基于平面螺旋传声器阵列的声成像定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,噪声治理问题越来越受到重视,噪声检测广泛应用在家电、汽车、船舶、飞机、机械制造等行业,通过噪声源定位和噪声源分离可以用来降低机器噪声,检测设备故障,国内外许多专家学者在噪声源检测方面做了不少理论研究和应用开发工作,提出来很多方法,如声压级近场测量法、选择隔声法、表面振速测量法、声全息法,这些方法各有局限性。随着阵列处理技术的发展,采用传声器阵列进行噪声源识别的技术日趋发展起来,其中阵型的选择和算法研究是传声器阵列进行声源定位的关键技术。本文在这两方面进行了理论研究和仿真对比,并在这基础上设计了基于平面螺旋的声成像定位系统。
     本文的主要研究工作主要有以下几个方面:
     1.研究了阵列基础理论,分析了阵列接收信号的数学模型,建立任意结构的阵列窄带信号模型,并推导了典型阵列的阵列流形。
     2.深入分析了阵列结构对阵列波束指向性的影响,并仿真比较了各种规则阵列和不规则阵列,通过比较发现优化的螺旋形阵列的波束指向性最好,旁瓣级更低,从而有更好的空间分辨率高。
     3.深入研究了常规波束形成算法,分析了束控和加权对波束指向性的影响,介绍了MVDR算法和MUSIC子空间算法,并与常规波束形成算法进行了仿真对比。
     4.分别从硬件系统和软件实现介绍本课题组所研发的基于平面螺旋的声成像定位系统,并对各个性能指标进行测试。测试结果表明,声成像定位系统具有较高的空间分辨率和较强的抑制虚源能力,因此在噪声源的定位与提取、机器噪声故障诊断、噪声降噪等方面有较好的应用前景。
Noise control problems receives more and more attention in recent years, noise detection is widely used in household appliance, automobiles, ships, aircraft, machinery manufacturing and other industries. It can reduce machine noise and detect equipment failure through noise source location and noise source separation. Many domestic and foreign experts have done a lot of theoretical research and application development work in the noise source detection and proposed a number of ways, such as near-field pressure level measurement, sound insulation selection, surface velocity measurements, acoustic holography. These methods all have their limitations. With the development of array processing technology, the use of microphone array for noise source identification becomes more developed. Array design and Algorithm Research are two key technologies of microphone array sound source localization. This article has carried on the theory research and simulation contrast, and design acoustic imaging system based on the spiral array.
     The research results in this thesis listed as follows:
     1. Basic Array signal theory had been studied, mathematical models of the signal arriving at array are analyzed. the narrowband of the output data of array with arbitrary geometry are given.
     2. The array structure influence on beam pattern the array is analyzed, and comparative simulation all kinds of regular array rule and Irregular arrays rules. By comparing, the beam direction of the optimized spiral array is best, side lobe level lower, and thus has better spatial resolution.
     3. Conventional beamforming algorithm is researched, the beam control and weighting influence on beam pattern is analyzed. And then introduce MVDR algorithm and MUSIC subspace algorithm, and give simulation comparison with the conventional beamforming algorithm.
     4. Introduce acoustic imaging positioning system based on the spiral array separately from the hardware system and software implementation and test various performance indicators. The experimental results indicate that the acoustic imaging system has high spatial resolution and strong capability of eliminating ghost images. It can be applied widely into many fields such as localization and separation of noise sources, machine condition monitoring, noise reduction
引文
1. Don H.Johnson ect. Array signal processing:concepts and techniques[M]. PTR Prentice Hall,1993,14-15
    2.李加庆,陈进,张桂才,雷宣扬,薛伟飞.可视化声源识别技术[J],声学技术,2005.8,55-56
    3.蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].北京:清华大学出版社,2001,22-23.
    4.韩军,郝志勇,刘月辉.柴油机表面噪声的声强测量与分析[J],汽车工程2003,25(3):272-274.
    5.沙云东.内燃机声强测试的有效性研究[J],沈阳航空工业学报,2000,17(2):3-28.
    6. M. Brandstein and Darren Ward, Microphone[M] Arrays. New York:Springer-Verlag Berlin Heidelberg,2001,45-46.
    7.季瑞.被动声探测系统及应用研究[D],陕西西安:西北工业大学硕士论文,2007.3
    8.赵玉洁.声测定位技术的现状和发展趋势[J],声学与电子工程,1993(4):37-41
    9.李启虎.水声学研究进展[J],声学学报,2001,26(4):295-301
    10. IEEE signal processing magazine[J], Vol.19. New York:IEEE PRESS,2002(3)
    11.张莉.基于传声器阵列的声源定位方法研究[D],四川成都:电子科技大学,2007.5
    12.杨益新.声呐波束形成与波束域高分辨方位估计技术研究[D],陕西西安:西北工业大学,2002.4
    13. GClifford Carter. Coherence and Time delay Estimation[J], IEEE Press,1993,32-34
    14. Knapp C H, Carter G C. The generalized correlation method for estimation of time delay [J]. IEEE Transaction on Acoustics, Speech and Signal Processing,1976,24(4),24(4): 320-327
    15. Carter G C, Nuttall A H, Cable P G. The smoothed coherence transform (SCOT)[J], Proceedings of IEEE,1973,61:1497-1498.
    16. Carter G C, Nuttall A H, Cable P G. The smoothed coherence transform [J]. IEEE Signal Process Letter,1973,61:1497-1498.
    17. Reed F A, Feintuch P L, Bershad N J. Time delay estimation using the LMS adaptive filter-static behavaior [J], IEEE Transaction on Acoustics, Speech and Signal Processing, 1981,29:561-571
    18. Youn D H, Ahmed N, Carter G C. On using the LMS algorithm for time delay estimation [J]. IEEE Transaction on Acoustics, Speech and Signal Processing,1982,30(5):798-801
    19.周浩洋.基于麦克风阵列的声源定位方法研究[D],辽宁大连:大连理工大学,2002.
    20.陆晓燕.基于麦克风阵列实现声源定位[D],辽宁大连:大连理工大学,2003.3.
    21.殷作亮.基于麦克风阵列的MUSIC声源定位算法研究[D],黑龙江哈尔滨:哈尔滨工业大学,2008.6
    22.于豪光.多基声无源定位技术研究[D],辽宁沈阳:沈阳理工大学硕士论文,2009.1
    23. Schmidit R O. Multiple emitter locateon and signal parameter estimateion [J], 1986(AP-340)
    24. Cadzow J A. Kim Y S. Shie D. C. General direction of arrival estimateion:a signal subspace approach[J], IEEE Transaction on Aerospace and Electronic Systems,1989,25(01): 31-46
    25. Rao B D, Hari K V S. Perfomance analysis of root-MUSIC [J], IEEE Transaction on Acoustics, Speech and Signal Processing,1989,37(12):1939-1949
    26. Kung S. Y, Arun K S, Rao DVB. State space and SVD based approximation methods for the harmonic retrieval proplem [J], Journal of Optical Society of America.1983,73(12): 1799-1811
    27.Rao R. Kailath. T. ESPRIT-a subspace rotation approach to estimation of Parameters of Cissoids in noise [J], IEEE Transaction on Acoustics, Speech and Signal Processing,1986, 34(10):1340-1342
    28. Rao R. Kailhat T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J], IEEE Transaction on Acoustics, Speech and Signal Processing,1989,37(7):98-995
    29.局太亮,彭启琼,邵怀宗等.麦克风阵列拓扑结构[C],通信理论与信号处理年会,桂林.2005:154-159.
    30. Kennedy R A, Abhayapala T D, Ward D B. Broadband nearfield beamforming using a rsdial beampattem transformation[J], IEEE Transaction on Signal Processing,1998,46(8): 2147-2156
    31.胡鹏.虚拟阵元波束形成方法研究[D],陕西西安:西北工业大学,2006.3
    32.罗伦楷.近地飞行目标的声测定向技术研究[D],山东青岛:山东科技大学,2009.4
    33.孙超.水下多传感器阵列信号处理[M],陕西西安:西北工业大学出版社,2007.87-88.
    34. H.Cox. Robust adaptive beamforming [C], IEEE Trans.Acoust.Speech Signal Processing, 1987:365-1376
    35. J.E.Greenberg. Evaluation of an adaptive beamforming [J], J.Acoust.Soc.Ame. Vol 91. 1992(3):1662-1676
    36. Hamid Krim, Mats Viberg. Two Dedades of Array Signal Processing Research [J], IEEE signal processing magazine.1996(7):456-458.
    37.彭芬.麦克风阵列语音增强算法的研究[D],天津:南开大学,2009
    38. Barry D. Van Veen and Kevin M. Buckley. Beamforming a versatile approach to spatial filtering [J], IEEE Assp Mssp Magzine, April 1998:235-238
    39. John E. Thorner. Approaches to sonar beamforming [J], IBM Systems Integration Division Owego, New York:13827
    40.游鸿,黄建国,徐贵民等.基于MVDR的阵列信号波束域预处理算法[J],系统工程与电子技术,2008(1):123-125.
    41.张贤达.现代信号处理[M].北京:清华大学出版社,2002,10-11.
    42. Dmitri V. Sidorovich, Alex B. Gershman. Tow dimensional wideband interpolated root music applied to measured seismic data [J], IEEE Trans. On signal processing 46,1998(8): 467-469.
    43. Kainam Thomas Wong. Root Music base Azimuth Elevation Angle of Arrival estimation with Uniformly Spaced but Arbitrarily Oriented Velocity Hydrophones [J], IEEE Trans. On signal processing, vol 47.1999(12):356-358.
    44.范寿康.基于LabVIEW平台的虚拟仪器实验室的实现[J],三江学院学报,2005(6):92-95.
    45.熊焕庭.在LabVIEW中数据采集卡的三种驱动方法[J],电源与仪表,2001(8):35-36.
    46.司春棣,陈恩利,杨绍普等.基于声阵列技术的汽车噪声源识别试验研究[J],振动与冲击,2009.6:172-175