川芎嗪、黄芪液和参附液抑制心肌肥大及对线粒体和能量代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌能量代谢障碍在心力衰竭的发生、发展中的作用得到越来越多的关注。线粒体作为细胞内重要的细胞器,它不仅是心肌细胞氧化磷酸化产生能量的主要场所,在能量代谢方面有不可替代的作用,而且还与细胞中氧自由基的生成、细胞程序性死亡、细胞信号转导、细胞内多种离子的跨膜转运及电解质稳态平衡的调控等有关,在细胞的整个生命活动中充当着非常关键的角色。因此,在慢性心肌重构病理过程中,线粒体结构的变化和心肌细胞能量代谢障碍的规律,值得我们关注和研究。依托改善心肌重构为基础的治疗能够延缓心力衰竭进程的事实,我们假设:改善心肌重构会起到保护心肌细胞线粒体的作用,线粒体是与能量产生有关的亚细胞器,改善心肌细胞重构也会对线粒体能量代谢有益;川芎嗪、黄芪注射液及参附注射液能够改善心肌重构,也可能会对线粒体结构和心肌能量代谢产生有利影响。
     目的:
     1.通过大鼠原代心肌细胞培养,研究在心肌细胞肥大过程中,心肌细胞线粒体结构、功能和能量代谢情况。
     2.探讨川芎嗪、黄芪注射液及参附注射液在抑制心肌细胞肥大过程中对线粒体的影响,能否保护线粒体、改善心肌细胞的能量代谢。
     方法:
     1.分离和培养大鼠原代心肌细胞,血管紧张素Ⅱ(KAngⅡ)共培养,通过BCA法去检测细胞总蛋白含量、倒置显微镜拍摄并测量细胞直径,反映心肌细胞肥大情况。
     2.通过荧光显微镜测量线粒体膜电位(△Ψm)、酶标仪检测线粒体单胺氧化酶(MAO)活性、分光光度计检测线粒体细胞色素C氧化酶(COX)活性和线粒体外膜损伤率、SDS-聚丙烯酰胺凝胶电泳检测线粒体外膜Bcl-2、内膜ANT蛋白表达,反映肥大心肌细胞线粒结构和功能的损伤。
     3.高效液相色谱法检测心肌细胞内ATP、ADP、AMP含量,并计算总腺苷酸池含量及能荷水平,反映肥大心肌细胞能量代谢情况。
     4.以缬沙坦作为抑制心肌细胞肥大的阳性对照药,观察川芎嗪、黄芪注射液、参附注射液在抑制心肌细胞肥大过程中对线粒体结构、功能以及能量代谢的药理作用
     5.观察能量代谢调节药物—曲美他嗪对肥大心肌细胞线粒体结构、功能以及能量代谢的影响。
     结果:
     1.在24 h和48 h两个时间点,模型组心肌细胞总蛋白含量、心肌细胞直径较同期空白组有所增多,但差异无统计学意义;在72 h和96 h两个时间点,模型组心肌细胞总蛋白含量、心肌细胞直径与同期空白组相比均明显增加。
     2.与同期空白组相比,24 h时模型组心肌细胞MAO活性有所增加,但差异无统计学意义,48 h、72 h和96 h时模型组心肌细胞MAO活性均明显或显著性增加;在24h和48 h两个时间点,模型组心肌细胞线粒体COX活性较有所降低,但差异无统计学意义;72 h、96 h时模型组心肌细胞线粒体COX活性明显或显著性降低;在24 h、48 h、72 h、96 h四个时间点,模型组心肌细胞线粒体外膜损伤率与同期空白组相比均显著增加;在以上四个时间点,模型组心肌细胞线粒体△Ψm较同期空白组均显著下降;模型组心肌细胞线粒体外膜Bcl-2蛋白表达与同期空白组相比均有所下降,但差异均无统计学意义;24 h时心肌细胞线线粒体内膜ANT蛋白表达有所下降,但差异均无统计学意义,在48 h、72 h、96 h三个时间点模型组心肌细胞线线粒体内膜ANT蛋白表达均明显下降。
     3.较同期空白组,在24 h、48 h、72 h、96 h四个时间点模型组心肌细胞ATP、ADP含量、心肌细胞总腺苷酸池含量、心肌细胞能荷水平均明显或显著性下降;24 h时模型组心肌细胞AMP含量有所增加,但差异无统计学意义,在48 h、72 h、96h三个时间点时模型组心肌细胞AMP含量较同期空白组明显或显著性上升
     4.心肌细胞总蛋白含量,在72 h和96 h两个时间点与同期模型组相比,川芎嗪组明显减少,缬沙坦组显著减少,96 h时与同期模型组相比,黄芪注射液组和参附注射液组心肌细胞蛋白含量均明显减少;在以上两个时间点,黄芪注射液、川芎嗪和缬沙坦组心肌细胞直径均明显或显著性减少,72 h时较同期模型组,参附注射液组细胞直径亦明显缩小。
     5.72 h和96 h时与同期模型组相比,黄芪注射液、川芎嗪和缬沙坦组MAO活性均明显或显著性降低;72 h时较同期模型组,参附注射液组亦能显著降低MAO活性;以上两个时间点较同期模型组,缬沙坦组、川芎嗪组、参附注射液组COX活性均明显升高,72 h时黄芪组注射液组线粒体COX活性明显升高,96 h时则升高显著;缬沙坦组和川芎嗪组线粒体外膜损害率在以上两个时间点较同期模型组均显著下降,黄芪注射液组和参附注射液组线粒体外膜损害率亦有明显降低;72 h和96 h时,与同期模型组相比,缬沙坦组和川芎嗪组的线粒体△Ψm均明显升高,72 h时黄芪注射液组和参附注射液组线粒体△Ψm明显升高,96h时则显著性升高;以上两个时间点,与同期模型组相比,缬沙坦组、川芎嗪组、黄芪注射液组和参附注射液组线粒体外膜Bcl-2和内膜ANT蛋白表达均有不同程度升高,但差异无统计学意义。
     6.72 h和96 h时较同期模型组,缬沙坦组、川芎嗪组以及黄芪注射液组均显著提高了心肌细胞内ATP、ADP含量,与同期模型组相比,72 h时参附注射液组心肌细胞ATP、ADP含量著提高,96h时亦明显提高;以上两个时间点较同期模型组,缬沙坦组显著降低了心肌细胞内AMP含量,黄芪注射液组和参附注射液组心肌细胞AMP含量亦明显降低,与同期模型组比较,72 h时川芎嗪组心肌细胞AMP含量著降低,96h时亦明显降低;72 h时与同期模型组相比,缬沙坦组明显提高了心肌细胞内总腺苷酸池含量,黄芪注射液组心肌细胞内总腺苷酸池含量显著提高,96 h时与同期模型组相比,参附注射液组心肌细胞内总腺苷酸池含量明显提高,缬沙坦组、川芎嗪组和黄芪注射液组则显著提高了心肌细胞内总腺苷酸池含量。以上两个时间点较同期模型组,缬沙坦组、川芎嗪组、黄芪注射液组以及参附注射液组均显著提高了心肌细胞的能荷水平。
     7.72 h和96 h时较同期模型组,曲美他嗪组心肌细胞总蛋白含量和心肌细胞直径减少、心肌细胞MAO活性、线粒体外膜损伤率有所降低、线粒体外膜Bcl-2蛋白和内膜ANT蛋白表达有所提高,但以上差异均无统计学意义。较同期模型组,72 h时曲美他嗪组心肌细胞线粒体COX活性、线粒体△Ψm明显升高,心肌细胞内ATP、ADP含量明显上升,心肌细胞的能荷水平显著提高,96h时曲美他嗪组心肌细胞总腺苷酸含量明显升高。
     结论:
     1.在心肌细胞肥大过程中,存在线粒体的结构和功能的损害。
     2.肥大心肌细胞存在能量代谢障碍,心肌细胞能量代谢障碍是心肌细胞肥大的早期敏感指标。
     3.川芎嗪、黄芪注射液、参附注射液和缬沙坦在抑制血管紧张素Ⅱ所引起的心肌细胞肥大的过程中均具有一定的保护心肌细胞线粒体的作用。
     4.川芎嗪、黄芪注射液、参附注射液和缬沙坦在抑制心肌细胞肥大、保护线粒体的过程中,能够改善心肌细胞能量代谢障碍。
     5.曲美他嗪对肥大心肌细胞的能量代谢有一定的改善作用,但不能保护心肌细胞线粒体,不具有抑制心肌细胞肥大的作用。
In recent years, the cardiac energy metabolism obstacle in the occurrence and development of heart failure gets more and more attention. In cells, mitochondria as important organelles, are not only the main organelles that generate energy by oxidative phosphorylation, playing irreplaceable role in energy metabolism, but also involved in the cell oxygen free radical production, programmed cell death, signal transduction, various ions transshipment across cell membrane and the steady state of electrolyte. In the whole life of activity cells, mitochondria acts as a critical role. Therefore, regular pattern of mitochondrial structure change and cardiac energy metabolism obstacle in the process of chronic cardiac reconstruction is worth studying. Based on the fact that improving myocardial reconstruction treatment can delay heart failure progress, we assume that the treatment will protect mitochondrial function. Mitochondria are organelles producing energy. So improve the myocardial cell reconstruction will benefit mitochondrial energy metabolization. The traditional Chinese medicine of Benefiting Vital Energy, Activating Blood Circulation and Warming Yang are able to restrain myocardial reconstruction, and may also be benefit mitochondrial structure and cardiac energy metabolism.
     Objective:
     1. Primary cultures of neonatal rat myocardial cells were performed to explore pathological problems about mitochondria changes in the process of myocardial hypertrophy.
     2. Explore the influences of traditional Chinese drugs which benefit vital energy, activate blood circulation and warm yang on mitochondria and energy metabolism in the process of restraining myocardial cell hypertrophy caused by AngⅡ.
     Methods:
     1. Neonatal myocardial cells were dispersed and cultured with angiotensinⅡ(AngⅡ). We detected the total protein content with BCA method and measured cell diameter with inverted microscope, to show the situation of cardiomyocyte hypertrophy.
     2. We detected mitochondrial membrane potential (A^m) with fluorescence microscope and mitochondrial single amine oxidase (MAO) activity with spectrophotometer and mitochondrial cytochrome oxidase (COX) activity and the damage percentage of mitochondrial outer membrane with microplate reader and protein expression of mitochondrial outer membrane Bcl-2, inner membrane ANT with western blot, to show the damage of mitochondrial construction and function in hypertrophic cardiomyocyte.
     3. We detected the content of ATP、ADP、AMP with high performance liquid chromatography and calculated the total adenosine acid content and energy charge, to show the situation of energy metabolism in hypertrophic cardiomyocyte.
     4. Valsartan as positive control, cells also were treated with ligustrazine、radix astragali injection and shenfu injection and then the pharmacological effects on mitochondrial structure, function and energy metabolism in the myocardial cells treated with AngⅡwere observed. 5. Observe the influences of energy metabolism drug(trimetazidine) on mitochondrial structure、function and energy metabolism in hypertrophic cardiomyocyte.
     Results:
     1. At 24 h and 48 h, compared with control, cells treated with AngⅡhad increased total protein content and enlarged diameter, but there were no difference between the two groups. At 72 h and 96 h, compared with control, total protein content and enlarged diameter were obviously increased.
     2. At 24 h, compared with control, myocardial cells treated with Ang II had increased MAO activity,but there was no difference between them. At 48 h.72 h、96 h、myocardial cells MAO activity were obviously or significantly increased. At 24 h and 48 h, compared with control, myocardial cell treated with AngⅡCOX had decreased activity, but there was no difference between them. At 72 h and 96 h, compared with control, myocardial cell COX activity was obviously or significantly decreased. At 24 h、48 h.72 h and 96 h, compared with control, myocardial cells treated with AngⅡhad increased the damage percentage of mitochondrial outer membrane. At 24 h、48 h、72 h and 96 h, compared with control, myocardial cells treated with AngⅡhad significantly reduced mitochondrial△Ψ. At 24 h、48 h、72 h and 96 h, compared with control, myocardial cells treated with AngⅡhad declined expression of Bcl-2, but there was no difference between the two groups. At 24 h, compared with control, myocardial cells treated with Ang II had declined expression of ANT, but there was no difference between them. At 48 h、72 h and 96 h, compared with control, the expression of ANT were obviously declined.
     3. At 24 h.48 h、72 h and 96 h, compared with control, myocardial cells treated with Ang II had obviously or significantly decreased the content of ATP、ADP、total adenosine acid pool and the level of energy charge. At 24 h, compared with control, myocardial cells treated with Ang II had increased the content of AMP, but there was no difference between the two groups. At 48 h.72 h and 96 h, compared with control, the content of AMP was obviously or significantly increased.
     4. At 72 h and 96 h, compared with control, ligustrazine and valsartan had significantly reduced myocardial cell total protein content, At 96 h, compared with control, radix astragali injection and shenfu injection had obviously reduced myocardial cell total protein content. At 72 h and 96 h, compared with control, ligustrazine, radix astragali injection and valsartan had obviously or significantly reduced cell diameter. At 72 h, compared with control, shenfu injection had obviously reduced cell diameter.
     5. At 72 h and 96 h. compared with control, ligustrazine. radix astragali injection and valsartan had obviously or significantly reduced myocardial cell MAO activity. At 72 h. compared with control, shenfu injection had obviously reduced myocardial cell MAO activity. At the two time points, compared with control, ligustrazine. shenju injection and valsartan had significantly increased mitochondrial COX activity. At 72 h, compared with control, radix astragali injection had obviously increased mitochondrial COX activity. At 96 h, mitochondrial COX activity was significantly increased. At the two time points, ligustrazine and valsartan had significantly reduced the damage percentage of mitochondrial outer membrane, radix astragali injection and shenju injection also had obviously reduced the damage percentage of mitochondrial outer membrane. At 72 h and 96 h, ligustrazine and valsartan had obviously improved mitochondrial AT compared with control. At 72 h, compared with control, radix astragali injection and shenju injection also had obviously improved mitochondrial△Ψ. At 96h, mitochondrial△Ψwas significantly improved. At the two time points, compared with control, ligustrazine、radix astragali injection、shenju injection and valsartan had increased expression of ANT. Bcl-2, but there was no differences between the two groups.
     6. At 72 h and 96 h, compared with control, ligustrazine, radix astragali injection and valsartan had significantly increased content of ATP. ADP. At 72 h, shenfu injection had obviously increased contents of ATP、ADP compared with control. At 96 h, contents of ATP. ADP were significantly increased. At the two time points, valsartan had significantly decreased content of AMP, ligustrazine, radix astragali injection had obviously decreased content of AMP. At 72 h, compared with control, shenfu injection had obviously decreased content of AMP. At 96 h, the content of AMP were significantly decreased. At 72 h, compared with control, valsartan had obviously increased content of total adenosine acid pool, radix astragali injection had significantly increased content of total adenosine acid pool. At 96 h, compared with control, shenfu injection had obviously increased content of total adenosine acid pool, ligustrazine. radix astragali injection and valsartan had significantly increased content of total adenosine acid pool. At the two time points, compared with control, ligustrazine、radix astragali injection. shenfu injection and valsartan had significantly increased the level of energy charge.
     7. At 72 h and 96 h, compared with control, trimetazidine had reduced myocardial cell total protein content, cell diameter, myocardial cell MAO activity, the damage percentage of mitochondrial outer membrane, increased expression of ANT, Bcl-2, but there were no differences between the two groups. At 72 h, compared with control, trimetazidine had obviously increased mitochondrial COX activity, mitochondrial△Ψ, contents of ATP. ADP. the level of energy charge. At 96 h, trimetazidine had obviously increased content of total adenosine acid pool compared with control.
     Conclusions:
     1. During the process of myocardial hypertrophy, damages of mitochondrial structure and function occurred.
     2. Changes of myocardial cell energy metabolism occurred in hypertrophic cardiomyocyte. Energy metabolism obstacle is a sensitive indicator in the early stage of myocardial hypertrophy.
     3. Ligustrazine. radix astragali injection、shenju injection and valsartan can restrain myocardial cell hypertrophy caused by AngⅡ, by protecting mitochondrial structure and function.
     4. Ligustrazine. radix astragali injection、shenju injection and valsartan can improve energy metabolism of the myocardial cell by restraining myocardial cell hypertrophy and protecting mitochondria.
     5. Trimetazidine had some good effects on energy metabolism in hypertrophic cardiomyocyte. Trimetazidine can't protect mitochondria and reverse myocardial cell hypertrophy.
引文
[1]熊燕,海春霞.线粒体功能障碍与心血管疾病[J].中国药理通讯,2008,25(2):38-9.
    [2]Towpik J. Regulation of mitochondrial translation in yeast[J]. Cell Mol Biol Lett,2005,10 (4):571-594.
    [3]Granville DJ,Gottlieb RA. The mitochondrial voltage-dependent anion channel(VDAC)as a therapeutic target for initiating cell death[J]. Curt Med Chem,2003,10:1527-33.
    [4]Newmeyer DD, Ferguson-Miller S. Mitochondria:releasing power for life and unleashing the machineries of death[J]. Cell,2003,112(4):481-90.
    [5]Danial NN, Korsmeyer SJ. Cell death:critical control points[J]. Cell,2004,116(2):205-19.
    [6]仇万山,陈亦江.线粒体结构、功能和常用研究方法[J].国际醉学与复志,2007,28(3):282-4.
    [7]Crow MT, Mani K,Nam YJ, et al. The mitochondrial death pathway and cardiac myocyte apoptosis[J]. Circ Res,2004,95(10):957-70.
    [8]张新勇,王士雯.线粒体与细胞凋亡的关系[J].老年医学与保健,2007,13(1):56-8.
    [9]王玮,高卫真.线粒体与心肌细胞凋亡[J].医学综述2007,13(20):1541-43.
    [10]韩维举,韩东一,杨伟炎.大鼠不同组织器官线粒体DNA缺失定量分析及其老化的关系[J].军医进修学院学报,2002,23(4):305-07.
    [11]Ling F, Hori A, Shibata T. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5 [J]. Mol Cell Biol,2007,27(3):1133-45.
    [12]高春鹏,仲来福,任翔,等.线粒体DNA缺失和功能缺失对核基因影响[J].中国公共卫生,2011,27(1):50-51.
    [13]Sharov VG, Todor A, Khanal S, et al. Cyclosporine A attenuates mitochondrial perm-eability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure [J]. J Mol Cell Cardiol,2007,2(1):150-158.
    [14]Sharov VG, Goussev A, Lesch M, et al. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure[J]. J Mol Cell Cardiol,1998,30(9):1757-62.
    [15]Coleman R, Silbermann M, Gershon D, et al. Giant mitochondria in the myocardium of aging and endurance-trained mice[J]. Gerontol,1987,33(1):34-9.
    [16]Zak R, Rabinowitz M, Rajamanickam C, et al. Mitochondrial proliferation in cardiac hypertrophy [J]. Basic Res Cardiol,1980(1),75:171-8.
    [17]Baandrup U, Florio RA, Roters F, et al. Electron microscopic investigation of endomyo-cardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients[J]. Circulation,1981,63(6):1289-98.
    [18]Rosca MG, Vazquez EJ, Kerner J, et al. Cardiac mitochondria in heart failure:decrease in respirasomes and oxidative phosphorylation[J]. Cardiovasc Res,2008,80(1):30-9.
    [19]Neubauer S. The failing heart:an engine out of fuel[J]. N Engl J Med,2007,356(11):1140-51.
    [20]Maslov MY, Chacko VP, Stuber M, et al. Altered high-energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure overload hypertrophy mice[J]. Am J Physiol Heart Circ Physiol,2007,292(1):H387-91.
    [21]Hu Q, Wang X, Lee J, et al. Profound bioenergetic abnormalities in peri-infarct myocardial regions[J]. Am J Physiol Heart Circ Physiol,2006,291(2):H648-57.
    [22]宋熔,祝善俊.心肌代谢重构的研究进展[J].中华高血压杂志,2008,16(3):202-5
    [23]HG, Genter MB, Shen D, et al. TCOD decreased ATP levels and increased reactive oxygen production through changes in mitochondrial F(0)F(1)-ATP synthase and ubiquinone [J]. Toxicol Appl Pharmacol,2006,217:363-374.
    [24]Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure[J]. Cardiovasc Res,2001,52(1):103-10.
    [25]Scheubel RJ, Tostlebe M, Simm A,et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression[J]. J Am Coll Cardiol,2002,40(12):2174-81.
    [26]Kuo WW, Chu CY, Wu CH, et al. The profile of cardiac cytochrome coxidase(COX) expression in an accelerated cardiac hypertrophy model[J]. J Biomed Sci,2005,12(4):601-10.
    [27]Liu J, Wang C, Murakami Y, et al. Mitochondrial ATPase and high-energy phosphates in failing hearts[J]. Am J Physiol Heart Circ Physiol,2001,281(3):H1319-26.
    [28]Quigley AF, Kapsa RM, Esmore D, et al. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy[J]. J Card Fail,2000,6(l):47-55.
    [29]Sharov VG, Todor A, Khanal S, et al. Cyclosporine A attenuates mitochondrial permeabi-lity transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure[J]. J Mol Cell Cardiol,2007,42(1):150-8.
    [30]Murray AJ, Lygate CA, Cole MA, et al. Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infracted rat heart[J], Cardiovasc Res,2006, 71(1):149-57.
    [31]Fine EJ, Miller A, Quadros EV, et al. Acetoacetate reduces growth and ATP concentration in cancer cell lines which overexpress uncoupling protein 2[J]. Cancer Cell Int,2009,9(7):14-25.
    [32]汪春晖,江时森,宫剑滨,等.解偶联蛋白-2基因在压力负荷模型大鼠心肌中的动态表达变化[J].中国微循环,2003,7(1):9-13.
    [33]李楠,王江,高峰,等.心力衰竭大鼠解偶联蛋白2表达及其对线粒体功能的影响[J]. 岭南心血管病杂志,2009,15(6):474-8.
    [34]Murray AJ, Cole MA, Lygate CA, et al. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart[J]. J Mol Cell Cardiol,2008,44(4):694-700.
    [35]Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed and failing human heart[J]. Proe Natl Acad Sci USA,2005,102(3):808-13.
    [36]苏敬泽,农一兵,温志浩,等.黄芪组分配伍对乳鼠肥大心肌细胞肌酸激酶同功酶活性的影响[J].中国中医基础医学杂志,2008,14(3):196-7.
    [37]Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart diseses[J]. Biochim Biophys Acta,2009,1787(11):1402-15.
    [38]郑霁,房亚东,腾苗,等.心肌细胞缺氧引起微管结构破坏导致线粒体通透性转换孔开放的实验研究[J].中华烧伤杂志,2006,22(3):195-8.
    [39]邝勇,黄跃生.线粒体缺氧损害机制研究进展[J].中国医师杂志,2006,8(2):286-7.
    [40]Marcil M, Ascah A, Matas J, et al. Compensated volume overload increases the vulnera-bility of heart mitochondria without affecting their functions in the absence of stress[J]. J Mol Cell Cardiol,2006,41(6):998-1009.
    [41]Sharov VG, Todor A, Khanal S, et al. Cyclosporine A attenuates mitochondrial permeabi-lity transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure[J]. J Mol Cell Cardiol,2007,42(1):150-8.
    [42]Javadov S, Rajapurohitam V, Kilie A, et al. Antihypertrophic effect of NHE-1 inhibition involves GSK-3(3-dependent attenuation of mitochondrial dysfunction [J]. J Mol Cell Cardiol, 2009,46(6):998-1107.
    [43]Leung AW, Varanyuwatana P, Halestrap AP. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition [J]. J Biol Chem,2008,283(39):26312-23.
    [44]Shabalina IG, Kramarova TV, Nedergaard J, et al. Carboxyatraetyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively [J]. Bioeem J,2006,399(3):405-14.
    [45]Wahher T, Tschope C, Sterner-Kock A, et al. Accelerated mitochondrial adenosine diphoshate/adenosine tri phosphate tansport improves hypertension-induced heart disease [J]. Cireulation,2007,115(3):333-44.
    [46]宋熔,李晓东,王江,等.压力超负荷致心室重构大鼠线粒体内腺苷酸转运体表达的改变[J].中华老年心脑血管病杂志,2008,10(6):454-6.
    [47]Shoshan-Barmatz V, De Pinto V, Zweckstetter M, et al.VDAC, a multi functional mito-chondrial protein regulating cell life and death[J]. Mol Aspects Med,2010,31(3):227-85.
    [48]Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein(TSPO), implications for apoptosis[J]. J Bioenerg Biomembr,2008,40(3):199-205.
    [49]Aim-Hamed S, Sivan S, Shoehan-Banmaz. The expression Ieyel of the voltage dependent anion channel controls life and death of the cell[J]. Proc Natl Acad Sci USA,2006,103(15): 5787-92.
    [50]杨渊,钟才高.电压依赖性阴离子通道在线粒体依赖性细胞凋亡中作用的研究进展[J].中国药理学与毒理学杂志,2011,25(2):211-5.
    [51]谢渡江,陈锐华,江时森.线粒体外膜电压依赖性阴离子通道与心力衰竭[J].医学研究生学报,2003,16(1):48-50.
    [52]Cieniewski-Bernard C, Mulder P, Henry JP, et al. Proteomic analysis of left ventricular remodeling in an experimental model of heart failure[J]. J Proteome Res,2008,7(11):5004-16.
    [53]Van Empel VPM, De Windt LJ. Myocyte hypertrophy and apoptosis:a balancing act[J]. Cardiovaac Res,2004,63(3):487-99.
    [54]Gao Z, Xu H, Di Silvestre D, et al. Transcriptomic profiling of the canine tachycardia-induced heart failure model:global comparison to human and murine heart failure[J]. J Mol Cell Cardiol,2006,40(1):76-86.
    [55]Gao Z, Barth AS, Di Silvestre D, et al. Key pathways associated with heart failure deve-lopment revealed by gene networks correlated with cardiac remodeling[J]. Physiol Genomics, 2008,35(3):222-30.
    [57]雷义,金文达,陈锋.活性氧与线粒体损伤[J].南华大学学报(医学版),2006,34(5):648-9.
    [56]张媛,范谦,杨新春.氧化应激与心力衰竭[J].中华老年心脑血管病杂志,2006,8(8):572-3.
    [58]Scolletta S, Biagioli B. Energetic myocardial metabolism and oxidative stress:let's make them our friends in the fight against heart failure[J]. Biomed Pharmacother,2010,64(3):203-7.
    [59]Sawyer DB. Oxidative stress in heart failure:what are we missing?[J].Am J Med Sci,2011,342(2):120-24.
    [60]Sam F, Kerstetter DL, Pimental DR, et al. Increased reactiive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium[J].J Card fail, 2005,11(6):473-80.
    [61]Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure[J]. Antioxid Redox Signal,2006,8(9-10):1737-44.
    [62]Campolo J, Caruso R, De Maria R, et al. Aminothiol redox alterations in patients with chronic heart failure of ischaemic or nonischaemic origin[J]. J Cardiovasc Med (Hagerstown), 2007,8(12):1024-8.
    [63]Tang WH, Brennan ML, Philip K, et al. Plasma myeloperoxidase levels in patients with chronic heart failure[J]. Am J Cardiol,2006,98(6):796-9.
    [64]Watanabe E, Matsuda N, Shiga T, et al. Significance of 8-hydroxy2'- deoxyguanosine levels in patients with idiopathic dilated cardiomyopathy[J]. J Card Fail,2006,12(7):527-32.
    [65]Canton M, Menazza S, Sheeran FL, et al. Oxidation of myofibrillar proteins in human heart failure[J]. J Am Coll Cardiol,2011,57(3):300-9.
    [66]Campolo J, De Maria R, Caruso R, et al. Blood glutathione as independent marker of lipid peroxidation in heart failure[J]. Int J Cardiol,2007,117:45-50.
    [67]贾春澍,范志民,陈晓亮,等.线粒体氧化应激与心肌重构研究进展[J].中国实验诊断学,2011,15(1):182-4.
    [68]Choksi KB, Boylston WH, Rabek JP, et al. Oxidatively damaged proteins of heart mitochondrial electron transport complexes[J]. Biochim Biophys Acta,2004,1688(2):95-101.
    [69]Kono Y, Nakamura K, Kimura H, et al. Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure[J]. Circ J 2006,70(8):1001-5.
    [70]Di Lisa F, Kaludercic N, Carpi A,et al. Mitochondrial pathways for ROS formation and myocardial injury:the relevance of p66(Shc) and monoamine oxidase[J]. Basic Res Cardiol 2009,104(2):131-9.
    [71]Lambert AJ, Miwa S, Pakay JL, el al. Mitechondrial superoxide:production, boilogical effecls, and activation of uncoupling proteins[J]. Free Radic Bid Med,2004,37(6):755-67.
    [72]孙锴,王克强,葛均波.线粒体是防治心力衰竭的重要靶点[J].中华心血管病杂志,2008,36(9):854-8.
    [73]Jassem W, Fuggle SV, Rela M,et al. The role of mitochondria in ischemia-reperfusion injury[J].Transplantation,2002,73(4):493-9.
    [74]Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure:a question of balance[J]. J Clin Invest,2005,115(3):547-55.
    [75]苗雅,杨欣国.心力衰竭中的超氧化应激损伤[J].心脏杂志,2002,14(1):64-5.
    [76]Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004,305(5684):626-9.
    [77]Mueller S. Iron regulatory protein 1 as a sensor of reactive oxygen species[J]. Biofactors, 2005,24(1-4):171-81.
    [78]Fariss MW. Role of mitochondria in toxic oxidative stress[J]. Mol Interv,2005,5(2):94-111.
    [79]Gonzalo R. Free radicals-mediated damage in transmitochondrial cells harboring the T14487C mutation in the ND6 gene of mtDNA[J]. FEBS Lett,2005,579(30):6909-13.
    [80]Santos JH. Cell sorting experiments link persi stent mitochondrial DNA damage with loss of mitochondri al membrane potential and apoptotic cell death[J]. J Biol Chem,2003,278 (3):1728-34.
    [81]Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative st ress [J]. DNA Repair(Amst),2006,5(2):145-52.
    [82]Ghosh MC, Wang X, Li S, et al. Regulation of calcineurin by oxidative stress[J]. Methods Enzymol,2003,366():289-304.
    [83]Nakagami H, Takemoto M, Liao JK. NADPH oxidase derived superoxide anion mediates angiotensin Ⅱ-induced cardiac hypertrophy[J]. J Mol Cell Cardiol,2003,35(7):851-9.
    [84]Puntmann VO, Hussain MB. Role of oxidative stress in angiotensin Ⅱ mediated contrac-tion of human conduit arteries in patients with cardiovascular disease[J]. Vascul Pharmacol, 2005,43(4):277-82.
    [85]Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodeling[J]. Cardiovasc Res,2009,81(3):449-56.
    [86]Hayashidani S, Tsutsui H, Ikeuchi M, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction[J].Am J Physiol Heart Circ Physiol,2003,285(3):H1229-35.
    [87]Carafoli E. Calcium signaling:a tale for all seasons[J]. Proc Natl Acad Sci,2002,99(3): 1115-22.
    [88]郭铭生,石达友,李鹏飞,等.Ca2+与线粒体生理功能的关系[A].中国畜牧兽医学会家畜内科学分会学术研讨会论文,2009,663-7
    [89]刘慧敏,王浩.钙介导的信号转导途径与心肌肥厚[J].山东医药,2008,48(46):108-9.
    [90]Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore open-ing during myocardial reperfusiona target for cardioprotection[J]. Cardiovasc Res,2004,61(3): 372-85.
    [91]ThomasWS, Solomon HS. Mwosenger molecules and cell death [J]. JAMA,2006,295 (1): 81-9.
    [92]Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis:facts and hypothese [J]. Oncogene,2003,22(53):8619-27.
    [93]Csordas G, Ranken C, Varna P. Structure and functional feathere and significance of thephysical linkage between ER and mitochondrial [J]. J Cell Biol,2006,174(7):915-21.
    [94]Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae[J]. Biophys J,2002,83(2):587-604.
    [95]Balaban RS. Cardiac energy metabolism homeostasis:role of cytosolic calcium [J]. J Mol Cell Cardiol,2002,34(10):1259-71.
    [96]Duehen MR. Mitochondria in health and disease:perspectiveson a new mitochondrial biology[J]. Mol Aspects Med,2004,25(4):365-451.
    [1]中华医学会心血管分会.慢性收缩性心力衰竭治疗建议[J].中华心血管病杂志,2007,35(12):1076-95
    [2]Cleland JG, Daubert JC, Erdmann E,et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure[J]. N Engl J Med,2005,352(15):1539-49.
    [3]黄平东.中医古籍对心力衰竭的论述探要[J].中医药学刊,2003,21(4):392-3.
    [4]葛鸿庆,赵梁,郝李敏.邓铁涛教授从脾论治慢性充血性心力衰竭之经验[J].上海中医药杂志,2002,36(4):9-10.
    [5]李玉梅,姜水印,卫洪昌.病证结合的充血性心力衰竭的基本证型演变规律的研究进展[J].中西医结合心脑血管病杂志,2006,7(4):611-2.
    [6]刘元章.充血性心力衰竭患者证候的临床研究[J].中西医结合杂志,1991,11(7):405-7.
    [7]廖家祯,武泽民,康延培.生脉散对冠心病心绞痛患者的左心功能影响[J].中医杂志,1981,22(6):24.
    [8]王瑶瑶,陈云志.康心汤治疗心肾阳虚型充血性心力衰竭疗效分析[J].河南中医学院学报,2007,22(4):42-3.
    [9]张子彬,Tsung O,张玉传.充血性心力衰竭[M].北京:科技文献出版社,2002:38-9.
    [10]朱伯卿,戴瑞鸿,查娟娟,等.气血相关理论的研究:补气药治疗气虚血瘀型心力衰竭[J].中西医结合杂志,1986,6(2):75.
    [11]韩丽华.充血性心力衰竭阳虚证微观辨证的初步研究[J].河南中医药学刊,1996,11(2):25-8.
    [12]文哲双,周江华.心阴虚证、心气虚证RAAS含量的改变及临床意义[J].湖北中医杂志,1999,21(10):445.
    [13]沙龙.通过分析中医对心衰的临床研究认识谈临床应如何开展中西医结合治疗研究[J].中外医疗,2009,6:171-2.
    [14]霍根红.充血性心力衰竭的中医病理实质.河南中医[J],2009,29(2):114-7.
    [15]冯利民,刘长玉,杜武勋.226例慢性心力衰竭的中医证候调查及病死率分析[J].四川中医,2008,26(1):36-7
    [16]唐蜀华.中医药治疗充血性心力衰竭的临床体会[J].上海中医药杂,2003,37(1):23-5.
    [17]郑莜萸.中药新药临床研究指导原则(试用版)[M].上海:中国医药科技出版社,2002,29-30,77-85.
    [18]陈可冀,廖家桢,肖镇祥.心脑血管疾病研究[M].上海:上海科学技术出版社,1998:28.
    [19]刘梅,宋和文.田芬兰教授中药治疗充血性心力衰竭体会[J].天津中医,2005,22(1):45-7.
    [20]黄平东,罗懿明,黄衍寿等.充血性心力衰竭中医证型特征及其演变规律的临床观察[J].中西医结合心脑血管病杂志,2003,1(12):685-6.
    [21]董波,王东海.对充血性心力衰竭中医病名、辨证分型及评估指标规范化的研究[J].实用中医内科杂志,2007,21(7):22-3.
    [22]朱波.李七一心衰辨治心法[J].江苏中医药,2008,40(12):18-9.
    [23]姜凯,姜树民,柏树刚,等.中药治疗冠心病心衰48例临床观察[J].云南中医学院学报,2007,30(2):58-9.
    [24]翁晓清.中西医治疗急性心肌梗塞并发泵衰蝎[J].浙江中医杂志.1994,(3):20.
    [25]孙国余.中医辨证配合西药治疗肺心病心衰63例观察[J].中医药临床杂志,2005,17(5):476.
    [26]贺丽娜.风心病并发充血性心力衰竭42例辨证分析[J].中医函授通讯,2000,19(2):41.
    [27]张鹏.慢性心力衰竭中医病机及证型特点研究概况[J].实用中医内科杂志,2009,23(2):12.
    [28]汪再舫.心力衰端140例中医证候特点的观察研究[J].江苏中医,1996(11):44-5.
    [29]李晓.罗铨治疗心力衰竭的经验[J].中国中医急症,2005,14(2):156.
    [30]陈书存,张小斌.左侧心力衰竭的中医辨证分型探讨[J].内蒙古中医药,2007,6:11-12
    [31]邓乐巧,金艳蓉,杨海燕,等.心脏舒张功能不全中医辨证聚类研究[J].中国中医药信息杂志,2005,12(10):12-4.
    [32]张济海.中西医结合治疗舒张性心力衰竭85例观察[J].中国自然医学杂志,2004,6(4):282.
    [33]张艳,宫丽红,等.慢性心衰中医分期分级临床辨证体会[J].辽宁中医杂志,2010,37(5):801-2.
    [34]潘剑.中医辨证在慢性充血性心力衰竭治疗中的应用[J].福建中医药,2007,38(4):56-7.
    [35]贺福田.参芪扶正注射液治疗慢性充血性心力衰竭疗效观察[J].中国中医急症,2003,12(5):399-400.
    [36]王守富,李秋风,徐毅,等.参芪强心饮对慢性心力衰竭心功能及生活质量的影响[J].中国中医药信息杂志,2005,9(12):9.
    [37]何居仁,马丹军.黄芪注射液治疗充血性心力衰竭作用机理探讨[J].上海医药,2000,21(1):25-6.
    [38]李瑞,王亚平,韩红亚.温肾活血胶囊对心力衰竭家兔血液动力学和血液流变学的影响[J].福建中医药,2007,38(6):58-9.
    [39]武雪萍,刘超峰.益气健脾活血利水方治疗慢性充血性心力衰竭32例[J].陕西中医,2007,28(10):1281-82.
    [40]范虹,安静.养心活血汤加味治疗慢性充血性心力衰竭45例[J].安徽中医学院学报,2007,26(5):13-4.
    [41]冼绍祥,周凤娇.中医药治疗心力衰竭的临床研究进展[J].辽宁中医药大学学报,20068(6):165-7.
    [42]张一昕,许占民,王鑫国.益气养阴方对实验性心衰犬血流动力学的影响[J].中国中医药科技,2002,9(2):83-5.
    [43]万秀英,孙久林,陈少军.健心汤和生脉注射液治疗充血性心力衰竭180例临床观察[J].北京中医,2007,7(26):55-6.
    [44]杨水娥,张萍,李海华.参麦注射液治疗慢性心力衰竭疗效的研究[J].中华实用中西医杂志,2004,17(4):1608-09.
    [45]吴素琴.生脉、黄芪注射液联用治疗充血性心衰疗效分析[J].吉林中药,2004,24(7):6-7.
    [46]宋盛青,程宏辉.参附注射液治疗慢性收缩性心力衰竭疗效观察[J].四川中医,2006,24(8):42-3.
    [47]余小平.应用强心汤治疗心衰疗效观察[J].中国中医急症,2007,16(7):263-4.
    [48]王均宁,龙子江,王钦茂.真武汤及其拆方强心利尿作用的实验研究[J].中成药,1997,19(3):27.
    [49]陈勇.加味真武汤治疗慢性心衰50例临床观察[J].光明中医,2006,21(7):34-5.
    [50]周亚男,张军平.慢性心力衰竭大气下陷说及从气、血、水论治[J].新中医,2009,41(4):7-8
    [51]曹雪滨.益气温阳活血化瘀法治疗充血性心力衰竭的中医机制探讨[J].现代中西医结合杂志,2003,23(12):2618.
    [52]王松山.益气养阴祛瘀法为主治疗难治性心衰32例[J].中国中医急,2011,20(7):1141.
    [53]张雪.心力衰竭的中医证候特点文献研究[J].世界中西医结合杂志,2008,3(12),702-4.
    [54]曹雪滨,胡元会,王士雯.充血性心力衰竭辨证分型与血管活性肽的关系[J].辽宁中医杂志,1999,26(10):441.
    [55]曹雪滨,王士雯,黄河玲,等.充血性心力衰竭中医辨证分型与心功能的关系[J].新中医,2000,32(2):37-9.
    [56]刘革命,马成富,熊尚全.慢性心力衰竭证型与心率变异性的关系[J].上海中医药杂志,2004,38(2):16.
    [57]刘革命,熊尚全.慢性心力衰竭中医辨证分型与血浆NO及TNF含量的关系[J].山东中医杂志,2004,23(2):71-2.
    [58]周杰,高晓玲,张宝州,等.充血性心力衰竭中医辨证分型与心功能参数及甲状腺激素相关性的临床研究[J].中国中西医结合杂志,2004,24(10):872-5.
    [59]冯小平,王临光.应用心功能Tei指数与血浆BNP水平变化评价充血性心力衰竭中医辨证分型[J].中国微循环,2005,9(6):430-2.
    [60]刘明怀.充血性心力衰竭心气虚、心阳虚证与TNF-p、IL-6及IL-10的关系[J].中国中医急症,2006,15(5):502-3.
    [61]李南夷.慢性心衰患者血浆心钠素、环核苷酸水平与虚实证候关系的探讨[J].中国中医药科技,2004,11(4):196
    [62]刘敬标,王伟,张星平.慢性心力衰竭患者常见中医证型与心脏指数及左室质量指数的关系[J].中华中医药杂志,2011,26(2):406-8.
    [63]郑琼莉,祝炜,刘缨,等.心力衰竭患者中医证型与血尿酸水平及心力衰竭分期的相关性研究[J].中西医结合心脑血管病杂志,2011,9(1):3-5.
    [64]贾美君,蒋梅先.中医药治疗心力衰竭疗效评定方法及其评估标准客观化的思考[J].上海中医药杂志,2006,40(3):47-9.
    [65]董波,王东海.对充血性心力衰竭中医病名、辨证分型及评估指标规范化的研究[J].实用中医内科杂志,2007,21(6):22-3.
    [67]何怀阳,司贤臣,曾建斌,等.固本救心方提高心衰患者生活质量的随机对照研究[J].时珍国医国药,2009,20(12):3007-9.
    [66]刘建平.中医药研究随机对照试验质量的现状及对策[J].中国中西医结合杂志,2003,23(1):62-3.
    [67]刘英圣,修明文,付金香,等.参松养心胶囊对慢性心力衰竭患者再住院率的影响[J].中国误诊学杂志,2011,11(22):5330-31.
    [69]谢培怡,李晓玲,许琳,等.益气活血利水法对心力衰竭患者脑钠肽及超敏C—反应蛋白的影响[J].中国中西医结合急救杂志,2011,18(5):280-3.
    [70]王振涛,王硕仁,赵明镜,等.心梗后左心衰大鼠心气虚症动物模型的研究[J].中国中医基础医学杂志,2002,8(4):68-70.
    [71]曹雪滨,李培建,黄河玲,等.兔气虚血瘀型心力衰竭模型的建立[J].实验动物科学与管理,1999,16(3):10-3.
    [72]张艳,方素清,姜凯,等.慢性心衰气虚血瘀症大鼠模型的研究初探[J].中国中医药信息杂志,2006,13(8):14-5.
    [73]徐俊波,吴时达,王静,等.温阳健心灵对心肾阳虚型心衰大鼠影响的实验研究[J].中医药学刊,2003,21(9):1419-20.
    [74]冼绍祥,欧明.肾阳虚型心力衰竭病症结合动物模型的建立和评价[J].辽宁中医药大学学报,2007,9(1):9-10.
    [75]宋欣伟,常中飞,荣仔萍,等.清营汤对热盛阴虚症心力衰竭大鼠心肌微结构心肌细胞因子影响的实验研究[J].中华中医药学刊,2007,25(9):1838-41.
    [76]龙新生,熊曼琪,朱章志,等.充血性心力衰竭少阴病阳虚水停症动物模型的建立[J].中医杂志,1998,39(3):177-9.
    [77]王硕仁,赵明镜,王振涛,等.建立心肌梗死心气虚血瘀证和心阳虚血瘀证病证动物模型的研究[J].中国中西医结合杂志,2008,28(3):245-7.
    [78]王硕仁,王振涛,李敏,等.建立心梗心衰大鼠心气虚、心阳虚病证模型及其对中医证的再认识[A].第六次全国中西医结合心血管病学术会议论文编,2002,209-16.
    [79]刘育英,陈涛,张继红,等.芪苈山萸心衰方对充血性心力衰竭大鼠左心室重构影响的实验研究[J].湖北中医学院学报,2010,12(3):7-9.
    [80]张振鹏,毛静远,王恒和,等.参麦注射液对心衰犬血浆心钠素动态影响的实验研究[J].中国实验方剂学杂志,2009,15(8):61-3.
    [81]马金,张艳.益气活血复方对慢性心衰大鼠心肌重构影响的实验研究[J].时珍国医国药,2011,22(6):1361-62.
    [82]赵智明,郭寒,赵凌杰,等.淫羊藿总黄酮对异丙基肾上腺素诱导心力衰竭大鼠心肌细胞凋亡的影响[J].中国中医药科技,2011,18(1):31-3.
    [83]杨爽,杨凯,陆莹,等.川芎嗪对血管紧张素Ⅱ诱导心肌细胞肥大的影响[J].中国动脉硬化杂志,2010,18(5):355-7.
    [84]郭自强,王硕仁,朱陵群,等.益气活血中药对血管紧张素Ⅱ致培养乳鼠心脏间质成纤维细胞增殖的影响[J].中西医结合心脑血管病杂志,2005,3(7):605-7.
    [85]王建刚,江凤林,冯俊,等.丹参酮ⅡA对血管紧张素Ⅱ诱导的心肌细胞肥大与凋亡干预的研究[J].中国现代医学杂志,2007,17(18):2202-04.
    [1]Braunwald E,Bristow MR. Congestive heart failure:fifty years of progress[J].Circulation, 2000,102(20 Suppl 4):Ⅳ14-23.
    [2]中华医学会心血管病分会,中华心血管病杂志编辑委员会.慢性收缩性心力衰竭治疗建议[J].中华心血管病杂志,2002,30(1):7-23.
    [3]Hugel S, Horn M, Remkes H, et al. Preservation of cardiac function and energy reserve by the angiotensin-converting enzyme inhibitor quinapril during post myocardial infarction remodeling in the rat[J]. J Cardiovasc Magn Reson,2001,3(3):215-25.
    [4]Fortuno MA, Ravassa S, Fortuno A, et al. Cardiomyocyte apoptotic cell death in arterial hypertension:mechanisms and potential management [J]. Hypertension,2001,38(6):1406-12.
    [5]Hein S, Arnon E, Kostin S,et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart:structural deterioration and compensatory mechanisms [J].Circulation,2003,107(7):984-91.
    [6]孙锴,王克强,葛均波,等.线粒体是防治心力衰竭的重要靶点[J].中华心血管病杂志,2008,36(9):854-59.
    [7]王显,朱明军,孙建芝,等.“心衰康”对电镜下CHF模型心肌线粒体的影响[J].上海中医药大学学报,2000,14(1):33-5.
    [8]王涛,余志斌,谢满江,等.新生大鼠心肌细胞培养技巧[J].第四军医大学学报,2003,24(2):2.
    [9]孙银平,张大伟,王省.川芎嗪对血管紧张素Ⅱ诱导新生大鼠心肌细胞血小板源生长因子-p受体与细胞外信号调节激酶表达的影响[J].实用儿科临床杂志,2008,23(13):1000-01.
    [10]熊娟,潘勇军,郭桂香,等.川芎嗪对肥大心肌细胞中钙调神经磷酸酶信号转导通路的干预作用[J].医药导报,2009,28(10):1265-68.
    [11]郭自强,王硕仁,朱陵群,等.丹参素和川芎嗪对血管紧张素Ⅱ诱导乳鼠心肌细胞凋亡的影响[J].中西医结合心脑血管病杂志,2006,4(6):494-5.
    [12]裘月,杜冠华,张均田.单胺氧化酶及与疾病的关系[J].中国药学杂志,1994,29(10):596-9.
    [13]Di Lisa F, Kaludercic N, Carpi A, et al. Mitochondrial pathways for ROS formation and myocardial injury:the relevance of p66Shc and monoamine oxidase[J]. Basic Res Cardiol, 2009,104(2):131-9.
    [14]Kaludercic N, Carpi A, Menabo R, et al. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury[J]. Biochim Biophys Acta,2011, 1813(7):1323-32.
    [15]江海洪,谢燕,刘倩予.细胞色素C氧化酶的分子生物学研究进展[J].国外医学:生理、病理科学与临床分册,2001,21(1):20-2.
    [16]安冉,董强.凋亡过程中线粒体膜透化的常用检测方法[J/CD].中华脑血管杂志:电子版,2009,3(1):33-7.
    [17]Marhur A, Hong Y, Kemp BK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes[J]. Cardiovasc Res,
    2000.46(1):126-38.
    [18]沈方,沈倩,夏强,等.细胞凋亡与线粒体通透性转变孔的研究进展[J].浙江大学学报(医学版),2005,34(2):191-196.
    [19]Shabalina IG, Kramarova TV, Nedergaard J, et al. Carboxyatraetyloside effects on brown fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively[J]. Bioeem J,2006,399(3):405-14.
    [20]Wahher T, Tschope C, Sterner-Kock A, et al. Accelerated mitochondrial adenosine diphoshate/adenosine triphosphate tansport improves hypertension-induced heart disease[J]. Cireulation,2007,115(3):333-44.
    [1]Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure[J]. Circul-tion,2007,116(4):434-48.
    [2]Van Bilsen M, Smeets PJ, Gilde AJ, et al. Metabolic remodeling of the failing heart:the cardiac burn out syndrome[J]. Cardiovasc Res,2004,61(2):218-26.
    [3]戴闺柱.心力衰竭诊断与治疗研究进展[J].中华心血管病杂志,2003,31(9):641-5.
    [4]殷仁富,陈金明.心脏能量学:代谢与治疗[M].上海:第二军医大学出版社,2002:5-24,79-82,151-181,261-291.
    [5]Maslov MY, Chacko VP, Stuber M, et al. Altered high-energy phosphate metaboism predicts contractile dysfunction and subsequent ventricular remodeling in pressure overload hypertrophy mice[J]. Am J Physiol Heart Circ Physiol,2007,292(1):H387-91.
    [6]Hu Q, Wang X, Lee J, et al. Profound bioenergetic abnormalities in periinfarct myocardial regions[J]. Am J Physiol Heart Circ Physiol,2006,291(2):H648-57.
    [7]宋熔,祝善俊.心肌代谢重构的研究进展[J].中华高血压杂志,2008,16(3):202-5.
    [8]张玲,潘杰.高效液相色谱法测定小鼠心肌组织中ATP、ADP、AMP的含量[J].中国医院药学杂志,2008,28(21):1888-90.
    [9]杨娟,黄敬群,曹雪滨,等.高效液相色谱法测定慢性压力负荷性心衰大鼠心肌组织中腺苷酸的含量[J].中国医院药学杂志,2009,29(1):11-4.
    [10]苏敬泽,林谦,农一兵.黄芪组分对乳鼠肥大心肌细胞ATP含量的影响[J].中国中医基础医学杂志,2011,17(5):500-2.
    [11]张燕婉,龙村,史世勇.反相离子对高效液相色谱法测定心肌组织中的三磷酸腺苷[J].色谱,2000,18(4):322-4.
    [12]吴珏珩,汤丽芬,谭炳炎,等.用反相高效液相色谱法测定小鼠心肌、骨骼肌中ATP、ADP和AMP的含量[J].分析测试学报,1999,18(4):55-7.
    [13]张燕婉,龙村.高效液相色谱法测定肺组织中三磷酸腺苷含量[J].心肺血管病杂志,2004,23(2):112-3
    [14]邹玲莉,李秋莎,韩国柱,等.离子对反相高效液相色谱法同时测定大鼠血浆和红细胞中外源性磷酸肌酸及其代谢产物和相关三磷酸腺苷[J].分析化学,2011,39(1):45-50.
    [15]孙爱民,王恩任,毛伯镰,等.同时检测脑积水脑组织中多种高能磷酸化合物的反相高效液相色谱法的建立[J].四川大学学报(医学版),2004,35(1):113-6.
    [16]胡元会,吴华芹,马铁民,等.心复康口服液对心梗后心衰大鼠心肌三磷酸腺苷含量的影响[J].时珍国医药,2009,20(5):1029-30.
    [17]高娜,杨勇,王世军,等.HPLC测定附子对大鼠肝组织中腺苷酸含量及能荷的影响[J].中国实验方剂学杂志,2010,16(15):172-5.
    [18]M Brenner F, De Lorenzo, and BN Ames. Energy charge and protein synthesis[J]. J-Biol-Chem,1970,245(2):450-2.
    [19]Atkinson DE. The energy charge of the adenylate pool as a regulatory paramete interact-tion with feedback modifiers[J]. Biochemistry,1968,7(11):4030-34.
    [1]Berenji K, Draznerm H, Rothermelb A, et al. Does load-induced ventricular hypertrophy progress to systolic heart failure? [J]. Am J Physiol Heart Circ Physiol,2005,289(1):H8-16.
    [2]姜志胜.心肌肥大过程中的信号转导[J].中国动脉硬化杂志,2005,13(2):125-8.
    [3]吴扬,谈世进,潘敬运.血管紧张素Ⅱ诱导心肌肥厚的作用及其机理探讨[J].南通医学 院学报,1996,16(4):468-1.
    [4]Dahlof B. Left ventricular hypertrophy and angiotensin Ⅱ antagonists[J]. AJH,2001,14(2): 172-82.
    [5]Willenheimer R. Left ventrivular remodelling and dysfunction[J]. Can the process be pre-vented?[J]. Int J Cardiol,2000,72(2),143-50.
    [6]李甜甜,王东明.血管紧张素Ⅱ致心肌细胞肥大作用研究进展[J].汕头大学医学院学报,2011,24(3):185-7.
    [7]郭自强,王硕仁,朱陵群等.益气活血中药对血管紧张素Ⅱ致培养乳鼠心肌细胞肥大的影响[J].中西医结合心脑血管病杂志,2004,2(9):525-9.
    [8]洪缨,许少珍,曾德源,等.黄芪注射液对慢性心衰大鼠心肌肥厚的抑制作用[J].中成药,2002,24(7):525-9.
    [9]郑世营,李虹,张晓膺.参附注射液对心力衰竭老年兔心肌细胞凋亡影响的研究[J].实用老年医学,2006,20(6):373-9.
    [10]孙银平,张大伟,王省.川芎嗪对血管紧张素Ⅱ诱导新生大鼠心肌细胞血小板源生长因子-p受体与细胞外信号调节激酶表达的影响[J].实用儿科临床杂志,2008,23(13):1000-01.
    [11]苏敬泽,林谦,农一兵.黄芪组分配伍对血管紧张素Ⅱ致肥大心肌细胞模型线粒体活力的影响[J].北京中医,2007,26(11):742-4.
    [12]程冕,张存泰,宋玉娥,等.缬沙坦对血管紧张素Ⅱ诱导的肥大心肌细胞胞内钙的影响[J].临床心血管病杂志,2008,24(9):695-7.
    [13]罗明凤,张三印,黄秀深,等.参附注射液和生脉注射液对心肌细胞Ca2+-ATP酶影响的对比研究[J].天津中医药,2008,25(6):487-9.
    [14]Molkentin JD.Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs[J]. Cardiovasc Res,2004,63(3):467-75.
    [15]Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy[J]. Biochem Biophy Res Commun,2004,322(4):1178-91.
    [16]田首元,叶铁虎,邹亮,等.丙泊酚对Ca2+诱导大鼠离体心肌线粒体损伤的影响[J].临床麻醉学杂志,,2009,25(4):323-5.
    [17]Petrosillo G, Ruggiero FM, Pistolese M, et al. Ca2+-induced reactive oxygen species pro-duction promotes cytochrome c release from rat liver mitochondria via mitochondrial permea-bility transition(MPT)-dependent and MPT-independent mechanisms:role of cardiolipin[J]. J BiolChem,2004,279(51):53103-108.
    [18]Tsujimoto I, Hikoso S, Yamaguchi O, et al. The Antioxidant edaravone attenuates press-ure overload induced left ventricular hypertrophy [J]. Hypertension,2005,45(5):921-6.
    [19]Nakagami H, Takemoto M, Liao JK. NADPH oxidase derived superoxide anion mediates angiotensin Ⅱ-induced cardiac hypertrophy[J]. J Mol Cell Cardiol,2003,35(7):851-9.
    [20]赵耐久,张玉东.血管紧张素Ⅱ受体拮抗剂与心力衰竭患者心室重塑的研究进展[J].中华现代临床医学杂志,2005,3(11):1041-42.
    [21]韩玲,陈可冀.黄茂对心血管系统作用的实验药理学研究进展[J].中国中西医结合杂志,2000,20(3):234-7.
    [22]郑敏,杨宏杰,张丹,等.黄芪提取液清除自由基的实验研究[J].山东中医志,2004,23(12):743-5.
    [23]徐家云,刘章锁,马沙,等.AngⅡ对腹膜间皮细胞ROS和NADPH氧化酶亚基p47phox表达的影响及黄芪的干预作用[J].西安交通大学学报(医学版),2010,31(6):685-9.
    [24]姜宏,施广飞,朱珠.川芎嗪对心血管作用研究进展[J].中国临床药理学与治疗学,2007,12(5):484-7.
    [25]郭自强,王硕仁,朱陵群,等.活血药对血管紧张素Ⅱ致心肌肥大细胞内钙浓度变化的影响[J].环球中医药,2009,2(2):99-101.
    [26]葛永彬,毛静远,李彬.参附注射液治疗心力衰竭研究概况[J].中国中医急症,2007,16(3):337-8.
    [27]胡昌盛,季乃军,李付远,等.参附注射液对老年慢性充血性心力衰竭患者血清BNP、ATⅡ和ET—1水平的影响[J].浙江中医杂志,2009,44(7):512-3.
    [1]宋熔,祝善俊.心肌代谢重构的研究进展[J].中华高血压杂志,2008,16(3):202-4.
    [2]Abozguia K, Clarke K, Lee L, et al. Modification of myocardial substrate use as a therapy for heart failure[J]. Nat Clin Pract Cardiovasc Med,2006,3(9):490-8.
    [3]中华医学会心血管分会.慢性收缩性心力衰竭治疗建议[J].中华心血管病杂志,2007,35(12):1076-95
    [4]黄峻.遵循新指南以规范慢性心力衰竭的诊治[J].中华心血管病杂志.2007,35(12):1073-75.
    [5]谭淑杰.心力衰竭时心肌能量代谢支持治疗[J].中外医疗,2009,11:183.
    [6]康美尼.曲美他嗪对慢性心力衰竭病人心功能干预的配对交叉研究[J].当代医学,2008,14(23):6-7.
    [7]朱光旭,谢燕,王小华.L-carnitine对缺氧-复氧新生大鼠心肌细胞能量生成及CPT-ⅡmRNA表达的影响[J].第三军医大学学报,2004,26(3):201-4.
    [8]叶平.过氧化体增殖物激活型受体对心肌能量代谢调控的病理生理机制[J].中国动脉硬化杂志,2003,11(1):81-3.
    [11]Arany Z, Novikov M, Chin S, et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1 alpha [J]. Proc Natl Acad Sci USA, 2006,103(26):10086-91
    [12]Hugel S, Horn M, de Groot M, et al. Effects of ACE inhibition and beta-receptor blockade on energy metabolism in rats postmyocardial infarction[J]. Am J Physiol,1999, 277(6Pt2):H2167-75.
    [9]Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics [J]. Circ Res,2004, 95(6):568-78.
    [10]Finck BN, Kelly DP. PGC-1 coactivators:inducible regulators of energy metabolism in healt h and disease [J]. J Clin Invest,2006,116(3):615-22.
    [13]邹云增,李磊.血管紧张素Ⅱ受体活性化机制及其阻断剂作用的新认识[J].中国医学前沿杂志(电子版),2011,3(5):29-31.
    [14]Cohn JN.Improving outcomes in congestive heart failure:Val-HeFT[J]. valsartan in Heart Failure Trial. Cardiology,1999,91(Suppl 1):19-22.
    [15]苏敬泽,林谦,农一兵.黄芪组分对乳鼠肥大心肌细胞ATP含量的影响[J].中国中医基础医学杂志,2011,17(5):500-2.
    [16]苏敬泽,农一兵,温志浩,等.黄芪组分配伍对乳鼠肥大心肌细胞肌酸激酶同功酶活性的影响[J].中国中医基础医学杂志,2008,14(3):196-7.
    [17]苏敬泽,林谦,农一兵.黄芪组分配伍对血管紧张素Ⅱ致肥大心肌细胞模型线粒体活力的影响[J].北京中医,2007,26(11):742-4.
    [18]郭书文,王国华,秦腊梅,等.益气活血药对血管紧张素Ⅱ诱导的心肌细胞能量与脂质过氧化反应变化的影响[J].北京中医药大学学报,2005,28(6):32-5.
    [19]王万铁,许涛,徐正祄,等.川芎嗪对缺血/灌注损伤兔心肌线粒体结构及功能的影响[J].基础医学与临床,2004,24(3):295-8.
    [20]郑世营,张晓膺,王志刚,等.参附注射液对离体大鼠缺氧/复氧心肌的保护作用[J].中国急救医学,2004,24(6):425-7.
    [1]Stanley WC, Lopaschuk GD, Hall JL.et al. Regulation of myocardial carbohydrate metabo-lism under normal and ischaemic conditions. Potential for pharmacological interventions [J]. Cardiovasc Res,1997,33(2):243-57.
    [2]Mody FV, Singh BN,Mohiuddin IH, et al. Trimetazidine-induced enhancement of myocar-dial glucose utilization in normal and ischemic myocardial tissue:an evaluation by positron emission to mography[J]. Am J Cardiol,1998,82(5A):42-9.
    [3]Koves TR,Ussher JR,Noland RC,et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to sketetal muscle insulin resistance[J]. Cell Metab,2008,79(1):45-56.
    [4]Witteles RM,Fovler MB. Iinsulin-resistance cardiomyopathy clinical evidence mechanism and treatment options[J]. J Am Coll Cardiol,2008,51(2):93-102.
    [5]Schonfeld P,Wojtczak L.Fatty acids as modulators of the cellular production of reavtive oxygen species [J]. Free Radic Biol Med,2008,45(3):231-241.
    [6]宋书田,安淑芬,周岊梧,等.曲美他嗪的心肌保护机制及其在心血管疾病中的应用进展[J].中国心血管杂志,2008,13(6):463-465.
    [7]Kantor PF,Lucien A,Koza KR, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid to glucose by inhibiting mitochondrial long-chain 3 ketoa-cyl conzyme A thiolase[J]. Circ Res,2000,86(5):580-6.
    [8]冯兵,徐静,刘伟,等.肥大心肌细胞能量代谢途径变化及药物干预效应研究[J].重庆医学,2006,35(8):699-702.
    [9]冯兵,周小波,杨旭,等.干预代谢途径抑制缺氧/复氧诱导肥大心肌细胞凋亡—依赖及非依赖性Caspase的作用[J].中国药理学通报,2008,24(6):748-52.
    [10]Tuunanen H, Ukkonen H, Knuuti J. Myocardial fatty acid metabolism and cardiac performance in heart failure[J]. Curr Cardiol Rep,2008,10(2):142-8.
    [11]Recchia FA, McConnell PI, Bernstein RD, et al. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog[J]. Circ Res,1998,83(10):969-79.
    [12]Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated eardiomyopathy[J]. J Am Coil Cardiol,2002,40(2):271-7.
    [13]Taylor M, Wallhaus TR, DeGrado TR, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F] fluoro-6-thia-heptadecanoic acid [F] FDG in pateints with congestive heart failure[J]. J Nucl Med.2001,42(1):55-62.
    [14]Paolisso G, Gambardella A, Galzerano D, et al. Total-body and myocardial substrat oxid-etion in congestive heart failure[J]. Metabolism,1994,43(2):174-9.
    [15]祝善俊,王江.能量代谢疗法能否作为治疗心力衰竭的新靶点?[J].岭南心血管病杂志,2010,16(2):97-98.