陆世豪,顾兆林.准稳态理论测量融解热及比热容的实验研究[J].西安交通大学学报.2005.39(9):958~961
    [53] 向涛.基于热平衡机理的多温区动态建模及控制研究.硕士学位论文.中南大学.2006
    [54] 王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策.2005.20(1):73~77
    [55] 羊彦,景占荣,毕强.无刷直流电动机数字PID控制的研究[J].电机与控制学报.2003.7(4):299~302
    [56] 巨辉.基于广义高斯隶属度函数的PID参数模糊自整定[J].自动化仪表.2004.25(10):26~29
    [57] 何宏源,徐进学,金妮.PID继电自整定技术的发展综述[J].沈阳工业大学学报.2005.27(4):409~413
    [58] 吴振顺,姚建均,岳东海.模糊自整定PID控制器的设计及其应用[J].哈尔滨工业大学学报.2004.36(11):1578~1580
    [59] 赵国山,仇性启.自适应PID的发展概况[J].化工自动化及仪表.2006.33(5):1~5
    [60] 任秀珍,王永初.节能控制系统[M].北京:中国石化出版社,1994:324~356
    [61] Simon, D. Analyzing control system robustness[J]. IEEE. 2002. 21(1): 16~19