IEEE 802.11无线网络DCF协议性能分析及改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,提供便捷访问Internet的IEEE802.11无线局域网(Wireless Local Area Networks, WLAN)正广泛应用于人们的工作和生活中。无线局域网仅涉及空中接口的物理层(PHY)和媒质接入控制层(MAC), MAC层协议性能成为影响无线局域网性能的重要因素,对IEEE802.11MAC协议的性能分析和改进具有重要的研究意义,本论文主要研究点如下:
     1、针对MAC层DCF协议对多媒体业务的承载性能进行分析:在WLAN中传输视频和数据帧具有明显的差别,由于视频流需要给用户提供连续并且清晰的画面,因此需要重点关注视频帧的传输时延和吞吐量。在传输过程中,较长的视频帧会被分割并填充到服务数据单元(Service Data Unit, SDU)中。不同的帧率和帧长会影响到MAC层的传输性能(传输时延和吞吐量)。结合已有的Markov模型,针对IEEE802.11WLAN中的视频帧传输,提出了一个更精确的方法分析传输性能,在不同帧率条件下,推导了不同帧长和视频流数的关系,并且精确地计算了视频流的吞吐量。
     2、针对MAC层DCF协议的业务多速率性能进行改进:IEEE802.11协议中规定了物理层所支持的多种接入速率,为了分析实际应用中低速接入节点对网络整体性能的严重影响,提出了DCF协议中基于Markov模型的帧时延的精确算法,推导出低速节点对WLAN网络整体吞吐量性能的影响,并用NS2进行仿真验证。在此基础上进一步提出低速节点的优化方法,为WLAN网络的规划和优化提供有效的理论参考依据。
     3、针对MAC层DCF协议的业务公平性进行改进:在IEEE802.11DCF网络中,接入点(Access Point, AP)传输的数据量远大于其他站点,然而AP与其他站点接入无线信道的优先权相同,由此导致了上下行数据流吞吐量的不公平性。针对公平性问题的解决,提出了两种机制:一种机制是通过基于网络负荷动态调整AP的最小竞争窗口来实现,推导了不同上下行数据流条件下保证公平性的AP最小竞争窗口值,由AP负责监控实时数据流,当网络处于较重负荷时,AP通过动态调整最小竞争窗口的值来实现公平性;另一种机制是通过基于概率发送机制调整AP发送概率来实现,推导了不同上下行数据流条件下保证公平性的AP最优发送概率,主要通过调节AP的数据传输概率来实现公平性。理论分析和仿真结果显示,两种新机制均能够明显改善网络中上下行数据流的公平性,并在一定程度上提升网络整体吞吐量。
With the improvement of information technology, IEEE802.11wireless local area network (WLAN) has been widely used in our work and daily life. WLAN involves only physical layer (PHY) and medium access control layer (MAC) of the air interface. The performance of MAC layer protocol becomes an important factor to affect WLAN performance. Thus, the performance analysis and improvement of IEEE802.11MAC protocol are of great importance and practical value. This thesis mainly includes the following researches:
     (1) The performance of DCF protocol for the multimedia services transmission is analysed in MAC layer. There are obvious differences between video and data frame transmission in WLAN, for the video streams need to provide people with consequent and distinct scene. Thus we should concern with the transmission delay and throughput for the video frame. In transmission, the long video frame would be segmented, and then fill into the SDU. Different frame rate and size lead to different MAC layer transmission performance such as delay and throughput. In this paper, a precise scheme is proposed to analyse the video transmission performance in IEEE802.11WLAN. With different frame rates, the relationship between frame size and video numbers has been conducted, and the video throughput has been preciously calculated.
     (2) The performance of DCF protocol with multi-rate transmission is analysed in MAC layer. The function of multi-rate support in PHY is prescribed in IEEE802.11protocol. To analyze the serious affects to the performance of whole networks caused by the low-rate access nodes, a precise algorithm is proposed based on the improved Markov model in DCF protocol. The throughput of WLAN is conducted with low-rate access nodes, and the simulation results with NS2prove the conclusion. After that the optimization methods are proposed for the low-rate access nodes, and all these are the effective references for WLAN planning and optimization.
     (3) The fairness of DCF protocol is analysed and improved in MAC layer. The data traffic needed to be transferred by AP is much more than the other STAs in the IEEE802.11DCF networks. However, AP should access the wireless link with the same priority as STAs, and thus the throughput between uplink and downlink is of great injustice. To solve the problem of unfainess, two schemes have been proposed. One sheme is acheieved by dynamically adjusting the minimum contention window of AP based on the network load. The AP minimum contention window value has been derived to ensure fairness under the conditions of different uplink and downlink data streams. AP monitors the growing real-time data traffic, and when the network system is in heavy traffic, AP could adaptively adjust the contention window to achieve fairness. And the other sheme is realized by adjusting the transmission probability of AP based on the method of transmission with probability. The optimal transmission probability of AP has been derived to ensure fairness under the conditions of different uplink and downlink data streams. The fairness could be acheieved by adjusting the transmission probability of AP. Detailed theoretical analysis and simulation results show that both schemes can effectively achieve fairness between uplink and downlink flows, with the total throughput increased.
引文
[1]高泽华,赵国安,宁帆等,宽带无线城域网-WiMAX技术与应用,人民邮电出版社,2008.10.
    [2]C114中国通信网,http://www.c114.net.
    [3]中华人民共和国信息产业部,公众无线局域网技术要求第1部分:总体要求.
    [4]全国科学技术名词审定委员会,http://www.cnctst.gov.cn/.
    [5]高峰,高泽华,文柳等,无线城市:电信级Wi-Fi建设与运营,人民邮出版社,2011.
    [6]文柳,WLAN无线接入网络规划[学位论文],北京邮电大学,2010.
    [7]李浩,高泽华,高峰等, IEEE 802.11无线局域网标准研究,计算机应用研究,vo1.26,no.5,pp:1616-1620,2009.
    [8]IEEE. IEEE Std 802.11-1997 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S],1997.
    [9]IEEE. IEEE Std 802.11a-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:High-speed Physical Layer in the 5 GHz Band[S], 1999.
    [10]IEEE. IEEE Std 802.11b-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher-speed Physical Layer Extension in the 2.4 GHz Band[S],1999
    [11]IEEE. IEEE Std 802.11g-2003 Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band[S],2003.
    [12]IEEE. IEEE Std 802.11n-2009 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 5:Enhancements for Higher Throughput[S],2009.
    [13]高峰,高泽华,文柳,张兵,赵建军,WLAN技术问答,人民邮电出版社,2012.05.
    [14]Li Zhe, Cao Xiu Ying, A Novel Backoff Scheme for Improving the Performance of IEEE 802.11 DCF, Communications Technology, Vol.43, No.08,2010.
    [15]Mao Jian Bing, Mao Yu Ming, Leng Su Peng, Adaptive Optimization Scheme for IEEE 802.11 Based on Channel Sensing, Journal of Software, Vol.21, No.08,2010.
    [16]Song Jun, Huang Jian, Jin Yan Hua, Performance analysis and comparison of IEEE 802.11 distributed coordination function and improved schemes, Vol.32, No.04,2009.
    [17]C. Brouzioutis, V. Vitsas and P. Chatzimisios, Studying the Impact of Data Traffic on Voice Capacity in IEEE 802.11 WLANs, IEEE ICC 2010.
    [18]Haniyeh Kazemitabar, Sameha Ahmed, and Kashif Nisar, A comprehensive review on VoIP over Wireless LAN networks, Computer Science Letters, Vol.2(2) 2010.
    [19]M. Ergen, S.C. Ergen, and P.Varaiya, Throughput performance of a wireless VoIP model with packet aggregation in IEEE 802.11, Wireless Communications and Networking Conference, WCNC 2006, vol.4, April 2006, pp:2235-2239.
    [20]刘新欣,王晓东,基于IEEE 802.11无线局域网的VoIP性能分析,计算机应用,Vo1.30,June 2010.pp:37-39.
    [21]Jie Ma, Yuan an Liu, and Xi Ping Feng, Video access control for IEEE 802.11 WLAN, Applocation of Electrinic Technique,2006, pp:118-121.
    [22]Victor M, Julian C, and Fernando J, High-Definition video distribution in 802.11g home wireless networks,2011 IEEE International Conference on Consumer Electronics(ICCE), pp: 211-212.
    [23]张纯鹏,胡燏翀,许胤龙,IEEE 802.11多速率无线局域网中的竞争窗口控制算法,中国科学技术大学学报,Vol.40,No.2,Feb.2010,pp:184-190.
    [24]Huang JiaWei, Wang JianXin, Temporal fair active queue management algorithm for multi-rate 802.11 WLAN, Journal on Communications, Vol.30, No.2, February 2009, pp: 34-41.
    [25]N.Kim, IEEE 802.11 MAC Performance with Variable Transmission Rates, IEICE transaction On Communications, Sep.2005, pp:3524-3531.
    [26]Cheng Yan-hong, Li Zhi-shu, Zhu Li, A Bandwidth Allocation Scheme between Uplink and Downlink Flows in IEEE 802.11 WLAN, Journal of South China University (Natural Science Edition), vol.37, May.2009, pp:17-22.
    [27]Abeysekera B SA H, Matsuda T, and Takine T, Dynamic contention window control to achieve fairness between uplink and downlink flows in IEEE 802.11 WLANs, Proceedings of the IEEE Wireless Communications and Networking Conference, Hong Kong,2007.
    [28]Mohamed Riduan Abid, Link Quality Characterization in IEEE 802.11s Wireless Mesh Networks, A dissertation submitted to the Graduate Faculty of Auburn University in partial fulllment of the requirements for the Degree of Doctor of Philosophy, December 13,2010.
    [29]Ji-Sun Jung, Keun-Woo Lim, Jae-Beom Kim, Improving IEEE 802.11s Wireless Mesh Networks for Reliable Routing in the Smart Grid Infrastructure, Communications Workshops (ICC),2011 IEEE International Conference, June 2011.
    [1]高峰IEEE 802.11无线网络DCF协议性能分析及提升研究[学位论文],北京邮电大学2010.
    [2]IEEE. IEEE Std 802.11-1997 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S],1997.
    [3]IEEE. IEEE Std 802.11-2007 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S],2007.
    [4]IEEE. IEEE Std 802.11n-2009 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 5:Enhancements for Higher Throughpu[S],2009.
    [5]北京邮电大学理学院数学系概率教研室,史悦,孙洪祥,概率论与随机过程,北京邮电大学出版社,2010.02.
    [6]GBianchi, IEEE 802.11-Saturation Throughput Analysis, IEEE Communications Letters, 1998,2(12), pp:318-320.
    [7]E. Ziouva, T. Antonakopoulos, CSMA/CA Performance under High Traffic Conditions: Throughput and Delay Analysis, Computer Communications,2002,25(3), pp:313-321.
    [8]E. Ziouva, T. Antonakopoulos, The IEEE 802.11 Distributed Coordination Function in Small-Scale Ad Hoc Wireless LANs, International Journal of Wireless Information Networks, New York,2003,10(1), pp:1-15.
    [9]M. Carvalho, J. Garcia-Luna-Aceves, Delay Analysis of IEEE 802.11 in Single-Hop Networks, IEEE ICNP'03, New York,2003.
    [10]P. Chatzimisios, A.C.Boucouvalas, V.Vitsas, IEEE 802.11 Packet Delay:A Finite Retry Limit Analysis, In Proc.IEEE Globecom, New York,2003, pp:950-954.
    [11]V.M.Vishnevsky, A.I.Lyakhov,802.11 LANs:Saturation Throughput in the Presence of Noise, In Proc.IFIP Networking,2002, pp:1008-1019.
    [12]J.S.Vardakas, M.K.Sidiropoulos, M.D.Logothetis, Performance Behaviour of IEEE 802.11 Distributed Coordination Function Circuits, Devices & Systems, IET, Volume 2, February 2008, pp:50-59.
    [13]Liu Wen, Zehua Gao, Feng Gao, Performance Analysis of IEEE 802.11a in Non-saturation Conditons, in Proceedings of 2009 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC 2009), Beijing, China,6-8 Nov, pp:837-841.
    [14]高峰,高泽华,张兵,基于改进Markov模型IEEE 802.11b性能分析,南京邮电大学学报,31(1),2011.
    [15]秦翼,姜雪松,移动IP技术与NS-2模拟,机械工业出版社,2006.
    [16]方路平,刘世华,陈盼等,NS-2网络模拟基础与应用,国防工业出版社,2008.
    [17]The VINT Project, Network Simulator NS,2011, http://www.isi.edu/nsnam/ns/.
    [18]柯志亨,NS2仿真实验-多媒体和无线网络通信,电子工业出版社,2009.03.
    [19]高峰,高泽华,张兵等,IEEE 802.11a DCF协议吞吐量与时延性能分析,北京邮电大学学报,33(6),2010.
    [20]高峰,高泽华,文柳等,无线城市:电信级Wi-Fi建设与运营,人民邮出版社,2011.
    [1]XinXin Liu, XiaoDong Wang, VoIP performance analysis of WLAN based on IEEE 802.11, Journal of Computer Applications, Vol.30, No.01,2010.
    [2]Garg S, Kappes M, Can I Add A VoIP Call, IEEE Int Conf on Communications(ICC), Anchorage, Alaska,2003.
    [3]David P H, Fouad A T, Capacity of An IEEE 802.11b Wireless LAN Supporting VoIP, IEEE International Conference on Communications (ICC), Paris,2004.
    [4]陆洋,张超,陆建华等,IEEE802.11无线局域网接入环境下语音传输容量,清华大学学报(自然科学版),2008,48(1),pp:39~42.
    [5]Ivaylo H, Jacco T, and Koen L, Optimized video streaming over 802.11 by cross-layer signaling, IEEE Communications Magazine, January 2006, pp:115-121.
    [6]Victor M, Julian C, and Fernando J, High-Definition video distribution in 802.11g home wireless networks,2011 IEEE International Conference on Consumer Electronics(ICCE), pp: 211-212.
    [7]Masaterru M, Ryo I, and Masayuki K, Wireless transmission of JPEG 2000 compressed video, ICACT2011, pp:1020-1024.
    [8]Jie Ma, Yuan an Liu, and Xi Ping Feng, Video access control for IEEE 802.11 WLAN, Applocation of Electrinic Technique,2006, pp:118-121.
    [9]Andrew S. Tanenbaum, David J. Wetherall, Computer Networks (5th Edition), Prentice Hall, 2011.
    [10]H. Schulzrinne, S. Casner, R. Frederick, RTP:A Transport Protocol for Real-Time Applicaitons, RFC 3550,2003, http://tools.ietf.org/rfc/rfc3550.txt.
    [11]J. Postel, User Datagram Protocol, RFC 768,1980, http://tools.ietf.org/rfc/rfc768.txt.
    [12]University of Southern California, INTERNET PROTOCOL (DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION),RFC791,1981,http://tools.ietf.org/rfc/rfc791.txt
    [13]IEEE. IEEE Std 802.11b-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher-speed Physical Layer Extension in the 2.4 GHz Band[S],1999.
    [14]IEEE. IEEE Std 802.11 a-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:High-speed Physical Layer in the 5 GHz Band[S], 1999.
    [15]IEEE. IEEE Std 802.11 g-2003 Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band[S],2003.
    [16]IEEE. IEEE Std 802.11 n-2009 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY)Specifications-Amendment 5:Enhancements for Higher Throughput[S], 2009.
    [17]Abeysekera B SA H, Matsuda T, and Takine T, Dynamic contention window control to achieve fairness between uplink and downlink flows in IEEE 802.11 WLANs, Proceedings of the IEEE Wireless Communications and Networking Conference. Hong Kong,2007.
    [18]Bing Zhang, Zehua Gao, and Feng Gao, An Adaptive Optimization Scheme for IEEE 802.11 DCF to Achieve Fairness Between Uplink and Downlink Flows, in Proceedings of the 3th International Conference on Computer Design and Applications (ICCDA2011), Xian, China, 27-29 May.
    [19]中国电信集团公司,中国电信宽带接入发展指导意见,2010.
    [1]中华人民共和国信息产业部,公众无线局域网技术要求第1部分:总体要求.
    [2]IEEE. IEEE Std 802.11-1997 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S],1997.
    [3]IEEE. IEEE Std 802.11 a-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:High-speed Physical Layer in the 5 GHz Band[S], 1999.
    [4]IEEE. IEEE Std 802.11b-1999 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Higher-speed Physical Layer Extension in the 2.4 GHz Band[S],1999.
    [5]IEEE. IEEE Std 802.11g-2003 Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band[S],2003.
    [6]M.Heusse, F.Rousseau, GBerger-Sbabatel, Performance Anomaly of 802.1 lb, in Proceedings of IEEE Computer and Communications (INFOCOM'03), April 2003, pp:836-843.
    [7]P.Berthou, T.Gayraud, O.AlPhand, A Multimedia Architecture for 802.11b Networks, IEEE Wireless Communications and Networking Conference (WCNC,03), New Orleans, Mar.2003, 4(1), pp:1742-1747.
    [8]N.Kim, IEEE 802.11 MAC Performance with Variable Transmission Rates, IEICE transaction On Communications, SeP.2005, E88-B(9), pp:3524-3531.
    [9]高峰,高泽华,张兵,IEEE 802.11多速率条件下信道访问公平性研究,数据通信,2011.10.
    [10]文柳,WLAN无线接入网络规划[学位论文],北京邮电大学,2010.
    [11]The VINT Project, Network Simulator NS, http://www.isi.edu/nsnam/ns/.
    [12]柯志亨,NS2仿真实验-多媒体和无线网络通信,电子工业出版社,2009.03
    [1]Pilosof S, Ramachandran R, Raz D, et al. Understanding TCP fairness overwireless LAN, Proceedings of the IEEE INFOCOM, San Francisco,2003, pp:863-872.
    [2]Gong Ming-wei, Wu Qian, Williamson C, Queue management strategies to improve TCP fairness in IEEE 802.11 wireless LANs, Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, AdHoc, andWirelessNetworks, Boston,2006, pp:1-8.
    [3]Y. Fukuda and Y. Oie, Unfair and Inefficient Share of Wireless LAN Resource among Uplink and Downlink Data Traffic and its Solution, IEICE Transactions on Communications, Vol. E88-B, No.4, Apr.2005, pp:1577-1585.
    [4]S. W. Kim, B.S. Kim, and Y. Fang, Downlink and Uplink Resource Allocation in IEEE 802.11 Wireless LANs, IEEE Transactions on Vehicular Technology, Vol.54, No.1, Jan.2005, pp:320-327.
    [5]Feng Hui, Wang Ting, Hu Bo, An optimized DCF schema with downlink and up link bandwidth control in 802.11 WLAN, Proceedings of IEEE International Region 10 Conference, Melbourne,2005.
    [6]Cheng Yan-hong, Li Zhi-shu, Zhu Li, A Bandwidth Allocation Scheme between Uplink and Downlink Flows in IEEE 802.11 WLAN, Journal of South China University (Natural Science Edition), vol.37, May.2009, pp:17-22.
    [7]Abeysekera B SA H, Matsuda T, and Takine T, Dynamic contention window control to achieve fairness between uplink and downlink flows in IEEE 802.11 WLANs, Proceedings of the IEEE Wireless Communications and Networking Conference, Hong Kong,2007.
    [8]IEEE. IEEE Std 802.11-1997 Part 11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications[S],1997.
    [9]L. Ma, Q. Zhang, F. An, and X. Cheng, DIAR:A dynamic interference aware routing protocol for IEEE 802.11-based mobile ad hoc networks, Proc. MSN 2005, pp:508-517.
    [10]V.Bharghavan, A.Demers, S.Shenker, MACAW:A media access protocol for wireless LANs, In Proc. ACM SIGCOMM'94, pp:212-225.
    [11]The VINT Project, Network Simulator NS, http://www.isi.edu/nsnam/ns/.
    [12]Cheng Yan-hong, Li Zhi-shu, Xing Jian-chuan, et al, A novel MAC mechanism to resolve 802.11 performance anomaly. Journal of Zhejiang University,2007,8(10), pp:1573-1583.
    [13]柯志亨,NS2仿真实验-多媒体和无线网络通信,电子工业出版社,2009.03.