磁性功能材料的制备及其在复杂样品预处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在对磁性功能材料作为新型的固相萃取剂在样品分离中的应用进行研究和探索,我们将磁性分离技术与传统的固相萃取技术结合,制备出多种功能性的磁性固相吸附材料,并将它们应用于复杂样品的预处理过程。主要研究内容如下:
     一、以Fe3O4为磁核,制备出核-壳结构的磁性强酸型阳离子交换树脂,将其应用于吸附鸡蛋中的三聚氰胺,随后用液相色谱串联质谱进行测定。先后对合成条件和树脂用量、萃取时间及淋洗、洗脱条件等影响萃取效率的参数进行了优化,并成功地将该方法应用到实际鸡蛋样品的测定。
     二、通过加入表面活性剂和采用双功能单体改进合成方法,制备得到形貌更佳、粒径分布更均匀、磁性更好的磁性强酸型阳离子交换树脂,用于对人体血浆中的尼古丁进行萃取和富集。考察了树脂的吸附容量和再生性能,检验了方法的稳定性,最后成功地将该方法应用到对随机抽取的人体血样中尼古丁的测定。
     三、制备了磁性多壁碳纳米管,用于吸附鸡蛋中的七种磺胺类抗生素。对磁性纳米管的合成条件和会影响磺胺回收率的萃取条件进行了优化,对产物的形貌、所含官能团和磁学性质等进行了表征,并考察了磁性碳纳米管的再生性能。同国家标准方法进行比对后证实,本方法具备更低基质效应和更高的灵敏度。
     四、采用悬浮聚合法,以Fe3O4为磁核,扑草净为模板分子制备了核-壳结构的磁性分子印迹聚合物。对磁性分子印迹聚合物形貌和磁性进行了表征;绘制了磁性分子印迹聚合物和磁性非分子印迹聚合物的吸附等温线并进行了Scatchard分析;完成了对方法选择性的评价。最后将方法应用于对多种蔬菜样品中三嗪类除草剂的检测。
     五、利用表面聚合原理,以Fe3O4为磁核,以磺胺对甲氧嘧啶和环丙沙星两种化合物为组合模板,制备了磁性组合模板表面分子印迹聚合物。对多项合成条件进行了考察和优化。对聚合物的形貌和磁性进行了表征,考察了方法的选择性,测试了相关的热力学数据,优化了各项萃取条件。最后,我们将该方法应用于环境水样中磺胺类和氟喹诺酮类的同时检测。
Magnetic functional materials are those materials consisted of magnetic componentand non-magnetic functional component. On one hand, they have the same physicaland chemical properties as regular functional materials; on the other hand, they couldbe separated from the sample matrix easily due to their high magnetic responseperformance. In recent years, studies based on magnetic functional materials havebeen developed very fast in various scientific fields including materials, physics,chemistry and bioscience because of the many advantages they own. And thesematerials have already played important roles in areas such as catalyzing, materialscience, cellular segregation, drug delivery, enzyme immobilization andenvironmental conservation.
     Due to the super magnetic property of the magnetic functional materials, theycould have even better prospects in separation science. The main purpose of thisthesis is to develop new sample pretreatment methods and techniques that make useof the magnetic functional materials as adsorbents. Different types of these materialswere prepared in this study using hydrophobic Fe3O4magnetite as magneticallysusceptible component, and have been successfully applied to the pretreatmentprocedures of complex sample, followed by LC-MS/MS analysis. The main contentsand results of this thesis are as followed:
     1. Magnetic strong cation exchange (MSCX) resins with core-shell structure wereprepared using hydrophobic Fe3O4magnetite as magnetically susceptible component,styrene and divinylbenzene as polymeric matrix components, acetyl sulfonate as thesulphonation agent. The resins were successfully applied to the extraction ofmelamine (MEL) from egg samples. The extraction and enrichment procedures were fulfilled simultaneously by simply blending and stirring the sample, extraction solventand the MSCX resins. The MEL was extracted from the sample matrix, and thenadsorbed onto the resins directly through ion-exchange interaction. When theextraction was completed, the resins with adsorbed analyte were easily separated fromthe sample matrix by external magnetic field. The analyte eluted from the resins wasdetermined by LC-MS/MS. Parameters such as synthesis and extraction conditionsincluding Amount of MSCX resins, extraction time, washing and eluting conditionswere optimized. The proposed method was successfully applied to determine MEL ineggs obtained from different local markets. The limit of detection is2.6ng g-1, and therecoveries of MEL are in the range of77%–99%.
     2. The preparation method of the MSCX resins was modified by the addition ofsodium dodecyl sulfate into the reaction system as surface-active agent, also acrylicacid was chosen as co-monomers together with styrene. Therefore, the polymerizationtime was effectively shortened, the polymerization procedure was simplified as well.The MSCX resins obtained by the modified method not only had better configurationand particle size distribution, also could maintain high magnetic response though longtime sulfonation. They were applied as adsorbents for the extraction and enrichmentof trace amounts of nicotine from plasma samples followed by LC-MS/MSdetermination. The cation exchange capacity and regeneration property of the resinswere investigated, the stability test of the method was also carried out. Finally theproposed method was successfully applied to determine nicotine in human plasmaphlebotomized from ten male smokers.
     3. A simple and effective method based on magnetic separation has been developedfor the extraction of sulfonamides (SAs) from egg samples using magneticmultiwalled carbon nanotubes (MMWCNTs) as adsorbents. The MMWCNTs weresimply prepared by mixing FeCl3·6H2O with MWCNTs that had been previouslyoxidized. A variety of synthesis and extraction conditions, which could affect therecoveries of the SAs, were optimized. The configuration,functional groups andmagnetic property of the MMWCNTs were characterized by scanning electronmicroscopy, Fourier-transform infrared spectrometry and vibrating samplemagnetometer, respectively. Comparing with the China National Standard methodpublished in2007, the proposed method can provide lower matrix effect and higher sensitivity, the limit of detection of all seven SAs are below3.0ng g1. The testingresult obtained by the proposed method are very accurate dependable.
     4. Magnetic separation and molecularly imprinted technique were successfullycombined in this work. Magnetic molecularly imprinted polymers (MMIPs) withcore-shell structure were synthesized using Fe3O4magnetite as magneticallysusceptible component, prometryn as template molecule, methacrylic acid asfunctional monomer, ethylene glycol dimethacrylate as crosslinking agent andazodiisobutyronitrile as initiator. The produced MMIPs had both high selectivitytowards the target analytes and high magnetic response while applying magnetic field.They were then applied for the extraction of six triazine herbicides from vegetablesamples. The MMIPs were characterized by scanning electron microscopy andvibrating sample magnetometer. The adsorption isotherms of MMIPs and MNIPswere plotted according to the results obtained by static equilibrium adsorptionexperiment, and the corresponding Scatchard analysis was also performed. Theselectivity experiment was then carried out by comparing the difference between theMMIPs and MNIPs on the adsorption capacity of template molecule, structuralanalogues and reference compounds. Finally the method was applied to determinetriazine herbicides in various practical vegetable samples and the results werecompared with those obtained by the China National Standard method.
     5. Magnetic mixed-templates molecularly imprinted polymers(Fe3O4@SiO2@MIPs) were prepared using surface polymerization method. TheFe3O4@SiO2@MIPs were synthesized using Fe3O4magnetite as magneticallysusceptible component, both sulfametoxydiazine and ciprofloxacin as templatemolecules, methacrylic acid as functional monomer, ethylene glycol dimethacrylate ascrosslinking agent. Compered with the regular MMIPs, MMIPs prepared usingsurface polymerization have bigger specific surface area, and almost all the bindingsites are distributed on the surface of the polymers so that the template could beremoved more easily. Moreover, the efficiency of the adsorption and desorption oftarget analytes are significantly enhanced. In the discussion section, synthesisconditions such as amount of the Fe3O4magnetite, types and ratio of the two templatemolecules, type of functional monomer, also the ratio of templates, monomer andcross-linking agent, have been optimized. The Fe3O4@SiO2@MIPs were characterized,the selectivity experiment was completed, thermodynamic data was collected, and theextraction conditions were optimized. Finally, the method is applied to the simultaneous extraction of sulfonamides and fluoroquinolones from environmentalwater, limit of detection of the two species are3.0-4.7ng L1and4.1-6.1ng L1,respectively.
引文
[1] Robinson P J, Dunnill P, Lilly M D. The properties of magnetic supports inrelation to immobilized enzyme reactors [J]. Biotechnology and Bioengineering,1973,15(3):603-606.
    [2]张冠东,官月平,单国彬,等.纳米Fe3O4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用[J].过程工程学报,2002,2(4):319-324.
    [3]蔡梦军,朱以华,杨晓玲.磁性Fe3O4明胶复合纳米粒子的制备与表征[J].华东理工大学学报:自然科学版,2006,32(3):290-295.
    [4]邵丹丹.磁性二氧化硅复合微球的制备及其在DNA和蛋白质分离中的应用[D].复旦大学硕士论文,2008.
    [5]杜雪岩,陈尹泽,马应霞,等.磁性聚苯乙烯微球的合成与表征[J].兰州理工大学学报,2009,35(3):25-28.
    [6]周利民,刘峙嵘,黄群武. Fe3O4/丙烯酸系磁性微球的制备及对Hg2+、Cu2+、Ni2+的吸附[J].精细化工,2007,24(2):113-116.
    [7]滕新荣,王小明.超声化学法制备磁性蛋白质微胶囊[J].2009年全国高分子学术论文报告会论文摘要集(上册),2009.
    [8]杨小玲,姜玉凤,张引莉.磁性淀粉微球药物载体的合成及表征[J].应用化工,2008,37(1):45-46.
    [9]韩德艳,谢长生.铁琼脂糖磁性微球的制备和表征[J].化学与生物工程,2006,23(6):19-21.
    [10]方华,周小荣,李永明.磁性壳聚糖微球的制备及其对2,4-二氯苯酚的吸附[J].化工时刊,2008,22(7):19-26.
    [11] panová A, Horák D, Soudková E, et al. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactionsapplications [J]. Journal of Chromatography B,2004,800(1):27-32.
    [12]任广智,李振华.磁性壳聚糖微球用于酶的固定化研究Ⅱ磁性壳聚糖微球对脲酶的吸附及其酶学性质的研究[J].离子交换与吸附,2001,17(2):152-158.
    [13] Kobayashi H, Matsunaga T. Amino-silane modified superparamagneticparticles with surface-immobilized enzyme [J]. Journal of colloid and interfacescience,1991,141(2):505-511.
    [14] Poynton C H, Christopher L. Biological magnetic colloids, USP4920061.1990-04-24.
    [15] Ghazarossian V E, Kurn N, Ullman E F. EP02307681.
    [16] Gupta P K, Cheung-Tak H. Albumin microspheres. V. Evaluation of parameterscontrolling the efficacy of magnetic microspheres in the targeted delivery ofadriamycin in rats [J]. International journal of pharmaceutics,1990,59(1):57-67.
    [17] Cornell R M, Schwertmann U. The iron oxides: structure, properties, reactions,occurrences and uses [M]. John Wiley&Sons,2003.
    [18]吴科盛,许恒毅,郭亮,等.磁性固相萃取在检测分析中的应用研究进展[J].食品科学,2011,32(23):317-320.
    [19] Kim D K, Mikhaylova M, Zhang Y, et al. Protective coating ofsuperparamagnetic iron oxide nanoparticles [J]. Chemistry of Materials,2003,15(8):1617-1627.
    [20] Kim D K, Mikhaylova M, Wang F H, et al. Starch-coated superparamagneticnanoparticles as MR contrast agents [J]. Chemistry of Materials,2003,15(23):4343-4351.
    [21] Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization ofnanometer-size Fe3O4and γ-Fe2O3particles [J]. Chemistry of Materials,1996,8(9):2209-2211.
    [22] Qiu X P. Synthesis and characterization of magnetic nanoparticles [J]. ChineseJournal of Chemistry,2000,18(6):834-837.
    [23] Boutonnet M, Kizling J, Stenius P, et al. The preparation of monodispersecolloidal metal particles from microemulsions [J]. Colloids and surfaces,1982,5(3):209-225.
    [24] López-Quintela M A, Rivas J. Chemical reactions in microemulsions: apowerful method to obtain ultrafine particles [J]. Journal of colloid and interfacescience,1993,158(2):446-451.
    [25] Fan R, Chen X H, Gui Z, et al. A new simple hydrothermal preparation ofnanocrystalline magnetite Fe3O4[J]. Materials research bulletin,2001,36(3):497-502.
    [26] Wan J, Yao Y, Tang G. Controlled-synthesis, characterization, and magneticproperties of Fe3O4nanostructures [J]. Applied Physics A,2007,89(2):529-532.
    [27] Sun L, Sun X, Du X, et al. Determination of sulfonamides in soil samples basedon alumina-coated magnetite nanoparticles as adsorbents [J]. Analytica chimicaacta,2010,665(2):185-192.
    [28] Lin H Y, Chen W Y, Chen Y C. Iron oxide/tantalum oxide core–shell magneticnanoparticle-based microwave-assisted extraction for phosphopeptideenrichment from complex samples for MALDI MS analysis [J]. Analytical andbioanalytical chemistry,2009,394(8):2129-2136.
    [29] Chen W Y, Chen Y C. Functional Fe3O4@ZnO magnetic nanoparticle-assistedenrichment and enzymatic digestion of phosphoproteins from saliva [J].Analytical and bioanalytical chemistry,2010,398(5):2049-2057.
    [30]赵丽,余家国,赵修建,等.介孔纳米结构材料的研究与发展[J].稀有金属材料与工程,2004,33(1):5-10.
    [31] de Geus H J, de Boer J, Brinkman U A T. Development of a thermal desorptionmodulator for gas chromatography [J]. Journal of Chromatography A,1997,767(1):137-151.
    [32]许国旺.现代实用色谱分析法[J].2004.
    [33]刘文民,徐媛,赵景红,等.固相微萃取新技术在水分析中的应用[J].生命科学仪器,2005,2(5):12-16.
    [34]陶恭益.高效液相色谱仪的现状与进展[J].分析测试仪器通讯,1995,1:000.
    [35]张慧.中药现代分离分析技术的应用研究[J].中国初级卫生保健,2006,20(6):64-64.
    [36] Li J, Wei Y, Deng Y, et al. An unusual example of morphology controlledperiodic mesoporous organosilica single crystals [J]. Journal of MaterialsChemistry,2010,20(31):6460-6463.
    [37] Park S S, Shin J H, Zhao D, et al. Free-standing and bridged amine-functionalized periodic mesoporous organosilica films [J]. Journal of MaterialsChemistry,2010,20(36):7854-7858.
    [38] Shi Y, Wan Y, Zhao D. Ordered mesoporous non-oxide materials [J]. ChemicalSociety Reviews,2011,40(7):3854-3878.
    [39] Kim M S, Fang B, Kim J H, et al. Ultra-high Li storage capacity achieved byhollow carbon capsules with hierarchical nanoarchitecture [J]. Journal ofMaterials Chemistry,2011,21(48):19362-19367.
    [40] Shephard D S, Zhou W, Maschmeyer T, et al. Site-Directed SurfaceDerivatization of MCM-41: Use of High-Resolution Transmission ElectronMicroscopy and Molecular Recognition for Determining the Position ofFunctionality within Mesoporous Materials [J]. Angewandte ChemieInternational Edition,1998,37(19):2719-2723.
    [41] Xie Y, Quinlivan S, Asefa T. Tuning metal nanostructures in mesoporous silicaby a simple change of metal complexes and by reduction with grafted iminesand hemiaminals [J]. The Journal of Physical Chemistry C,2008,112(27):9996-10003.
    [42] Sun J, Ma D, Zhang H, et al. Toward monodispersed silver nanoparticles withunusual thermal stability [J]. Journal of the American Chemical Society,2006,128(49):15756-15764.
    [43] Asefa T, Lennox R B. Synthesis of gold nanoparticles via electroless depositionin SBA-15[J]. Chemistry of materials,2005,17(10):2481-2483.
    [44] Gartmann N, Brühwiler D. Controlling and Imaging the Functional-GroupDistribution on Mesoporous Silica [J]. Angewandte Chemie InternationalEdition,2009,48(34):6354-6356.
    [45] Tian H, Li J, Shen Q, et al. Using shell-tunable mesoporous Fe3O4@HMS andmagnetic separation to remove DDT from aqueous media [J]. Journal ofhazardous materials,2009,171(1):459-464.
    [46] Li Z, Huang D, Fu C, et al. Preparation of magnetic core mesoporous shellmicrospheres with C18-modified interior pore-walls for fast extraction andanalysis of phthalates in water samples [J]. Journal of Chromatography A,2011,1218(37):6232-6239.
    [47]李忠波.复杂体系色谱分析的样品前处理新技术的研究[D].复旦大学硕士论文,2012.
    [48] Shen H Y, Zhu Y, Wen X E, et al. Preparation of Fe3O4-C18nano-magneticcomposite materials and their cleanup properties for organophosphorouspesticides [J]. Analytical and bioanalytical chemistry,2007,387(6):2227-2237.
    [49]陈峰.超顺磁γ-Fe2O3@SiO2介孔微球的制备,表征及应用[D].天津大学博士论文,2001.
    [50] Zhang L, Qiao S, Jin Y, et al. Fabrication and Size-Selective Bioseparation ofMagnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure [J].Advanced Functional Materials,2008,18(20):3203-3212.
    [51] Merino, F., Rubio, S., Pérez-Bendito, D. Solid-Phase Extraction of AmphiphilesBased on Mixed Hemimicelle/Admicelle Formation: Application to theConcentration of Benzalkonium Surfactants in Sewage and River Water [J].Analitical Chemistry,2003,75:6799-6806.
    [52] Li, J.D., Cai, Y.Q., Shi, Y.L., et al. Analysis of phthalates via HPLC-UV inenvironmental water samples after concentration by solid-phase extraction usingionic liquid mixed hemimicelles [J]. Talanta2008,74:498-504.
    [53] Cantero, M., Rubio, S., Pérez-Bendito, D. Determination of alkylphenols andalkylphenol carboxylates in wastewater and river samples by hemimicelle-basedextraction and liquid chromatography–ion trap mass spectrometry [J]. Journal ofChromatography A,2006,1120:260-267.
    [54] Cantero, M., Rubio, S., Pérez-Bendito, D. Determination of non-ionicpolyethoxylated surfactants in wastewater and river water by mixedhemimicelle extraction and liquid chromatography–ion trap mass spectrometry[J]. Journal of Chromatography A,2005,1067:161-170.
    [55] Zhao, X.L., Li, J.D., Shi, Y.L., et al. Determination of perfluorinatedcompounds in wastewater and river water samples by mixed hemimicelle-basedsolid-phase extraction before liquid chromatography–electrospray tandem massspectrometry detection [J]. Journal of Chromatography A,2007,1154:52-59.
    [56] López-Jimónez, F.J., Rubio, S., Pérez-Bendito, D. Determination of phthalateesters in sewage by hemimicelles-based solid-phase extraction and liquidchromatography–mass spectrometry [J]. Analytica Chimica Acta,2005,551:142-149.
    [57] Luque, N., Merino, F., Rubio, S., et al. Stability of benzalkonium surfactants onhemimicelle-based solid-phase extraction cartridges [J]. Journal ofChromatography A,2005,1094:17-23.
    [58] Moral, A., Sicilia, M.D., Rubio, S., et al. Determination of bisphenols in sewagebased on supramolecular solid-phase extraction/liquid chromatography/fluorimetry [J]. Journal of Chromatography A,2005,1100:8-14.
    [59] Saitoh, T., Nakayama, Y., Hiraide, M. Concentration of chlorophenols in waterwith sodium dodecylsulfate–γ-alumina admicelles for high-performance liquidchromatographic analysis [J]. Journal of Chromatography A,2002,972:205-209.
    [60] Li, J.D., Cai, Y.Q., Shi, Y.L., et al. Determination of sulfonamide compounds insewage and river by mixed hemimicelles solid-phase extraction prior to liquidchromatography–spectrophotometry [J]. Journal of Chromatography A,2007,1139:178-184.
    [61] Sun L, Zhang C, Chen L, et al. Preparation of alumina-coated magnetitenanoparticle for extraction of trimethoprim from environmental water samplesbased on mixed hemimicelles solid-phase extraction [J]. Analytica chimica acta,2009,638(2):162-168.
    [62] Sun L, Chen L, Sun X, et al. Analysis of sulfonamides in environmental watersamples based on magnetic mixed hemimicelles solid-phase extraction coupledwith HPLC–UV detection [J]. Chemosphere,2009,77(10):1306-1312.
    [63] Zhao X, Shi Y, Wang T, et al. Preparation of silica-magnetite nanoparticlemixed hemimicelle sorbents for extraction of several typical phenoliccompounds from environmental water samples [J]. Journal of ChromatographyA,2008,1188(2):140-147.
    [64] Afkhami A, Moosavi R, Madrakian T. Preconcentration and spectrophotometricdetermination of low concentrations of malachite green and leuco-malachitegreen in water samples by high performance solid phase extraction usingmaghemite nanoparticles [J]. Talanta,2010,82(2):785-789.
    [65] Faraji M, Yamini Y, Rezaee M. Extraction of trace amounts of mercury withsodium dodecyle sulphate-coated magnetite nanoparticles and its determinationby flow injection inductively coupled plasma-optical emission spectrometry [J].Talanta,2010,81(3):831-836.
    [66] Rajabi A A, Yamini Y, Faraji M, et al. Solid-phase microextraction based oncetyltrimethylammonium bromide-coated magnetic nanoparticles fordetermination of antidepressants from biological fluids [J]. MedicinalChemistry Research,2013,22(4):1570-1577.
    [67]贾珍珍,李壹,陆利霞,等. C18磁性微球在有机污染物分析检测中的应用[J].化工新型材料,2013,41(008):181-182.
    [68] Katsumata H, Asai H, Kaneco S, et al. Determination of linuron in watersamples by high performance liquid chromatography after preconcentrationwith octadecyl silanized magnetite [J]. Microchemical journal,2007,85(2):285-289.
    [69] Shen H Y, Zhu Y, Wen X E, et al. Preparation of Fe3O4-C18nano-magneticcomposite materials and their cleanup properties for organophosphorouspesticides [J]. Analytical and bioanalytical chemistry,2007,387(6):2227-2237.
    [70]王明启.磁性介孔氧化硅纳米颗粒载带短链核酸和蛋白药物及其生物医学应用[D].上海交通大学博士论文,2013.
    [71] Zhang X, Niu H, Pan Y, et al. Modifying the surface of Fe3O4/SiO2magneticnanoparticles with C18/NH2mixed group to get an efficient sorbent for anionicorganic pollutants [J]. Journal of colloid and interface science,2011,362(1):107-112.
    [72] Zhang X, Niu H, Pan Y, et al. Chitosan-coated octadecyl-functionalizedmagnetite nanoparticles: preparation and application in extraction of tracepollutants from environmental water samples [J]. Analytical chemistry,2010,82(6):2363-2371.
    [73] Le Zhang X, Niu H Y, Zhang S X, et al. Preparation of a chitosan-coatedC18-functionalized magnetite nanoparticle sorbent for extraction of phthalateester compounds from environmental water samples [J]. Analytical andbioanalytical chemistry,2010,397(2):791-798.
    [74] Zhang S, Niu H, Cai Y, et al. Barium alginate caged Fe3O4@C18magneticnanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons andphthalate esters from environmental water samples [J]. Analytica chimica acta,2010,665(2):167-175.
    [75]杜卓.离子液体和碳纳米管在蛋白质在线分离富集中的应用研究[D].东北大学博士论文,2010.
    [76] Zhang Y, Chen B, Yang Z P, et al. Controlled Synthesis and Characterization ofthe Structure and Property of Fe3O4Nanoparticle-Graphene Oxide Composites[J]. Acta Physico-Chimica Sinica,2011,27(5):1261-1266.
    [77] Shi W, Zhu J, Sim D H, et al. Achieving high specific charge capacitances inFe3O4/reduced graphene oxide nanocomposites [J]. Journal of MaterialsChemistry,2011,21(10):3422-3427.
    [78] Huang X, Zhou X, Qian K, et al. A magnetite nanocrystal/graphene compositeas high performance anode for lithium-ion batteries [J]. Journal of Alloys andCompounds,2012,514:76-80.
    [79] Li X, Huang X, Liu D, et al. Synthesis of3D hierarchical Fe3O4/graphenecomposites with high lithium storage capacity and for controlled drug delivery[J]. The Journal of Physical Chemistry C,2011,115(44):21567-21573.
    [80] He F, Fan J, Ma D, et al. The attachment of Fe3O4nanoparticles to grapheneoxide by covalent bonding [J]. Carbon,2010,48(11):3139-3144.
    [81] Zhang Y, Chen B, Zhang L, et al. Controlled assembly of Fe3O4magneticnanoparticles on graphene oxide [J]. Nanoscale,2011,3(4):1446-1450.
    [82] Li Y, Chu J, Qi J, et al. An easy and novel approach for the decoration ofgraphene oxide by Fe3O4nanoparticles [J]. Applied Surface Science,2011,257(14):6059-6062.
    [83] Yang X, Zhang X, Ma Y, et al. Superparamagnetic graphene oxide-Fe3O4nanoparticles hybrid for controlled targeted drug carriers [J]. Journal ofMaterials Chemistry,2009,19(18):2710-2714.
    [84] Kassaee M Z, Motamedi E, Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite [J].Chemical Engineering Journal,2011,172(1):540-549.
    [85] Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by asolvothermal-synthesized graphene/magnetite composite [J]. Journal ofhazardous materials,2011,192(3):1515-1524.
    [86] He H, Gao C. Supraparamagnetic, conductive, and processable multifunctionalgraphene nanosheets coated with high-density Fe3O4nanoparticles [J]. ACSapplied materials&interfaces,2010,2(11):3201-3210.
    [87] Cong H P, He J J, Lu Y, et al. Water-Soluble Magnetic-Functionalized ReducedGraphene Oxide Sheets: In situ Synthesis and Magnetic Resonance ImagingApplications [J]. Small,2010,6(2):169-173.
    [88] Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites: microwaveirradiation synthesis and enhanced cycling and rate performances for lithium ionbatteries [J]. J. Mater. Chem.,2010,20(26):5538-5543.
    [89] Zhang Y, Chen B, Zhang L, et al. Controlled assembly of Fe3O4magneticnanoparticles on graphene oxide [J]. Nanoscale,2011,3(4):1446-1450.
    [90] Zhao G, Song S, Wang C, et al. Determination of triazine herbicides inenvironmental water samples by high-performance liquid chromatography usinggraphene-coated magnetic nanoparticles as adsorbent [J]. Analytica chimicaacta,2011,708(1):155-159.
    [91] Luo Y B, Shi Z G, Gao Q, et al. Magnetic retrieval of graphene: extraction ofsulfonamide antibiotics from environmental water samples [J]. Journal ofChromatography A,2011,1218(10):1353-1358.
    [92] Wu Q, Zhao G, Feng C, et al. Preparation of a graphene-based magneticnanocomposite for the extraction of carbamate pesticides from environmentalwater samples [J]. Journal of Chromatography A,2011,1218(44):7936-7942.
    [93]王力霞.铁磁性金属,铁氧体及其复合物的合成与应用研究[D].吉林大学博士论文,2013.
    [94] Wang C, Feng C, Gao Y, et al. Preparation of a graphene-based magneticnanocomposite for the removal of an organic dye from aqueous solution [J].Chemical Engineering Journal,2011,173(1):92-97.
    [95] Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: onestep solvothermal synthesis and use as a novel platform for removal of dyepollutants [J]. Nano Research,2011,4(6):550-562.
    [96]张振华,彭景翠,陈小华,等.手性环状碳纳米管的电子结构及磁化特性[J].物理学报,2001,50(6):1150-1156.
    [97]廖敬波,郭旭,赵纪军.含缺陷碳纳米管的力学性质研究[J].电子显微学报,2006,25(4):345-347.
    [98] Salvetat-Delmotte J P, Rubio A. Mechanical properties of carbon nanotubes: afiber digest for beginners [J]. Carbon,2002,40(10):1729-1734.
    [99] Ensafi A A, Rezaei B. Automatic liquid-liquid extraction flow injection analysisdetermination of trace amounts of perchlorate with spectrophotometric detection[J]. Analytical letters,1998,31(1):167-177.
    [100] Nielsen S C, Hansen E H. Interfacing flow injection analysis (sequentialinjection analysis) and electro-thermal atomic absorption spectrometrydetermination of trace-levels of Cr (VI) via on-line pre-concentration byadsorption in a knotted reactor and by liquid–liquid extraction [J]. Analyticachimica acta,2000,422(1):47-62.
    [101] Gallignani M, Ayala C, Brunetto M R, et al. A simple strategy for determiningethanol in all types of alcoholic beverages based on its on-line liquid-liquidextraction with chloroform, using a flow injection system and Fourier transforminfrared spectrometric detection in the mid-IR [J]. Talanta,2005,68(2):470-479.
    [102] Handley J. Meetings: Save that mouse![J]. Analytical Chemistry,2001,73(17):476A-476A.
    [103] Schmidt R H, Haupt K. Molecularly imprinted polymer films with bindingproperties enhanced by the reaction-induced phase separation of a sacrificialpolymeric porogen [J]. Chemistry of materials,2005,17(5):1007-1016.
    [104] Zimmerman S C, Lemcoff N G. Synthetic hosts via molecular imprinting-areuniversal synthetic antibodies realistically possible?[J]. Chemicalcommunications,2004(1):5-14.
    [105] Li ka I. Fifty years of solid-phase extraction in water analysis–historicaldevelopment and overview [J]. Journal of Chromatography A,2000,885(1):3-16.
    [106] Bhushan R, Agarwal C. Direct enantiomeric TLC resolution of dl-penicillamineusing (R)-mandelic acid and l-tartaric acid as chiral impregnating reagents andas chiral mobile phase additive [J]. Biomedical Chromatography,2008,22(11):1237-1242.
    [107] Distler U, Hülsewig M, Souady J, et al. Matching IR-MALDI-o-TOF massspectrometry with the TLC overlay binding assay and its clinical application fortracing tumor-associated glycosphingolipids in hepatocellular and pancreaticcancer [J]. Analytical chemistry,2008,80(6):1835-1846.
    [108] Jorgenson J W, Phillips M. New directions in electrophoretic methods [M]. TheSociety,1987.
    [109] Xu Y. Capillary electrophoresis [J]. Analytical chemistry,1995,67(12):463R-473R.
    [110] Hirsch A. Functionalization of single‐walled carbon nanotubes [J].Angewandte Chemie International Edition,2002,41(11):1853-1859.
    [111] Li Y H, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes [J].Chemical Physics Letters,2002,357(3):263-266.
    [112] Li Y H, Wang S, Luan Z, et al. Adsorption of cadmium (II) from aqueoussolution by surface oxidized carbon nanotubes [J]. Carbon,2003,41(5):1057-1062.
    [113] Lu C, Chiu H, Liu C. Removal of zinc (II) from aqueous solution by purifiedcarbon nanotubes: kinetics and equilibrium studies [J]. Industrial&engineeringchemistry research,2006,45(8):2850-2855.
    [114] Li Y H, Di Z, Ding J, et al. Adsorption thermodynamic, kinetic and desorptionstudies of Pb2+on carbon nanotubes [J]. Water Research,2005,39(4):605-609.
    [115] Jones A C D K M, Bekkedahl T A, Kiang C. Storage of hydrogen insingle-walled carbon nanotubes [J]. Nature,1997,386:377.
    [116] Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walledcarbon nanotubes by the adsorption of gases and vapors [J]. Chemical physicsletters,1999,304(3):207-210.
    [117] Zhao J. Gas adsorption of carbon nanotubes: tube-molecule interaction andtechnological applications [J]. Current Nanoscience,2005,1(2):169-176.
    [118] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. Journal of the American Chemical Society,2001,123(9):2058-2059.
    [119]周庆祥,肖军平,汪卫东,等.碳纳米管应用研究进展[J].化工进展,2006,25(7):750-754.
    [120] Chen R J, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization ofsingle-walled carbon nanotubes for protein immobilization [J]. Journal of theAmerican Chemical Society,2001,123(16):3838-3839.
    [121]高江.混合表面活性剂功能化磁性碳纳米管选择性吸附分离蛋白[D].北京化工大学,2012.
    [122] Huang D, Fu C, Li Z, et al. Development of magnetic multiwalled carbonnanotubes as solid-phase extraction technique for the determination ofp-hydroxybenzoates in beverage [J]. Journal of separation science,2012,35(13):1667-1674.
    [123] Morales-Cid G, Fekete A, Simonet B M, et al. In situ synthesis of magneticmultiwalled carbon nanotube composites for the clean-up of (fluoro) quinolonesfrom human plasma prior to ultrahigh pressure liquid chromatography analysis[J]. Analytical chemistry,2010,82(7):2743-2752.
    [124] Deng X, Guo Q, Chen X, et al. Rapid and effective sample clean-up based onmagnetic multiwalled carbon nanotubes for the determination of pesticideresidues in tea by gas chromatography–mass spectrometry [J]. Food chemistry,2014,145:853-858.
    [125]王彬,龚继来,杨春平,等.磁性多壁碳纳米管吸附去除水中罗丹明B的研究[J].中国环境科学,2009,28(11):1009-1013.
    [126]熊振湖,王璐,周建国,等.磁性多壁碳纳米管吸附水中双氯芬酸的热力学与动力学[J].物理化学学报,2010,26(11):2890-2898.
    [127]胡淑婉,李文军,常志东,等.磁性碳纳米管吸附去除水中甲基橙的研究[J].光谱学与光谱分析,2011,31(1):205.
    [128] Song H, Yao Z, Shuang C, et al. Accelerated removal of nitrate from aqueoussolution by utilizing polyacrylic anion exchange resin with magnetic separationperformance [J]. Journal of Industrial and Engineering Chemistry,2013.
    [129] Monier M, Abdel-Latif D A. Preparation of cross-linked magneticchitosan-phenylthiourea resin for adsorption of Hg (II), Cd (II) and Zn (II) ionsfrom aqueous solutions [J]. Journal of hazardous materials,2012,209:240-249.
    [130] Zhang M, Li A, Zhou Q, et al. Effect of pore size distribution on tetracyclineadsorption using magnetic hypercrosslinked resins [J]. Microporous andMesoporous Materials,2014,184:105-111.
    [131] Atia A A, Donia A M, Awed H A. Synthesis of magnetic chelating resinsfunctionalized with tetraethylenepentamine for adsorption of molybdate anionsfrom aqueous solutions [J]. Journal of hazardous materials,2008,155(1):100-108.
    [132] Fu L, Shuang C, Liu F, et al. Rapid removal of copper with magneticpoly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange[J]. Journal of hazardous materials,2014,272:102-111.
    [133] Shuang C, Wang M, Li P, et al. Adsorption of humic acid fractions withdifferent molecular weight by magnetic polyacrylic anion exchange resin [J].Journal of Soils and Sediments,2013:1-8.
    [134] Wang H, Ding J, Du X, et al. Determination of formaldehyde in fruit juicebased on magnetic strong cation-exchange resin modified with2,4-dinitrophenylhydrazine [J]. Food Chemistry,2012,131(1):380-385.
    [135] Singh V, Garg P, Chinthakindi S, et al. Extraction and derivatization ofchemical weapons convention relevant aminoalcohols on magneticcation-exchange resins [J]. Journal of Chromatography A,2014.
    [136]吕睿,张洪涛.分子印迹和单分散聚合物微球的研究进展[J].胶体与聚合物,2002,20(4):32-35.
    [137]张毅,微波合成分子印迹磁性微球及在复杂样品痕量分析中应用[D].中山大学博士论文,2009.
    [138] Mayes A G, Mosbach K. Molecularly imprinted polymer beads: suspensionpolymerization using a liquid perfluorocarbon as the dispersing phase [J].Analytical chemistry,1996,68(21):3769-3774.
    [139] Ansell R J, Mosbach K. Magnetic molecularly imprinted polymer beads fordrug radioligand binding assay [J]. Analyst,1998,123(7):1611-1616.
    [140] Chen L, Liu J, Zeng Q, et al. Preparation of magnetic molecularly imprintedpolymer for the separation of tetracycline antibiotics from egg and tissuesamples [J]. Journal of Chromatography A,2009,1216(18):3710-3719.
    [141] Chen L, Zhang X, Xu Y, et al. Determination of fluoroquinolone antibiotics inenvironmental water samples based on magnetic molecularly imprinted polymerextraction followed by liquid chromatography–tandem mass spectrometry [J].Analytica chimica acta,2010,662(1):31-38.
    [142] Chen L, Zhang X, Sun L, et al. Fast and selective extraction of sulfonamidesfrom honey based on magnetic molecularly imprinted polymer [J]. Journal ofagricultural and food chemistry,2009,57(21):10073-10080.
    [143] Hu Y, Liu R, Zhang Y, et al. Improvement of extraction capability of magneticmolecularly imprinted polymer beads in aqueous media via dual-phase solventsystem [J]. Talanta,2009,79(3):576-582.
    [144] Zhang Y, Liu R, Hu Y, et al. Microwave heating in preparation of magneticmolecularly imprinted polymer beads for trace triazines analysis in complicatedsamples [J]. Analytical chemistry,2009,81(3):967-976.
    [145] Hu Y, Li Y, Liu R, et al. Magnetic molecularly imprinted polymer beadsprepared by microwave heating for selective enrichment of β-agonists in porkand pig liver samples [J]. Talanta,2011,84(2):462-470.
    [146] Zhang Z, Tan W, Hu Y, et al. Simultaneous determination of trace sterols incomplicated biological samples by gas chromatography–mass spectrometrycoupled with extraction using β-sitosterol magnetic molecularly imprintedpolymer beads [J]. Journal of Chromatography A,2011,1218(28):4275-4283.
    [1] Andersen W C, Turnipseed S B, Karbiwnyk C M, et al. Determination andconfirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimpby liquid chromatography with tandem mass spectrometry [J]. Journal ofagricultural and food chemistry,2008,56(12):4340-4347.
    [2] Yan N, Zhou L, Zhu Z, et al. Determination of melamine in dairy products, fishfeed, and fish by capillary zone electrophoresis with diode array detection [J].Journal of agricultural and food chemistry,2009,57(3):807-811.
    [3] Lin M, He L, Awika J, et al. Detection of melamine in gluten, chicken feed, andprocessed foods using surface enhanced Raman spectroscopy and HPLC [J].Journal of food science,2008,73(8): T129-T134.
    [4] Filigenzi M S, Puschner B, Aston L S, et al. Diagnostic determination ofmelamine and related compounds in kidney tissue by liquidchromatography/tandem mass spectrometry [J]. Journal of agricultural and foodchemistry,2008,56(17):7593-7599.
    [5] Hamilton D W, O'Neal P A. Analytical methods for the quantification of freemelamine and cyanuric acid in Nylon6/6,6co‐polymer [J]. Journal ofseparation science,2003,26(6‐7):510-514.
    [6] Ono S, Funato T, Inoue Y, et al. Determination of melamine derivatives,melame, meleme, ammeline and ammelide by high-performancecation-exchange chromatography [J]. Journal of Chromatography A,1998,815(2):197-204.
    [7] Ibá ez M, Sancho J V, Hernández F. Determination of melamine in milk-basedproducts and other food and beverage products by ion-pair liquidchromatography–tandem mass spectrometry [J]. Analytica chimica acta,2009,649(1):91-97.
    [8] Xia X, Ding S, Li X, et al. Validation of a confirmatory method for thedetermination of melamine in egg by gas chromatography–mass spectrometryand ultra-performance liquid chromatography–tandem mass spectrometry [J].Analytica chimica acta,2009,651(2):196-200.
    [9] Heller D N, Nochetto C B. Simultaneous determination and confirmation ofmelamine and cyanuric acid in animal feed by zwitterionic hydrophilicinteraction chromatography and tandem mass spectrometry [J]. RapidCommunications in Mass Spectrometry,2008,22(22):3624-3632.
    [10] Mu iz-Valencia R, Ceballos-Maga a S G, Rosales-Martinez D, et al. Methoddevelopment and validation for melamine and its derivatives in riceconcentrates by liquid chromatography. Application to animal feed samples [J].Analytical and bioanalytical chemistry,2008,392(3):523-531.
    [11] Wu Q Q, Fan K X, Sha W, et al. Highly sensitive detection of melamine basedon reversed phase liquid chromatography mass spectrometry [J]. Chinesescience bulletin,2009,54(5):732-737.
    [12] Sancho J V, Ibanez M, Grimalt S, et al. Residue determination of cyromazineand its metabolite melamine in chard samples by ion-pair liquidchromatography coupled to electrospray tandem mass spectrometry [J].Analytica Chimica Acta,2005,530(2):237-243.
    [13] Filigenzi M S, Tor E R, Poppenga R H, et al. The determination of melamine inmuscle tissue by liquid chromatography/tandem mass spectrometry [J]. RapidCommunications in Mass Spectrometry,2007,21(24):4027-4032.
    [14] Li J, Qi H Y, Shi Y P. Determination of melamine residues in milk products byzirconia hollow fiber sorptive microextraction and gas chromatography–massspectrometry[J]. Journal of Chromatography A,2009,1216(29):5467-5471.
    [15] Wu Y T, Huang C M, Lin C C, et al. Determination of melamine in rat plasma,liver, kidney, spleen, bladder and brain by liquid chromatography–tandem massspectrometry [J]. Journal of Chromatography A,2009,1216(44):7595-7601.
    [16] Xu X, Ren Y, Zhu Y, et al. Direct determination of melamine in dairy productsby gas chromatography/mass spectrometry with coupled column separation [J].Analytica chimica acta,2009,650(1):39-43.
    [17] Broszat M, Br mer R, Spangenberg B. A new method for quantification ofmelamine in milk by absorption diode-array thin-layer chromatography [J].JPC-Journal of Planar Chromatography-Modern TLC,2008,21(6):469-470.
    [18] Yokley R A, Mayer L C, Rezaaiyan R, et al. Analytical method for thedetermination of cyromazine and melamine residues in soil using LC-UV andGC-MSD [J]. Journal of agricultural and food chemistry,2000,48(8):3352-3358.
    [19] He L, Su Y, Zheng Y, et al. Novel cyromazine imprinted polymer applied to thesolid-phase extraction of melamine from feed and milk samples [J]. Journal ofChromatography A,2009,1216(34):6196-6203.
    [20] Ganguly A, Bhowmick A K. Sulfonated styrene-(ethylene–co-butylene)–styrene/montmorillonite clay nanocomposites: synthesis, morphology, and properties[J]. Nanoscale Research Letters,2008,3(1):36-44.
    [21] Lee Y, Rho J, Jung B. Preparation of magnetic ion‐exchange resins by thesuspension polymerization of styrene with magnetite [J]. Journal of appliedpolymer science,2003,89(8):2058-2067.
    [22] de Oliveira A J B, de Aguiar A P, de Aguiar M R M P, et al. How to maintainthe morphology of styrene-divinylbenzene copolymer beads during thesulfonation reaction [J]. Materials Letters,2005,59(8):1089-1094.
    [1] Figueiredo E.C., et al. On-line molecularly imprinted solid-phase extraction forthe selective spectrophotometric determination of nicotine in the urine ofsmokers [J]. Analytica Chimica Acta,2009,635:102-107.
    [2] Siegmund B., et al. The contribution of dietary nicotine and dietary cotinine tosalivary cotinine levels as a nicotine biomarker [J]. Food Chemistry,2001,74:259-265.
    [3] Doll R, Peto R, Wheatley K, et al. Mortality in relation to smoking:40years'observations on male British doctors [J]. Bmj,1994,309(6959):901-911.
    [4] Dimich-Ward H, Gee H, Brauer M, et al. Analysis of nicotine and cotinine inthe hair of hospitality workers exposed to environmental tobacco smoke [J].Journal of Occupational and Environmental Medicine,1997,39(10):946-948.
    [5] Garrigues J M, Pérez-Ponce A, Garrigues S, et al. Fourier-transform infrareddetermination of nicotine in tobacco samples by transmittance measurementsafter leaching with CHCl3[J]. Analytica chimica acta,1998,373(1):63-71.
    [6] Matysik F M. End‐Column Electrochemical Detection for CapillaryElectrophoresis [J]. Electroanalysis,2000,12(17):1349-1355.
    [7] Baidoo E E K, Clench M R, Smith R F, et al. Determination of nicotine and itsmetabolites in urine by solid-phase extraction and sample stacking capillaryelectrophoresis-mass spectrometry [J]. Journal of chromatography B,2003,796(2):303-313.
    [8] Baranowski J, Pochopień G, Baranowska I. Determination of nicotine, cotinineand caffeine in meconium using high-performance liquid chromatography [J].Journal of Chromatography B: Biomedical Sciences and Applications,1998,707(1):317-321.
    [9] Ciolino L A, Turner J A, McCauley H A, et al. Optimization study for thereversed-phase ion-pair liquid chromatographic determination of nicotine incommercial tobacco products [J]. Journal of Chromatography A,1999,852(2):451-463.
    [10] Pichini S, Altieri I, Passa A R, et al. Use of solvent optimization software forrapid selection of conditions for reversed-phase high-performance liquidchromatography of nicotine and its metabolites [J]. Journal of ChromatographyA,1995,697(1):383-388.
    [11] Yang J, Hu Y, Cai J B, et al. Selective hair analysis of nicotine by molecularimprinted solid-phase extraction: An application for evaluating tobacco smokeexposure [J]. Food and chemical toxicology,2007,45(6):896-903.
    [12] Zander, Findlay P, Renner T, et al. Analysis of nicotine and its oxidationproducts in nicotine chewing gum by a molecularly imprinted solid-phaseextraction [J]. Analytical chemistry,1998,70(15):3304-3314.
    [13] Abad A, Manclus J J, March C, et al. Comparison of a monoclonalantibody-based enzyme-linked immunosorbent assay and gas chromatographyfor the determination of nicotine in cigarette smoke condensates [J]. Analyticalchemistry,1993,65(22):3227-3231.
    [14] Grubner O, First M W, Huber G L. Gas chromatographic determination ofnicotine in gases and liquids with suppression of adsorption effects [J].Analytical chemistry,1980,52(11):1755-1758.
    [15] Zuo Y, Zhang L, Wu J, et al. Ultrasonic extraction and capillary gaschromatography determination of nicotine in pharmaceutical formulations [J].Analytica Chimica Acta,2004,526(1):35-39.
    [16] Yang S, Smetena I, Huang C. Determination of tobacco alkaloids by gaschromatography with nitrogen–phosphorus detection [J]. Analytical andbioanalytical chemistry,2002,373(8):839-843.
    [17] Davoli E, Stramare L, Fanelli R, et al. Rapid solid-phase extraction method forautomated gas chromatographic–mass spectrometric determination of nicotinein plasma [J]. Journal of Chromatography B: Biomedical Sciences andApplications,1998,707(1):312-316.
    [18] Jung B H, Chung B C, Chung S J, et al. Simultaneous GC–MS determination ofnicotine and cotinine in plasma for the pharmacokinetic characterization ofnicotine in rats [J]. Journal of pharmaceutical and biomedical analysis,1999,20(1):195-202.
    [19] Siegmund B, Leitner E, Pfannhauser W. Development of a simple samplepreparation technique for gas chromatographic–mass spectrometricdetermination of nicotine in edible nightshades (Solanaceae)[J]. Journal ofChromatography A,1999,840(2):249-260.
    [20] Man C N, Ismail S, Harn G L, et al. Determination of hair nicotine by gaschromatography–mass spectrometry [J]. Journal of Chromatography B,2009,877(3):339-342.
    [21] Ramírez N., et al. Determination of nicotine and N-nitrosamines in house dustby pressurized liquid extraction and comprehensive gaschromatography–Nitrogen chemiluminiscence detection [J]. Journal ofChromatography A,2012,1219:180-187.
    [22] Stolker A L A M, Niesing W, Fuchs R, et al. Liquid chromatography withtriple-quadrupole and quadrupole-time-of-flight mass spectrometry for thedetermination of micro-constituents–a comparison [J]. Analytical andbioanalytical chemistry,2004,378(7):1754-1761.
    [23] Figueiredo E C, de Oliveira D M, de Siqueira M E P B, et al. On-linemolecularly imprinted solid-phase extraction for the selectivespectrophotometric determination of nicotine in the urine of smokers [J].Analytica chimica acta,2009,635(1):102-107.
    [24] Liu J, Feng Y. Determination of nicotine by reagent-injection flow injectionphotometric method [J]. Talanta,1998,47(4):833-840.
    [25] Concheiro M, Gray T R, Shakleya D M, et al. High-throughput simultaneousanalysis of buprenorphine, methadone, cocaine, opiates, nicotine, andmetabolites in oral fluid by liquid chromatography tandem mass spectrometry[J]. Analytical and bioanalytical chemistry,2010,398(2):915-924.
    [26] Shakleya D M, Huestis M A. Optimization and validation of a liquidchromatography-tandem mass spectrometry method for the simultaneousquantification of nicotine, cotinine, trans-3′-hydroxycotinine and norcotinine inhuman oral fluid [J]. Analytical and bioanalytical chemistry,2009,395(7):2349-2357.
    [27] Takami K, Kuwata K, Sugimae A, et al. Trace determination of aldehydes inwater by high-performance liquid chromatography [J]. Analytical Chemistry,1985,57(1):243-245.
    [1]李彦文,莫测辉,赵娜,等.高效液相色谱法测定水和土壤中磺胺类抗生素[J].分析化学(FENXIHUAXUE)研究报告,2008,36(7),954-958
    [2] Bienenmann-Ploum M, Korpim ki T, Haasnoot W, et al. Comparison ofmulti-sulfonamide biosensor immunoassays [J]. Analytica chimica acta,2005,529(1):115-122.
    [3] O’Connor S, Aga D S. Analysis of tetracycline antibiotics in soil: Advances inextraction, clean-up, and quantification [J]. TrAC Trends in AnalyticalChemistry,2007,26(6):456-465.
    [4] Fuh M R S, Chu S Y. Quantitative determination of sulfonamide in meat bysolid-phase extraction and capillary electrophoresis [J]. Analytica Chimica Acta,2003,499(1):215-221.
    [5] Kowalski P, Plenis A, Ol dzka I, et al. Optimization and validation of themicellar electrokinetic capillary chromatographic method for simultaneousdetermination of sulfonamide and amphenicol-type drugs in poultry tissue [J].Journal of pharmaceutical and biomedical analysis,2011,54(1):160-167.
    [6] Chung H H, Lee J B, Chung Y H, et al. Analysis of sulfonamide and quinoloneantibiotic residues in Korean milk using microbial assays and high performanceliquid chromatography [J]. Food Chemistry,2009,113(1):297-301.
    [7] Fang G Z, He J X, Wang S. Multiwalled carbon nanotubes as sorbent foron-line coupling of solid-phase extraction to high-performance liquidchromatography for simultaneous determination of10sulfonamides in eggs andpork [J]. Journal of Chromatography A,2006,1127(1):12-17.
    [8] Granja R H M M, Ni o A M M, Rabone F, et al. A reliable high-performanceliquid chromatography with ultraviolet detection for the determination ofsulfonamides in honey [J]. Analytica chimica acta,2008,613(1):116-119.
    [9] Huang J, Liu J, Zhang C, et al. Determination of sulfonamides in food samplesby membrane-protected micro-solid phase extraction coupled with highperformance liquid chromatography [J]. Journal of Chromatography A,2012,1219:66-74.
    [10] Vargas Mamani M C, Reyes Reyes F G, Rath S. Multiresidue determination oftetracyclines, sulphonamides and chloramphenicol in bovine milk usingHPLC-DAD [J]. Food chemistry,2009,117(3):545-552.
    [11] Mor F, Sahindokuyucu Kocasari F, Ozdemir G, et al. Determination ofsulphonamide residues in cattle meats by the Charm-II system and validationwith high performance liquid chromatography with fluorescence detection [J].Food Chemistry,2012,134(3):1645-1649.
    [12] Posyniak A, Zmudzki J, Mitrowska K. Dispersive solid-phase extraction for thedetermination of sulfonamides in chicken muscle by liquid chromatography [J].Journal of chromatography A,2005,1087(1):259-264.
    [13] Zhang W, Duan C, Wang M. Analysis of seven sulphonamides in milk by cloudpoint extraction and high performance liquid chromatography [J]. Foodchemistry,2011,126(2):779-785.
    [14] Zheng M M, Ruan G D, Feng Y Q. Hybrid organic–inorganic silica monolithwith hydrophobic/strong cation-exchange functional groups as a sorbent formicro-solid phase extraction [J]. Journal of Chromatography A,2009,1216(45):7739-7746.
    [15] Hammel Y A, Mohamed R, Gremaud E, et al. Multi-screening approach tomonitor and quantify42antibiotic residues in honey by liquidchromatography–tandem mass spectrometry [J]. Journal of Chromatography A,2008,1177(1):58-76.
    [16] McClure E L, Wong C S. Solid phase micro extraction of macrolide,trimethoprim, and sulfonamide antibiotics in waste waters [J]. Journal ofChromatography A,2007,1169(1):53-62.
    [17] Hurtado de Mendoza J, Maggi L, Bonetto L, et al. Validation of antibiotics incatfish by on-line solid phase extraction coupled to liquid chromatographytandem mass spectrometry [J]. Food chemistry,2012,134(2):1149-1155.
    [18] Shao B, Dong D, Wu Y, et al. Simultaneous determination of17sulfonamideresidues in porcine meat, kidney and liver by solid-phase extraction and liquidchromatography–tandem mass spectrometry[J]. Analytica chimica acta,2005,546(2):174-181.
    [19] Stoob K, Singer H P, Stettler S, et al. Exhaustive extraction of sulfonamideantibiotics from aged agricultural soils using pressurized liquid extraction [J].Journal of Chromatography A,2006,1128(1):1-9.
    [20] Sun L, Sun X, Du X, et al. Determination of sulfonamides in soil samples basedon alumina-coated magnetite nanoparticles as adsorbents [J]. Analytica chimicaacta,2010,665(2):185-192.
    [21] Wang H, Xu Y, Song W, et al. Automatic sample preparation of sulfonamideantibiotic residues in chicken breast muscle by using dynamicmicrowave‐assisted extraction coupled with solid‐phase extraction [J].Journal of separation science,2011,34(18):2489-2497.
    [22] Zheng M M, Zhang M Y, Peng G Y, et al. Monitoring of sulfonamideantibacterial residues in milk and egg by polymer monolith microextractioncoupled to hydrophilic interaction chromatography/mass spectrometry [J].Analytica chimica acta,2008,625(2):160-172.
    [23] Reeves V B. Confirmation of multiple sulfonamide residues in bovine milk bygas chromatography–positive chemical ionization mass spectrometry [J].Journal of Chromatography B: Biomedical Sciences and Applications,1999,723(1):127-137.
    [24] Guillén I, Gabaldón J A, Nú ez-Delicado E, et al. Detection of sulphathiazole inhoney samples using a lateral flow immunoassay [J]. Food Chemistry,2011,129(2):624-629.
    [25] Preechaworapun A, Chuanuwatanakul S, Einaga Y, et al. Electroanalysis ofsulfonamides by flow injection system/high-performance liquidchromatography coupled with amperometric detection using boron-dopeddiamond electrode [J]. Talanta,2006,68(5):1726-1731.
    [26] Sangjarusvichai H, Dungchai W, Siangproh W, et al. Rapid separation andhighly sensitive detection methodology for sulfonamides in shrimp using amonolithic column coupled with BDD amperometric detection [J]. Talanta,2009,79(4):1036-1041.
    [27] Lu K H, Chen C Y, Lee M R. Trace determination of sulfonamides residues inmeat with a combination of solid-phase microextraction and liquidchromatography–mass spectrometry [J]. Talanta,2007,72(3):1082-1087.
    [28] Morales-Cid G, Fekete A, Simonet B M, et al. In situ synthesis of magneticmultiwalled carbon nanotube composites for the clean-up of (fluoro) quinolonesfrom human plasma prior to ultrahigh pressure liquid chromatography analysis[J]. Analytical chemistry,2010,82(7):2743-2752.
    [1] Gao S., et al. Determination of phenylurea and triazine herbicides in milk bymicrowave assisted ionic liquid microextraction high-performance liquidchromatography [J]. Talanta,2010,82:1371-1377.
    [2] Avramides E.J. and Gkatsos S.. A multiresidue method for the determination ofinsecticides and triazine herbicides in fresh and processed olives [J]. Journal ofAgricultural and Food Chemistry,2007,55:561-565.
    [3] Macutkiewicz E, Rompa M, Zygmunt B. Sample preparation andchromatographic analysis of acidic herbicides in soils and sediments [J]. Criticalreviews in analytical chemistry,2003,33(1):1-17.
    [4] Cacho C, Turiel E, Martin-Esteban A, et al. Semi-covalent imprinted polymerusing propazine methacrylate as template molecule for the clean-up of triazinesin soil and vegetable samples [J]. Journal of Chromatography A,2006,1114(2):255-262.
    [5] Ji F, Zhao L, Yan W, et al. Determination of triazine herbicides in fruits andvegetables using dispersive solid-phase extraction coupled with LC-MS [J].Journal of Separation Science,2008,31(6-7):961-968.
    [6] Tian M, Cheng R, Ye J, et al. Preparation and evaluation of ionicliquid-calixarene solid-phase microextraction fibres for the determination oftriazines in fruit and vegetable samples [J]. Food Chemistry,2014,145:28-33.
    [7] Carabias-Martínez R., et al. Sensitive determination of herbicides in foodsamples by nonaqueous CE using pressurized liquid extraction [J].Electrophoresis,2007,28:3606-3616.
    [8] Lawrence J.F., et al. Evaluation of immunoaffinity chromatography as areplacement for organic solvent clean-up of plant extracts for the determinationof triazine herbicides by liquid chromatography [J]. Journal of ChromatographyA,1996,752:147-154.
    [9] Djozan D. and Ebrahimi B.. Preparation of new solid phase micro extractionfiber on the basis of atrazine-molecular imprinted polymer: Application for GCand GC/MS screening of triazine herbicides in water, rice and onion [J].Analytica Chimica Acta,2008,616:152-159.
    [10] Djozan D., et al. Preparation and binding study of solid-phase microextractionfiber on the basis of ametryn-imprinted polymer Application to the selectiveextraction of persistent triazine herbicides in tap water, rice, maize and onion [J].Journal of Chromatography A,2009,1216:2211-2219.
    [11] Wu S., et al. Recognition characteristics of molecularly imprinted microspheresfor triazine herbicides using hydrogen-bond array strategy and their analyticalapplications for corn and soil samples [J]. Journal of Chromatography A,2011,1218:1340-1346.
    [12] Chimuka L., et al. Selective extraction of triazine herbicides based on acombination of membrane assisted solvent extraction and molecularly imprintedsolid phase extraction [J]. Journal of Chromatography A,2011,1218:647-653.
    [13] Wen Y, Chen L, Li J, et al. Molecularly imprinted matrix solid-phase dispersioncoupled to micellar electrokinetic chromatography for simultaneousdetermination of triazines in soil, fruit, and vegetable samples [J].Electrophoresis,2012,33(15):2454-2463.
    [14] Tan J H, Jin S F, Yang H. A Cloud Point Extraction Approach Developed forAnalyzing Pesticides Prometryne and Isoproturon from Multi-media [J].Clean-Soil Air Water,2013,41(5):510-516.
    [15] Carabias-Martínez R, Rodríguez-Gonzalo E, Miranda-Cruz E, et al. Sensitivedetermination of herbicides in food samples by nonaqueous CE usingpressurized liquid extraction [J]. Electrophoresis,2007,28(20):3606-3616.
    [16] Wang F, Yan H, Wu R, et al. Selective screening of trace trazine herbicides intomato samples employing dummy molecularly imprinted solid-phaseextraction coupled with liquid chromatography [J]. Analytical Methods,2013,5(9):2398-2405.
    [1] Oliferova L, Statkus M, Tsysin G, et al. On-line solid-phase extraction andHPLC determination of polycyclic aromatic hydrocarbons in water usingfluorocarbon polymer sorbents [J]. Analytica chimica acta,2005,538(1):35-40.
    [2]唐述莲.抗生素使用与危害的临床研究[J].中外医疗,2009(12):107-108.
    [3] Lin C Y, Huang S D. Application of liquid–liquid–liquid microextraction andhigh-performance liquid-chromatography for the determination of sulfonamidesin water [J]. Analytica chimica acta,2008,612(1):37-43.
    [4] Sun L, Chen L, Sun X, et al. Analysis of sulfonamides in environmental watersamples based on magnetic mixed hemimicelles solid-phase extraction coupledwith HPLC–UV detection [J]. Chemosphere,2009,77(10):1306-1312.
    [5] Herrera-Herrera A V, Hernández-Borges J, Rodríguez-Delgado M á. Ionicliquids as mobile phase additives for the high-performance liquidchromatographic analysis of fluoroquinolone antibiotics in water samples [J].Analytical and bioanalytical chemistry,2008,392(7-8):1439-1446.
    [6] Golet E M, Alder A C, Hartmann A, et al. Trace determination offluoroquinolone antibacterial agents in urban wastewater by solid-phaseextraction and liquid chromatography with fluorescence detection [J].Analytical Chemistry,2001,73(15):3632-3638.
    [7] Seifrtová M, Pena A, Lino C M, et al. Determination of fluoroquinoloneantibiotics in hospital and municipal wastewaters in Coimbra by liquidchromatography with a monolithic column and fluorescence detection [J].Analytical and bioanalytical chemistry,2008,391(3):799-805.
    [8] Mitani K, Kataoka H. Determination of fluoroquinolones in environmentalwaters by in-tube solid-phase microextraction coupled with liquidchromatography–tandem mass spectrometry [J]. Analytica chimica acta,2006,562(1):16-22.
    [9] Benito-Pe a E, Urraca J L, Sellergren B, et al. Solid-phase extraction offluoroquinolones from aqueous samples using a water-compatiblestochiometrically imprinted polymer [J]. Journal of Chromatography A,2008,1208(1):62-70.
    [10] Pena A, Chmielova D, Lino C M, et al. Determination of fluoroquinoloneantibiotics in surface waters from Mondego River by high performance liquidchromatography using a monolithic column [J]. Journal of separation science,2007,30(17):2924-2928.
    [11] Turiel E, Bordin G, Rodriguez A R. Determination of quinolones andfluoroquinolones in hospital sewage water by off‐line and on‐linesolid‐phase extraction procedures coupled to HPLC‐UV [J]. Journal ofseparation science,2005,28(3):257-267.
    [12] Soto‐Chinchilla J J, García‐Campa a A M, Gámiz‐Gracia L. Analyticalmethods for multiresidue determination of sulfonamides and trimethoprim inmeat and ground water samples by CE‐MS and CE‐MS/MS [J].Electrophoresis,2007,28(22):4164-4172.
    [13] Soto‐Chinchilla J J, García‐Campa a A M, Gámiz‐Gracia L, et al.Application of capillary zone electrophoresis with large‐volume samplestacking to the sensitive determination of sulfonamides in meat and groundwater [J]. Electrophoresis,2006,27(20):4060-4068.
    [14] Batt A L, Aga D S. Simultaneous analysis of multiple classes of antibiotics byion trap LC/MS/MS for assessing surface water and groundwater contamination[J]. Analytical chemistry,2005,77(9):2940-2947.
    [15] Lindsey M E, Meyer M, Thurman E M. Analysis of trace levels of sulfonamideand tetracycline antimicrobials in groundwater and surface water usingsolid-phase extraction and liquid chromatography/mass spectrometry [J].Analytical Chemistry,2001,73(19):4640-4646.
    [16] Raich-Montiu J, Folch J, Compa ó R, et al. Analysis of trace levels ofsulfonamides in surface water and soil samples by liquidchromatography-fluorescence [J]. Journal of chromatography A,2007,1172(2):186-193.