光催化氧化柴油脱硫催化剂的制备、表征和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足新的燃料油硫含量标准,人们加大了工业化加氢脱硫技术的改进研究和非加氢脱硫技术的开发研究力度。在众多的非加氢脱硫中,光化学氧化脱硫因其具有反应条件温和、工艺简单、非临氢操作等特点,成为近年来一个新的研究热点。本文以模型硫化物和柴油为研究对象,分别研究了核黄素/O_2、TiO_2/竹炭/ H_2O_2、钛硅分子筛/H_2O_2,两亲性钛硅分子筛/H_2O_2(O_2)体系的光催化氧化脱硫性能和影响因素,并研究了氧化反应机理和反应动力学,取得了创新性研究成果。
     1.以廉价无毒的核黄素为光敏剂,水为溶剂对DBT进行光敏化氧化脱硫。考察了核黄素浓度和空气流量对DBT脱硫效果的影响。结果表明,核黄素浓度为20mg/L,空气流速为80~100mL/min,在最佳条件下反应2h,DBT脱硫率高达60%。核黄素是通过1O_2历程来敏化DBT的;该条件下的脱硫反应符合一级反应的动力学特征。质谱分析DBT氧化后的产物有DBT亚砜、DBT砜和硫酸根离子。
     2.以有着和洋葱状富勒烯(C60)和碳纳米管类似结构的竹炭(BC)为载体负载TiO_2,H_2O_2为氧化剂,光催化氧化DBT脱硫。考察了竹炭对DBT的吸附效果,TiO_2负载量、TiO_2/BC的用量和H_2O_2的浓度对DBT脱硫率的影响。结果表明,BC对DBT有着很好的吸附效果,吸附行为遵循Freundlich吸附等温线,吸附动力学为二级动力学。TiO_2/BC光催化氧化DBT的最佳反应条件为:TiO_2负载量15%(wt%);H_2O_2的浓度O/S为14(mol);催化剂用量为0.02g/10mL模型硫化物。在最佳条件下反应2h,DBT脱硫率高达66%。另外,我们还发现了TiO_2/BC可以位于油水界面处的这一特点,从而导致TiO_2/BC不同于其他光催化剂的反应模型。
     3.利用Ti(SO4)2液相同晶取代法和改进的微波法(在家用微波炉中)制备了含钛微孔分子筛Ti-NaY与Ti-β和介孔分子筛Ti-MCM-41。采用XRD,FT-IR,SEM和TEM,EDS和UV-Vis吸收光谱等表征手段,证明了液相同晶取代法成功了把Ti引进了分子筛骨架;证实了改进的微波法合成的Ti-MCM-41具有规则的MCM-41孔道结构和很好的长程有序性,且微波法合成的Ti-MCM-41孔径和紫外吸收强度均大于水热法合成的分子筛,光催化活性测试表明微波法合成的Ti-MCM-41光催化活性更高;并且此微波合成法晶化仅需40分钟,不仅节省了晶化时间,更重要的是大幅度降低了能耗,简化了操作方法,降低了设备要求。光催化氧化脱硫的活性顺序为:Ti-MCM-41>TS-1>Ti-NaY>Ti-β。
     4.使用三甲基氯硅烷(TMS),二甲基二氯硅烷(DMS)和十八烷基氯硅烷(OTS)对实验室自制的几种不同孔径的钛硅分子筛进行表面改性制成两亲性钛硅分子筛,经过一系列XRD、FT-IR、SEM和BET等表征手段表征。结果表明,TS-1、Ti-β和Ti-MCM-41部分表面的均被三种表面改性剂改性,但是Ti-NaY仅被OTS进行了部分表面的改性,而其他两种没有改性成功。而且发现OTS-Ti-NaY结构严重塌陷,而其他几种两亲性分子筛晶相、形貌和孔结构没有明显变化。两亲性钛硅分子筛的活性顺序为: OTS-Ti-MCM-41> DMS-TS-1>TMS-Ti-β> OTS-Ti-NaY。光催化活性均比亲水性钛硅分子筛高,且催化剂用量大大减少。活性提高最大的是OTS-Ti-MCM-41,静止光照反应2h,DBT脱硫率就高达98%。两亲性钛硅分子筛重复使5次后,活性没有明显下降。用活性最高的OTS-Ti-MCM-41为光催化剂,改为空气为氧化剂,光照反应2h,DBT脱硫率也可高达85%。
     5.在前几章实验的基础上,以几种光催化体系,对含硫量为1500μg/g的真实柴油进行脱硫,以达到深度脱硫的目的。结果表明,在最佳反应条件下,反应8h,真实柴油脱硫的活性顺序为OTS-Ti-MCM-41>OTS-Ti-MCM-41/O_2>TiO_2/BC> RF/O_2。活性最好的OTS-Ti-MCM-41可以脱硫至30μg/g,OTS-Ti-MCM-41/O_2也可脱硫至50μg/g,均达到欧Ⅲ标准。另外又考察了烷烃,烯烃,芳烃和氮化物对DBT脱硫率的影响。结果发现烯烃和芳烃对脱硫均有一定程度的影响,而烷烃没有影响。实验中的几种光催化体系对含氮化合物均有不同程度的脱除,脱除氮化物活性顺序和脱硫顺序相同。
Improvement of industrialized hydrodesulfurization and development of non-hydrodesulfurization have been steped up, in order to meet the new standards for sulfur content in the fuel oil. In the non-hydrodesulfurization, photochemical desulfurization is a novel method, which is easy to control and save energy, etc. This paper uses the model compounds and diesel oil as object. Photocatalytic oxidation desulfurization performance and factors of Riboflavin/O_2, TiO_2/BC/H_2O_2, Ti-containing molecular sieve/H_2O_2, amphiphilic Ti-containing molecular sieve/H_2O_2 and amphiphilic Ti-containing molecular sieve/O_2 are investigated in detail. The oxidation reaction mechanism and the reaction kinetics are also studied. The innovation research results are acquired.
     The following are the five parts of the paper.
     1.Oxidation desulfurization of DBT was carried out by using riboflavin (RF) as photosensutizer and water as sovent. Effect of RF concentration and air flow on removal ratio of DBT were investigated.The results show that the removal ratio of DBT is up to 60% under condition which are RF concentration 20 mg/mL, air flow 80~100mL/min and irradiation time 2h. DBT was sensitized by RF through 1O_2 mechanism; the kinetics of oxidation of DBT is fist-order. Oxidation products are DBT monoxide, DBT sulfone and SO4-2 by mass spectra.
     2.Oxidation desulfurization of DBT was carried out by using TiO_2 supported on banmboo carbon (BC) which has a similar structure to C60 and carbon nanometer tube as photocatalyst and H_2O_2 as oxidant. Effect of adsorption of BC on DBT and effect of amount of loaded TiO_2 on BC, H_2O_2 concentration and amount of TiO_2/BC on removal ratio of DBT were investigated in detail. The results show that BC has very large adsorption capacity of DBT, the adsorption behaviour is described better by a monolayer Freundlich type isotherm and kinetic data follows a pseudo second-order model. The optimum reaction conditions are amount of loaded TiO_2 15% (wt%), H_2O_2 concentration O/S 14(mol) and amount of TiO_2/BC 0.02g/10mL model diesel. Removal ratio of DBT is up to 66% under optimum reaction conditions. In addition,we also found TiO_2/BC can locate just at the oil-water phase boundary, which lead to a different reaction model from other photocatalysts.
     3. Ti-NaY and Ti-βwere prepared using liquid-solid isomorphous substitution of Ti(SO_4)_2 method and Ti-MCM-41 was prepared using improved microwave heating method (in domestic microwave oven). Prepared Ti-NaY, Ti-βand Ti-MCM-41 were characterized by XRD, FT-IR,SEM and TEM,EDS and UV-Vis. The results show that Ti was introduced in framework of molecular sieve successfully; Prepared Ti-MCM-41 has a regular structure, a good long order hexagonal arrangement and a stronger UV absorbance. Compared with the reported synthesis methods, the remarkable vantage of this method are simpler operation, shorter crystallization time (only 40 min), lower energy consumption and facility request. The order of photocatalytic activity of Ti-containing molecular sieve is Ti-MCM-41>TS-1>Ti-NaY>Ti-β.
     4. Amphiphilic Ti-containing molecular sieve were prepared by partial modification of the external surface of TS-1, Ti-NaY, Ti-βand Ti-MCM-4 with trimethylchlorosilane (TMS), dimethyldichlorosilane (DMS) octadecyltrichlorosilane (OTS). XRD、FT-IR、SEM and BET were used to characterize the surface properties of these modified samples. The results show that partial modification of the external surface of TS-1, Ti-βand Ti-MCM-4 with three modifiers is successful,but partial modification of the external surface of Ti-NaY is only successful with OTS. In addition,the structure of OTS-Ti-NaY collapsed seriously,while other modified samples have no change for crystalline,pattern and pore structure. The order of photocatalytic activity of these modified samples is OTS-Ti-MCM-41> DMS-TS-1>TMS-Ti-β> OTS-Ti-NaY. Photocatalytic activity of these modified samples are higher and amount of photocatalysts is fewer than that of unmodified these samples. Removal ratio of DBT is up to 98% after static irradiation 2h by using OTS-Ti-MCM-41 as photocatalyst. Photocatalytic activity of amphiphilic samples don’t decrease obviously after reused for 5 times. Removal ratio of DBT can be up to 85% after static irradiation 2h by using OTS-Ti-MCM-41 as photocatalyst and air as oxidant.
     5. In order for deep desulfurization, oxidation desulfurization of diesel (sulfur content 1500μg/g) was carried out by using several photocatalytic systems mentioned in previous chapters. The results show that the order of photocatalytic activity to desulfurization of diesel is OTS-Ti-MCM-41 > OTS-Ti-MCM-41/O_2 > TiO_2/BC > RF/O_2. Sulfur content was reduced to 30μg/g in OTS-Ti-MCM-41 system and 50μg/g in OTS-Ti-MCM-41/O_2 system, which can meet European-Ⅲstandard. In addition, effects of paraffin, olefin, aromatic hydrocarbon and nitrogenous compounds on removal ratio of DBT were investigated. We found that olefin had greater effect on desulfurization than aromatic hydrocarbon, while paraffin had no effect on desulfurization. Nitrogenous compounds were also removed partly in these photocatalytic systems. The order of denitrification activity is the same as that of desulfurization activity in these photocatalytic systems.
引文
[1]Otsuki S, Nonaka T, Takashima N, et al. Oxidative Desulfurization of Light Gas Oil and Vacuum GasOil byOxidation and Solvent Extraction, Energy Fuels, 2000, 14: 1232~1239
    [2]汪燮卿,从第15届世界石油大会看炼油工业的发展趋势,石油炼制与化工,1998,29:l~6
    [3]闵恩泽,环境友好石油炼制技术的进展,化学进展,1998,10:207~214
    [4]Ma X, Lu S, Song C. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell application, Catalysis Today, 2002, 77(1-2): 107~116
    [5]刘淑芝,高效脱硫体系及柴油深度氧化脱硫技术研究:[博士学位论文],大庆:大庆石油学院,2007
    [6]林世雄,石油炼制工程(第二版),北京:石油工业出版社,1988,210~214
    [7]梁朝林,高硫原油加工,北京:中国石化出版社,2001,112~114
    [8]Robert L. Process for Desulfurizing Gasoline and Hydrocarb on Feedstocks, U.S. patent, 5730860, 1998-03-24
    [9]Gyanesh P. Desulfurization with Zinc Titanate Sorbents, U.S. patent, 6338794, 2002
    [10]Gyanesh P. Desulfurization and Novel Sorbents for Same, U.S. patent, 6346190, 2002-02-12
    [11]Donald R, Sorbent Compositions. U.S. patent, 6350422, 2002-02-26
    [12]Khare, Gyanesh P. Desulfurization Process and Novel Bimetallic Sorbents Systems for Same, U.S. patent, 6274533, 2001-08-14
    [13]李灿,田福平,蒋宗轩,等,深度脱除硫化物的分子筛吸附剂及制法和应用,中国专利,CN02160814.8,2004-07-14
    [14]秦如意,张晓静,刘金龙,FCC汽油吸附脱硫工艺的研究,石油炼制与化工,2003,34(3):24~28
    [15]Forte P. Process for the Removal of Sulfur from Petroleum Fraction, U.S. patent, 5582714, 1996-12-10
    [16]夏道宏,苏贻勋,各种工艺对脱除汽油中硫醇效果的研究,炼油设计, 1999, 25 (1):46~49
    [17]田龙胜,唐文成,FCC汽油溶剂抽提脱硫的研究,石油炼制与化工,2001,32(9):7~9
    [18]王军民,房少华,廖启玲,等,催化裂化汽油溶剂萃取脱硫工艺的研究,炼油设计,2000,30(10):32~34
    [19]项小燕,林金清,离子液体萃取燃料油脱硫技术的研究进展,化工进展,2007,26(12):1681~1685
    [20]刘冉,赵地顺,王建龙,等,硫酸酯类离子液体对FCC汽油萃取脱硫性能的研究,石油与天然气化工,36(5):377~382
    [21]王建龙,赵地顺,周二鹏,等,吡啶类离子液体在汽油萃取脱硫中的应用研究,燃料化学学报2007,35(3):293~296
    [22]刘爱华,达建文,低硫、低芳烃柴油生产技术,石化技术,2000,7(1):59~62
    [23]邹明旭,石洪波,廖克俭,清洁燃料的非加氢脱硫技术进展,化学工业与工程技术,2005,26(3):33~37
    [24]Kim H Y, Kim T S, Kim B H, Degradation of Organic Sulfur Compounds and the Reduction of Dibenzothiophene to Biphenyl and Hydrogen Sulfide by Desulfovibrio Desulfuricans M6, Biotechnology Letters, 1990, 12(10): 761~764
    [25]Setti L, Farinelli P, Martino S D, et al. Developments in Destructive and Non-Destructive Pathways for Selective Desulfurizations in Oil Biorefining Processes, Applied Microbiology and Biotechnology, 1999, 52(1): 111~117
    [26]Kevin A G, Olga S P, Gregory T M, et al. Molecular Mechanisms of Biocatalytic Desulfurization of Fossil Fuel, Nature Biotechnology, 1996, 14(13): 1705~1709
    [27]Gray K A, Squires C H, Monticello D J. Dutilization in desulfurization of DBT by rhodococcus sp, IGTS8, US patent: 5846813, 1996
    [28]Mcfarland B L. Biocatalytic Sulfur Removal from Fuel Applicability for Producing Low Sulfur Gasoline, Critical Reviews in Microbiology, 1998, 24(2): 99~147
    [29]Patrick S T, James R K, John W E, Desulfurization of fuel oil by oxidation and extraction. 1. Enhancement of extraction oil yield, Ind. Eng. Chem. Res., 1990, 29(3): 321~324
    [30]Patrick S T, James R K, John W E. Desulfurization of fuel oil by oxidation and extraction. 2. Kinetic modeling of oxidation reaction, Ind. Eng. Chem. Res., 1990, 29(3): 324-329
    [31]Patrick S T, James R K. Process for purifying hydrocarbonaceous oils U.S.Patent 4,485,007 1984
    [32]Zarrineghbal H, Kittrell J R, Darian S T. Process for enhancing the cetane number of diesel fuel, U.S.Patent 4,643,820 1987
    [33]唐晓东,税蕾蕾,刘亮,直馏柴油NOx-空气催化氧化脱硫研究,催化学报,2004,25(10):699~792
    [34]Paybarah A,Bone R L,Corcoran W H. Selective oxidation of dibenzothiophene by peroxybenzoic acid formed insitu, Ind. Eng. Chem. Prod. Res. Dev., 1982, 21: 426~431
    [35]Shujiro O, Takeshi N, Noriko T, et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction, Energy Fuels 2000,14(6): 1232~1239
    [36]余国贤,陆善祥,陈辉,等,活性炭及甲酸催化过氧化氢氧化噻吩脱硫研究,燃料化学学报,2005,33(1):74~78
    [37]Guoxian Y, Shanxiang L, Hui Ch, et al. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid, Energ. Fuel., 2005, 19(2): 447~452
    [38]Zannikos F, Lois E, Stournas S. Desulfurization of petroleum fractions by oxidation and solvent extraction, Fuel.Pro.Tech., l995, 42: 35~45
    [39]Yazu K, Makino M, Ukegawa K. Oxidative desulfurization of diesel oil with hydrogen peroxide in the presence of acid catalyst in diesel oil/acetic acid biphasic system, Chemistry Letters, 2004, 33(10): 1306~1307
    [40]赵地顺,马四国,刘翠微,等,相转移催化应用于催化裂化汽油氧化脱硫的研究,2006,27(1):l44~146
    [41]Dishun Zh, Hongwei Ren, Jianlong W, et al Kinetics and Mechanism of Quaternary Ammonium Salts as Phase-Transfer Catalysts in the Liquid-Liquid Phase for Oxidation of Thiophene, Energ. Fuel., 2007, 21(5): 2543~2547
    [42]Dishun Zh, Jianlong W,Erpeng Zh. Oxidative desulfurization of diesel fuel using a Br?nsted acid room temperature ionic liquid in the presence of H2O2, Green Chem., 2007, 9: 1219~1222
    [43]Dishun Zh, Zhimin S, Fatang L, et al. Oxidative Desulfurization of Thiophene Catalyzed by (C4H9)4NBr·2C6H11NO Coordinated Ionic Liquid, Energ. Fuel., 2008, 22: 3065~3069
    [44]Collins F M, Lucya R, Sharp C. Oxidative desulphurization of oils via hydrogen peroxide and heteropolyanion catalysis, J.Mol.Cata1.A:Chemical, 1997, 117(1~3): 397~403
    [45]Huang D, Wang Y J, Yang L M, et al. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization, Ind. Eng. Chem. Res., 2006, 45: 1880~1885
    [46]Yazu K, Yamamoto Y, Furuya T, et al. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil, Energ. Fuel., 2001, 15: 1535~1536
    [47]Yazu K, Furuya T, Miki K, et al. Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Light Oil with Hydrogen Peroxide in a Light Oil/Acetic Acid Biphasic System, Chemistry Letters, 2003, 32(10): 920~921
    [48]Yazu K, Furuya T, Miki K. Immobilized Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Diesel Oil with Hydrogen Peroxide, Journal of Japan Pretroleum Insititute, 2003, 46(6): 379~382
    [49]Mure T, Craig F, Zbigniew R. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems, Applied Catalysis A: General, 2001, 219(1-2): 267~280
    [50]Komintarachat C, Trakarnpruk W. Oxidative Desulfurization Using Polyoxometalates, Ind. Eng. Chem. Res., 2006, 45: 1853~1856
    [51]Can L, Zhongxuan J, Jonbo G, et el Ultra-Deep Desulfurization of Diesel: Oxidation with a Recoverable Catalyst Assembled in Emulsion, Chem. Eur. J. 2004, 10: 2277~2280
    [52]Torres-Garcia E, Canizal G, Velumani S, et al. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts, Appl. Phys. A, 2004, (79): 2037~2040
    [53]Ramirez-Verduzco L F, Torres-Garcia E, Gomez-Quintana R, et al. Desulfurization of diesel by oxidation/extraction scheme: influence of the extraction solvent, Catalysis Today, 2004, 98 (1~2): 289~294
    [54]Beatriz Z, Francisco P, Miguel A V. Catalyst screening for oxidative desulfurization using hydrogen peroxide, Catalysis Today, 2005,106 (1~4): 219~221
    [55]Cedeno Caero L, Hernandez E, Pedrazaf F, et al Oxidative desulfurization of synthetic diesel using supported catalysts Part I. Study of the operation conditions with a vanadium oxide based catalyst, Catalysis Today, 2005, 107~108: 564~569
    [56]Shiraishi Y, Hirai T, Komasawa I. Oxidative Desulfurization Process for Light Oil Using Titanium silicate Molecular Sieve Catalysts, Journal of Chemical Engineering of Japan, 2002, 35(12): 1305~1311
    [57]Shiraishi Y, Naito T, Hirai T. Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil, Ind. Eng. Chem. Res., 2003, 42: 6034~6039
    [58]孔令艳,李钢,王祥生,等,TS-1/过氧化氢催化体系中有机硫化物的选择氧化,催化学报,2004,25(10):775~778
    [59]Lingyan K, Gang L, Xiangsheng W. Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H2O2 under mild conditions, Catalysis Letters, 2004, 92(3–4): 163~167
    [60]Lingyan K, Gang L, Xiangsheng W. Mild oxidation of thiophene over TS-1/H2O2, Catalysis Today, 2004,93–95: 341~345
    [61]Lingyan K, Gang L, Xiangsheng W, Bo W, Oxidative Desulfurization of Organic Sulfur in Gasoline overAg/TS-1, Energy Fuels, 2006, 20: 896~902
    [62]王云,李钢,王祥生,等,Ti-HMS催化氧化脱除模拟燃料中的硫化物,催化学报,2004,26(7):567~570
    [63]Wang D H, Qian E W, Amano H, et al. Oxidative desulfurization of fuel Oil: PartⅠOxidation of dibenzothiophenes using t-butyl hydroperoxide, Appl.Catal.A: General, 2003, 253(1): 91~99
    [64]Ishihara A, Wang D H, Dumeignil F, et al. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process,Appl. Catal. A: General, 2005, 279: 279~287
    [65]Otsuki S, Nonaka T, Qian W, et al. Oxidative desulfurization of middle distillate-oxidation of dibenzothiophenes using tert-butyl Hypochlorite, Sekiyu Gakkaishi, 2001, 44(1): 18~24
    [66]李建源,周新锐,赵德丰,等,过氧化环己酮对二苯并噻吩的氧化脱硫研究,燃料化学学报,2006,34(2):249~251
    [67]Otsuki S, Nonaka T, Qian W, et al. Oxidative desulfurization of middle distillate using ozone, Journal of the Japan Petroleum Institute, 1999, 42(5): 315~320
    [68]杨金荣,候影飞,孔瑛,等,柴油臭氧氧化脱硫研究,石油大学学报(自然科学版),2002,26(4):84~86,89
    [69]Murata S, Murata K, Kidena K, et al. A Novel Oxidative Desulfurization System for DieselFuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes, Energy Fuels, 2004, 18: 116~121
    [70]唐晓东,王豪,税蕾雷,等,柴油催化氧化脱硫技术研究,炼油技术与工程,2004,34(6):47~49
    [71]唐晓东,刘亮,税蕾雷,直馏柴油催化氧化脱硫均相催化剂的制备与评价,化工学报,2005,56(4):642~645
    [72]唐晓东,崔盈贤,于志鹏,等,直馏柴油的选择性催化氧化脱硫,石油学报(石油加工),2006,22(1):90~94
    [73]Sampanthar J T,Huang X, Jian D, et al. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel, Applied Catalysis B: Environmental, 2006, 63: 85~93
    [74]Hairai T, Shiraishi Y, Ogawa K, et al. Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquid - Liquid Extraction, Ind. Eng. Chem. Res., 1997, 36: 530~533
    [75]ShiraishiY, TakiY, Hirai T, et al. Effect of photosensitzer and Hydrogen Peroxide on desulfurization of Light Oil by Photochemical Reaction and Liquid-Liquid Extraction, Ind. Eng. Chem. Res., 1997, 36: 530~533
    [76]Shiraishi Y, Harm T, Komasawa I. A deep desulfurization process for light oil by photochemical reaction in an organic two-phase liquid-liquid extraction system, Ind. Eng. Chem. Res., 1998, 37: 203~211
    [77]Shiraishi Y, Tachibana K, Harai T, et al. Photochemical production of biphenyls from oxidized sulfur compounds obtained by oxidative desulfurization of light oils, Energy Fuels, 2003, 17: 95~100
    [78]Shiraishi Y, Taki Y, Hirai T, et al. Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System, Ind. Eng. Chem. Res., 1999, 38: 3310~3318
    [79]Shiraishi Y, Taki Y, Hirai T, et al. Visible Light-Induced Desulfurization Process for Catalytic-Cracked Gasoline Using an Organic Two-Phase Extraction System, Ind. Eng. Chem. Res., 1999, 38: 4538~4544
    [80]Shiraishi Y, Taki Y, Hira T, et al. Visible light-induced desulfurization technique for light oils, Chemical Communication, 1998, 2601~2610.
    [81]战风涛,吕志凤,徐永强,等,柴油的光诱导氧化脱硫研究,炼油技术与工程,2005, 35(4):40~43
    [82]赵地顺,刘翠微,马四国,催化裂化汽油光催化氧化脱硫光敏剂的研究,石油与天然气化工,35(3):191~195
    [83]赵地顺,刘翠微,马四国,FCC汽油光催化氧化脱硫的实验室研究,石油炼制与化工,37(6):23~26
    [84]Aboel-Magd A, Abdel-Wahab, Abd El-Aal, et al. TiO2-Photocatalytic Oxidation of Selected Heterocyclic Sulfur Compounds, Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114: 213~218
    [85]Matsuzawa S, Tanaka J, Sato S, et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation, Journal of Photochemistry and Photobiology A: Chemistry 2002, 149: 183~189
    [86]白石康浩,液液抽出罚と光化学反应を利用すそ轻油の新しソ深度脱硫フロャスヮ,ヶッカル…ヮェソッニヶ,1998,43(8):34~39
    [87]Fujishima A, Honda K. Electrochemical potolysis of water at a semiconductor electrode, Nature, 1972, 238 (5338): 38~45
    [88]Frank S N, Bard A J. Semiconductor electrodes.12.Photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes, J. Am. Chem. Soc., 1977, 99 (14): 4667~4675
    [89]Keshmiri M, MohseniM, Troczynski T. Development of Novel TiO2 Sol-gel-derived Composite and its Photocatalytic Activities for Trichloroethylene Oxidation, Applied Catalysis B: Environmental, 2004, 53(4): 209~219
    [90]沈伟韧,赵文宽,贺飞,等,TiO2光催化反应及其在废水处理中的应用,化学进展,1998,10(4):349~361
    [91]Wang K H, Tsai H H, Hsieh Y H. A Study of Photocatalytic Degradation of Trichloroethylene in Vapor Phase on TiO2 Photocatalyst, Chemosphere, 1998, 36(13): 2763~2773
    [92]胡安正,唐超群,纳米TiO2光催化材料及其应用于环境保护的研究进展,功能材料,2001,32(6):586~594
    [93]Hoffmann M N, Martins S T, Choi W, et al. Enviromental application of semi conductor photocatalysis, Chem. Rev., 1995, 95: 69~96
    [94]Borgarello E, Serpone N, Emo G, et al. Pelizzetti E, Minero C, Light induced reduction of rhodium(Ⅲ) and palladium(Ⅱ) on the titanium dioxide dispersions and the selective photochemical separation and recovery of gold (Ⅲ) platium(Ⅳ) ,and rhodium (Ⅲ) in chloride media, Inorg. Chem., 1986, 25(25): 4499~4503
    [95]Carraway E R, Hoffman A J, Hoffmann M R. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science Technology, 1994, 28(5): 786~793
    [96]Richard C. Regioselectivity of Oxidation by Positive Holes (h+) in Photocatalytic Aqueous Transformations, Journal of Photochemistry and Photobiology A: Chemistry, 1993, 72(7): 179~182
    [97]Gerischer H, Heller A. Photocatalytic Oxidation of Organic Molecules at TiO2Particles by Sunlight in Aerated Water, Journal of the Electrochemical Society, 1992, 139(1): 113~118
    [98]唐玉朝,胡春,王怡中,TiO2光催化反应机理及动力学研究进展,化学进展,2002,14(3):192~199
    [99]Goslich R, Dillert R, Detlef B. Solar Water Treatment: Principles and Reactors, Water Science and Technology, 1997, 35(4): 137~148
    [100]Litter M I. Heterogeneous Photocatalysis: Transition Metal Ions in Photocatalytic Systems, Applied Catalysis B: Environmental, 1999, 23(2-3): 89~114
    [101]Minero C, Pelizzetti E, Malato S, et al. Large Solar Plant Photocatalytic Water Decontamination: Effect of Operational Parameters, Solar Energy, 1996, 56(5): 421~428
    [102]Turchi C S, Ollis D F. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack, Journal of Catalysis, 1990, 122(5): 178~192
    [103]Sun L, Bolton J R. Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions, Journal of Physical Chemistry, 1996, 100(10): 4127~4134
    [104]Schwarz P F, Turro N J, Bossmann S H, et al. A New Method to Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions, Journal of Physical Chemistry B, 1997, 101(36): 7127~7134
    [105]Noda H, Dikawa K, Kamada H. ESR Spin-Trapping Study of Active Oxygen Radicals from Photoexcited Semiconductors in Aqueous H2O2 Solutions, Bulletin of the Chemical Society of Japan, 1993, 66(2): 455~458
    [106]Mao Y, Schoneich C, Asmus K D. Identification of Organic Acids and Other Intermediates in Oxidative Degradation of Chlorinated Ethanes on Titania Surfaces En Route to Mineralization: A Combined Photocatalytic and Radiation Chemical Study, Journal of Physical Chemistry, 1991, 95(24): 10080~10089
    [107]Sun Y, Pignatello J J. Evidence for a Surface Dual Hole-Radical Mechanism in the Titanium Dioxide Photocatalytic Oxidation of 2,4-Dichlorophenoxyacetic Acid, Environmental Science & Technology, 1995, 29(8): 2065~2072
    [108]Assabane A, Ichou Y A, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid), Applied Catalysis B: Environmental, 2000, 24(2): 71~87
    [109]Carrway E R, Hoffman A J, Hoffmann M R. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environmental Science Technology, 1994, 28(5): 786~793
    [110]Ken-ichi I, Akira F, Toshiya W, et al. Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst, Journal of Photochemistry and PhotobiologyA: Chemistry, 2000, 134(1-2): 139~142
    [111]Scot T M, Colin L M, Michael R H. Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J. Phys. Chem., 1994, 98: 13695~13704
    [112]Rao M V, Rajeshwar K, Pal Verneke r V R, et al. Photosynthetic production of H2 and H2O2 on semiconducting oxide grains in aqueous solutions, J. Phys. Chem., 1980, 84: 1987~1991.
    [113]施利毅,李春忠,房鼎业,TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究,无机材料学报,1999,14(5):717~725
    [114]周震,阎杰,王先友,纳米材料的特性及其在电催化中的应用,化学通报,1998,4:23~26
    [115]Wang Y, Suna A, Mahler W, et al. PbS in polymers from molecules to bulk solids, J. Chem. Phys., 1987, 87(12): 7315~7322.
    [116]史载锋,范益群,徐南平,不同光源对光催化降解亚甲基蓝的影响,南京化工大学学报,2000,22(1):59~63
    [117]王怡中,符雁,汤鸿霄,甲基橙溶液多相光催化降解的研究,环境科学,1998,19(1):1~4
    [118]王传义,刘春艳,沈涛,半导体光催化剂的表面修饰,高等化学学报,1998,19(12):2013~2019
    [119]Guido R, Jacques M, Michael G, et al. Charges carrier trapping and recombination dynamicsin small semiconductor particles, J. Am. Chem. Soc., 1985, 107: 8054~8059
    [120]Huaming Y, Rongrong S, Ke Z, et al. Synthesis of WO3/TiO2 Nanocomposites via Sol–Gel Method, Journal of Alloys and Compounds, 2005, 398(1-2): 200~202
    [121]傅宏刚,王建强,王哲,等,TiO2光催化剂表面修饰研究进展,黑龙江大学自然科学学报,2001,18(3):85~89
    [122]刘国光,丁雪军,张学治,等,光催化氧化技术的研究现状及发展趋势环境污染治理技术与设备,2003,48(3):65~69
    [123]鲁文升,肖光参,李旦振,等,Pt/InVO4/TiO2可见光催化剂的制备及性能研究,无机化学学报,2005,21(10):1495~1499
    [124]辛柏福,井立强,任志宇,等,多价态共存的Ag-TiO2光催化剂的制备及光催化活性,化学学报,2004,62(12):1110~1114
    [125]李发堂,赵地顺,张丽英,等,亲油性纳米TiO2的合成及其光催化氧化催化裂化汽油脱硫的研究,现代化工,2006,26(2)增刊:157~159
    [126]武正簧,用TiO2薄膜作催化剂降解苯酚的研究,化学工业与工程,1994,16(2):102~104
    [127]前泽昭礼,光酸化物废水处理,机能材料,1998,18(7):25~31
    [128]亓新华,王红娟,二氧化钛光催化剂负载工艺研究进展,电镀与精饰,2006,28(1):25~29
    [129]余灯华,廖世军,江国东,几种新型光催化剂及其研究进展,工业催化,2003,11(6):48~52
    [130]Takata T, Tanaka A , Hara M, et al. Recent progress ofphotocatalysts for overall water splitting, Catalysis Taday, 1998, 44: 17~26
    [131]Domen K, Yoshimura J, Sekine T, et al. A novel series of photocatalysts with an ion-exchangeable layered structure of niobate, Catalysis Letters, 1990, 4: 339~343
    [132]Tsuyoshi T, Yoko F, Kiyoaki S, et al. Photocatalytic decomposition of water on spontaneously hydrated layered perovskites, Chem Mater,1997, 9: 1063~1064
    [133]Machida M, Yabunaka J, Kijima T, et al. Electronic structure of layered tantalates photocatalysts, RbLnTa2O7 (Ln=La, Pr, Nd, and Sm), The International Journal of Inorganic Materials, 2001, 3(6): 545~550
    [134]Kato H, Kudo A, Energy structure and photocatalytic activity for water splitting of Sr2(Ta1-XNbX)2O7 solid solution, Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1): 129~133.
    [135]Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen ttanate, International Journal of Inorganic Materials, 2000, 2: 339~346
    [136]Machida M, Xuwei M, Taniguchi H, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3-xMxO7 and K2Ti4-xMxO9 (M=Mn, Fe, Co, Ni, Cu), Journal of Molecular Catalysis A: Chemical, 2000, 155: 131~142
    [137]Ogura S, Kohno M, Sato K, et al. Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13(M=Na, K, Rb, Cs), Applied Surface Science, 1997 ,121-122: 521~524
    [138]Inoue Y, Asai Y, Sato K. Photocatalysts with tunnel structures for decomposition of water. Part 1: BaTi4O9, a pentagonal prism tunnel structure and its combination with various promoters, J Chem Soc Faraday Trans, 1994, 90: 797~802
    [139]Shangguan W, Yoshida A. Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide, International Journal of Hydrogen Energy, 1999, 24: 425~431
    [140]宋宽秀,傅希贤,单志兴,用离子熔盐法制备光催化剂MTiO3(M = Mg、Ca、Sr、Ba),天津大学学报,1995,28(4):546~552
    [141]傅希贤,单志兴,肖坤林,等,掺杂对PbTiO3光催化活性的影响,应用化学,1996,13(6):58~60
    [142]桑丽霞,傅希贤,白树林,等,ABO3钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系,感光科学与光化学,2001,19(2):109~115
    [143]Vasenkov S, Frei H. UV-Visible Absorption Spectroscopy and Photochemistry of an Alkene·O2 Contact Charge-Transfer System in Large NaY Crystals, J. Phys. Chem. B, 1997, 101: 4539~4543
    [144]Lee G D, Jung S K, Jeong Y J, et al. Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts, Appl. Catal. A-Gen., 2003, 239: 197~208
    [145]Young-Hoon Y, Heinz F. Photoactivation of CO in Ti Silicalite Molecular Sieve, J. Phys. Chem. A, 2001, 105: 5334~5339
    [146]Ulagappan N, Frei H. Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy, J. Phys. Chem. A, 2000, 104: 7834~7839
    [147]Gun D L, Vu A. T, John L F. Photocatalytic Oxidation and Decomposition of Acetic Acid on Titanium Silicalite, Environ. Sci. Technol., 2001, 35: 1252~1258
    [148]Ban T, Kondoh S, Ohya Y, et al. Degradation reaction of monoethanolamine using TS-1 zeolite as a photocatalyst, Phys. Chem. Chem. Phys., 1999, 1: 5745~5752
    [149]Ikeue K, Yamashita H, Anpo M. Photocatalytic Reduction of CO2 with H2O on Ti-βZeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties, J. Phys. Chem. B, 2001, 105: 8350~8355
    [150]Francesc X L X, Paola C, Carlo L, et al. Enhancement of the ETS-10 Titanosilicate Activity in the Shape-Selective Photocatalytic Degradation of Large Aromatic Molecules by Controlled Defect Production, J. Am. Chem. Soc., 2003, 125: 2264~2271
    [151]Calza P, Paze C, Pelizzetti E, et al. Shape-selective photocatalytic transformation of phenols in an aqueous medium, Chem. Commun., 2001, 2130 ~2131
    [152]Russell F H, Yuni K K. Photoreactivity of ETS-10, Chem. Commun., 2001, 1588~1589
    [153]Higashimoto S, Matsuoka M, Zhang S G. Characterization of the VS-1 catalyst using various spectroscopic techniques and its unique photocatalytic reactivity for the decomposition of NO in the absence and presence of C3H8, Micropor. Mesopor. Mat., 2001, 48: 329~335
    [154]Matsuoka M, Higashimoto S, Yamashita H, et al. In-Situ Investigations of the Photocatalytic Reaction of No With Propane On the Vanadium Silicalite-1 Catalyst, Res. Chem. Intermed., 2000, 26(1): 85~92
    [155]Shu Guo Z, Masao A, Hirotsugu M,et al. Photoluminescence property and photocatalytic reactivity of V-HMS mesoporous zeolites Effect of pore size of zeolites on photocatalytic reactivity, Micropor. Mesopor. Mat., 1998, 21: 621~627
    [156]Masakazu A, Shu Guo Z, Shinya H, et al. Characterization of the Local Structure of the Vanadium Silicalite (VS-2) Catalyst and Its Photocatalytic Reactivity for the Decomposition of NO into N2 and O2, J. Phys. Chem. B,1999, 103: 9295~9301
    [157]Yeom Y H, Ulagappan N, Frei H. Chemical Reactivity of Formaldehyde in a FeAlPO4 Sieve, J. Phys. Chem. A, 2002, 106: 3345~3349
    [158]Yeom Y H, Frei H. Mechanistic Study of CH3OH+O2Photoredox Reaction in a FeAlPO4 Sieve by Time-Resolved FT-IR Spectroscopy, J. Phys. Chem. A, 2002, 106: 3350 ~3355
    [159]Ulagappan N, Frei H. Redox Chemistry of Gaseous Reactants Inside Photoexcited FeAlPO4 Molecular Sieve, J. Phys. Chem. A, 2000, 104: 490~496
    [160]Masakazu A, Masato T, Keita I, et al. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts, Curr. Opin. Sol. Sta. Mater. Sci., 2002, 6: 381~388
    [161]Jinlong Z, Madoka M, Masaya M, et al. Photocatalytic decomposition of NO on Ti-HMS mesoporous zeolite catalysts, Catal. Lett., 2000, 66: 241~243
    [162]Jinlong Z, Madoka M, Terukazu A, et al. In Situ Investigation of the Photocatalytic Decomposition of NO on the Ti-HMS under Flow and Closed Reaction Systems, J. Phys. Chem. B, 2000, 104: 11501~11505
    [163]郭宗英,何静,白琰,等,单金属双中心Ti-MCM-41分子筛催化剂的光催化性能,催化学报,2003,24:181~186
    [164]Hiromi Y, Katsuhiro Y, Masao A, et al. Photocatalytic reactions on chromium containing mesoporous silica molecular sieves (Cr-HMS) under visible light irradiation: decomposition of NO and partial oxidation of propane, Chem. Commun., 2001, (5): 435~436
    [165]Yamashita H, Ariyuki M, Higashimoto S, et al. Characterization and photocatalytic reactivities of Cr-HMS mesoporous molecular sieves, J. Synchrotron Radiat., 1999, 6: 453~454
    [166]Hiromi Y, Katsuhiro Y, Masao A, et al. Photocatalytic ethylene polymerization over chromium containing mesoporous molecular sieves, Stud. Surf. Sci.Catal., 2002, 141: 495~502
    [167]Higashinoto S, Tsumura R, Zhang S G, Photoluminescence Properties of Mo-MCM-41 Mesoporous Molecular Sieves and Their Photocatalytic Reactivity for the Decomposition of NOx, Chem. Lett., 2000, 4: 408~409
    [168]Tsumura R, Higashimoto S, Matsuoka M, et al. Investigations on the photoluminescence properties of Mo-MCM-41 and the photocatalytic decomposition of NO in the presence of CO, Catal. Lett., 2000, 68: 101~103
    [169]董润安,邱勇,宋心琦,卟啉类化合物对生物分子的光敏化氧化,化学进展,1998,10:45~54
    [170]Hwang H M, SlaughterL F, Cook S M, et al. Photochemical and microbial degradation of 2,4,6-trinitrotoluene in a freshwater environment, Bull. Environ. Contam. Tox., 2000, 65: 228~235
    [171]Cooper W J. Photochemistry of environmental aquatic systems(ACS Symposium Series 327), Amer Chemical Society, 1987, 174~190
    [172]Xueheng Zh, Xiaoke H, Huey-Min H. Effects of riboflavin on the phototransformation of benzo[a]pyrene, Chemosphere, 2006, 63(7): 1116~1123
    [173]Bopp M K F, Morell A, Indrak K, et al. Pathogen inactivation of labile blood products, Transfus Med, 2001, 11(3): 149~175
    [174]黄庆,府伟灵,陈斌,等,亚甲蓝/光化学法体外灭活RNA包膜病毒的实验研究,中华医院感染学杂志,2004,14(1):54~59
    [175]邓南圣,吴峰,环境光化学,北京:化学工业出版社,2003,2
    [176]Changyuan L, Zhenhui H, Jingxi P, et al. Photochemical Species of Riboflavin(VitaminB2): Photobiological Implications, J. Radiat. Res. Radiat. Proces., 2002, 18(1): 12~18
    [177]Takayuki H, Yasuhiro S, Ken O, et al. Effect of Photosensitizer and Hydrogen Peroxide on Desulfurization of Light Oil by Photochemical Reaction and Liquid-Liquid Extraction, Ind. Eng. Chem. Res. 1997, 36: 530~533
    [178]王文锋,姚思德,乙腈体系中2-萘乙酮激发三重态性质的激光光解研究,核技术,2001,24(7):605~609
    [179]毕刚,田世忠,氯氰菊酯光敏降解中单线态氧机理研究,分析科学学报,2000,16(6):450~455
    [180]席北斗,负载型催化剂光催化氧化五氯苯酚钠的效果,环境科学,2001,22(1):41~44
    [181]孔令仁,附着态半导体光催化剂光解可溶性染料的研究,环境科学学报,1996,16(4):406~411
    [182]John C C, Yin Z. Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalysts, Wat. Environ. Res., 1996, 68(3): 270~278
    [183]Yin Z, John C C. Fixed-Bed Photocatalysts for Solar Decontamination of Water, Environ. Sci. Technol., 1994, 28: 435~442
    [184]Peter H, Ivo M. Indoor Climate and Air Quality, Journal of Biometeorology, 1998, 42: 1~7
    [185]Fernández A, Lassaletta G, Jiménez V M, et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification, Appl. Catal. B: Environ, 1995, 7: 49~63
    [186]Tokeda N, Torimoto T, Sampath S. Kuwabata S, Yoneyama H, Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photo decomposition Rate of Gaseous Propionaldehyde, J. Phys. Chem., 1995, 99: 9986~9991
    [187]赵青南,余家国,玻璃基TiO2膜的孔径尺寸及其光催化性能,玻璃,2000,27(3):1~3
    [188]赵文宽,覃榆森,方佑龄,水面石油污染物的光催化降解飘浮负载型TiO2光催化剂的制备,催化学报,1999,20(3):368~372
    [189]戴清,路春娥,翁葵平,等,载钛中孔二氧化硅分子筛的光催化性能,催化学报,1999,20(3):313~316
    [190]Matos J, Laine J, HerrmannM J. Effect of the type of activated carbons on the photoncatalytic degradation of aqueous organic pollutants by UV-irradiated titania, Journal of Catalysis, 2001, 200(1): 10~20
    [191]余国贤,陈辉,陆善祥,等,活性炭在过氧化氢氧化脱除二苯并噻吩中的催化作用,华东理工大学学报(自然科学版),2006,32(1):1~6
    [192]余国贤,陈辉,陆善祥,等,活性炭的表面处理对二苯并噻吩催化氧化脱除的影响,燃料化学学报,2005,35(5):566~570
    [193]Yu G X, Lu S X , Chen H, et al. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid, Energy Fuels, 2005, 19: 447~452
    [194]Abe I, Fukuhara T, Maruyama J, et al. Preparation of carbonaceous adsorbents for removal of chloroform from drinking water, Carbon, 2001, 39: 1069~1073
    [195]胡福昌,陈顺伟,日本竹材热解研究的现状,林业科技开发,2001,15(3):8~11
    [196]池岛庸元,木炭、竹炭大百货,日本京都:チャエ-ル.エミエニテイ,2000,21~43
    [197]吴巧玲,竹炭的开发与用途,中国林副特产,2000,52(1):39
    [198]张文标,叶良明,张宏,等,竹炭生产和应用,竹子研究汇刊,2001,20(2):49~54
    [199]汪奎宏,竹类资源利用现状及深度开发,竹子研究汇刊,2000,19(4):72~75
    [200]姜树海,张齐生,蒋身学,竹炭材料的有效利用理论与应用研究进展,东北林业大学学报,2002,30(4):53~56
    [201]胡永煌,竹炭、竹醋液的生产技术及应用开发研究进展,林产化学与工业,2002,22(3):79~83
    [202]野村隆哉,竹炭のはたろき竹醋液のはたろき,竹炭竹醋液,2000,1:4~21
    [203]张齐生,中国竹资源及开发利用前景-竹炭竹酢液2000年国际年会论文集.日本京都:竹炭竹醋会社,2000:6~7
    [204]侯伦灯,张齐生,陆继圣,竹炭微晶结构的X射线衍射分析,福建林学院学报,2005,25(3):211~214
    [205] Takashi A, Shigehisa I, Takeshi Y, et al. Science of Bamboo Charcoal: Study on Carbonizing Temperature of Bamboo Charcoal and Removal Capability of Harmful Gases, J. Health Sci. 2002, 48: 473~479
    [206]Kimura Y, Suto S, Tatsuka M. Evaluation of Carcinogenic/Co-carcinogenic Activity of Chikusaku-eki, a Bamboo Charcoal By-product Used as a Folk Remedy, in BALB/c 3T3 Cells, Biol. Pharm. Bull., 2002, 25: 1026~1029
    [207]Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal, Bioresour.Technol., 2004, 95: 255~257
    [208]王秀芳,张会平,肖新颜,等,苯酚在竹炭上的吸附平衡和动力学研究,功能材料,2005,5(36):746~749
    [209]张启伟,王桂仙,竹炭的微波处理方法与效果的研究,林产化学与工业,2005,25(4):93~96
    [210]郑旭煦,殷钟意,邱林,等,活性炭负载纳米TiO2光催化降解性能研究,化学研究与应用,2006,18(3):284~287
    [211]裘祖文,电子自旋共振波谱,北京:科学出版社,1980,580~585
    [212]Gregg S J, Sing K S W, Adsorption, Surface Area and Porosity.高敬琮译,吸附、比表面和孔隙率,北京:化学工业出版社, 1989,118
    [213]Faust D S, Aly M O, Chemistry of Wastewater Treatment, Butterworths, Boston, 1983, 20
    [214]Hameed B H, Din A T M, Ahmad A L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J. Hazard. Mater. 2007, 141: 819~825
    [215]Haghseresht F, Lu G Q. Adsorption Characteristics of Phenolic Compounds onto Coal-Reject-Derived Adsorbents, Energy & Fuel, 1998, 12: 1100~1107
    [216]Langergren S, Svenska B K. Zur theorieder sogenannten adsorption. geloester stoffe, Veternskapsakad Handlingar, 1898,24: 1~39
    [217]Ania C O, Parra J B, Arenillas A, et al. On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons, Appl. Surf. Sci., 2007, 253: 5899~5903
    [218]Haji S, Erkey C. Removal of Dibenzothiophene from Model Diesel by Adsorption on Carbon Aerogels for Fuel Cell Applications, Ind. Eng. Chem. Res., 2003,42: 6933~6937
    [219]周玉,武高辉,材料分析测试技术一材料X射线衍射与电子显微分析,哈尔滨:哈尔滨工业大学出版社,1998,2~5
    [220]李树棠,晶体射线衍射学基础,北京:冶金工业出版社,1999,171
    [221]黄惠忠,纳米材料分析,北京:化学工业出版社,2003,244
    [222]Zhang Q H, Gao L, Guo J K. Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis, Applied Catalysis B: Environmental, 2000, 26(3): 207~215
    [223]Spurr R A, Myers H. Quantitative Analysis of Anatase-Rutil Mixtures with An X-ray Diffractometer, Analytical Chemistry, 1957, 2(5): 760~768
    [224]刘守新,刘鸿,光催化及光电催化基础与应用,北京:化学工业出版社,2006,125
    [225]李坚,木材波谱学,北京:科学出版社,2003,166~179
    [226]Wang N, Low M J D. Spectroscopic Studies of Carbons. XI X. the Charring of Sucrose, Materials Chemistry and Physics, 1990, 26: 465~481
    [227]Lewis L C, Chemistry of Carbonization, Carbon, 1982, 20(6): 519~529
    [228]Gutsze A, From Char to Carbon: A Study of A-centers, Carbon, 1977, 15: 343~346
    [229]Mrozowski S. ESR of Carbons in the Transition Range-I, Carbon, 1979, 17: 227~236
    [230]Mrozowski S. ESR of Carbons in the Transition Range-II, Carbon, 1982, 20(4): 303~317
    [231]周建斌,竹炭环境效应及作用机理的研究:[博士学位论文],南京:南京林业大学,2005
    [232]张铸勇,精细有机合成单元反应,上海:华东化工学院出版社,1990,64~68
    [233]前泽昭礼,光酸化物废水处理,机能材料,1998,18(7):25~31
    [234]Chen S F. Photocatalytic degradation of organophorous pesticides using supported TiO2 on hollow glass microheads, J environ Scil, 1997, 9: 278~284
    [235]Hiroaki T, Akihiko H. A patterned TiO2/SnO2 bilayer type photocatalyst, J Phys Chem, B., 2000, 104(19): 4585~4587
    [236] Akihiko H. Acceleration of oxidations and retardation of reductions in photocatalysis of aTiO2/SnO2bilayer type catalyst, J Electronchem Soc, 2000, 147(6): 2279~2283
    [237]Zhe O, Jin H. Novel silica gel supported TiO2 photocatalyst sythesized by CVD method, Langmuir, 2000, 16(15): 6216~6222
    [238]Zhe Y. The chemical states and properties of doped film photocatalyst prepared using the sol-gel method with TiC14 as precursor, Appl Surf Sci, 2000, 158(1): 32~37
    [239]Kow W S. Preparation and photocatalytic activity of metel-supported resin-bonded titania, J Environ Sci Health Part A: Toxic/Hazard Subst Environ, 2000, A 35(3): 419~443
    [240]Takenori D, Kiyohisa I. Photocatalytilly highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates, J Electronchem Soc, 2000, 147(6): 2263~2267
    [241]Sabate J. Nature and properties of pure and Nb-doped TiO2ceramic menbranes affecting the photocatalytic degration of 3-chlorosalicylic acid as a model of halogenated organic compounds, J Catal, 1992, 134(1): 36~46
    [242]古政荣,陈爱平,戴智铭等.活性炭-纳米TiO2复合光催化剂空气净化网的研制,华东理工大学学报,2000,26(4):367~371
    [243]江力文,负载型TiO2固定相光催化固定化技术研究,工业水处理,2000,20(9):8~10
    [244]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev., 1997, 97: 2373~2420
    [245]Kambala V, Subba R, Basavaraju S, et al. Titanium oxide loaded zeolites as photocatalysts for the cyclization of ethylenediamine with propylene glycol, Catalysis Letters, 2003, 90(1-2): 95~102
    [246]Noorjahan M, Kumari V D, Subrahmanyam M, et al. A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film, Appl. Catal. B: Environmental, 2004, 47: 209~213
    [247]Ung-Suh, Hyung M, Luan Z H, et al. Photoinization of porphyrins in mesoporous siliceous MCM-41, AlMCM-41, and TiMCM-41 molecularieves, Journal of Physical Chemistry B, 1997, 101(49): 10455~10463.
    [248]Eddy E P, Davydov L, Smirniotis P G. Synthesis, characterization and photocalytic activity of titania loaded Cd-MCM-41, Catalysis Letters, 2002, 79(1-4):183~189
    [249]Yoneyama H, Torimoto T. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations, Catal. Today, 2000, 58: 133~140
    [250]Torimoto T, Ito S, Kuwabata S, et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide, Environ. Sci. Technol., 1996, 30: 1275~1281
    [251]Dai Q, Li P, Miao Y. Synthesis of pureTiO2 mesoporous molecular sieves and their photocatalytic activity, Chinese Journal of Catalysis, 1998, 19(6): 483~484
    [252]Anpo M, Yamashita H, Ikeue K, et al. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catalysis Today, 1998, 44(1-4): 327~332
    [253]Reddy E P, Davydov L, Smirniotis P. TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support, Appl. Catal. B: Environ., 2003, 42: 1~11
    [254]Mahalakshmi M, Vishnu Priya S, Arabindoo B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβzeolite-supported TiO2, Journal of Hazardous Materials, doi:10.1016/j. jhazmat. 2008.03.098
    [255]Ikeue K, Yamashita H, Anpo M. Photocatalytic reduction of CO2 with H2O on titanium oxides prepared within the FSM216 mesoporous zeolites, Chemical Letter, 1999, 11: 1135~1136
    [256]Sankararaman S, Yoon KB, Yabe T, et al. Control of back electron transfer from charge-transfer ion pairs by zeolite supercages, J. Am. Chem. Soc., 1991, 113: 1419~1421
    [257]Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent, 4,410,501, 1983
    [258]Reddy J S, Kumar R, Ratnasamy P. Titanium Silicate-2: Synthesis, Characterization and Catalytic Properties, Appl. Catal., 1990, 58(2): L1~L4
    [259]Clerici M C, Bellussi G, Romano U. Synthesis of Propylene Oxide from Propylene andHydrogen Peroxide Catalyzed by Titanium Silicalites, J.Catal., 1991,129 (1): 159~167
    [260]卢冠忠,张国斌,刘文孝,等,TS分子筛的催化氧化性能研究II.丙烯环氧化,分子催化,1997,11(3):191~195
    [261]曹国英,李宏愿,夏清华,TS-1分子筛催化剂上丙烯基氯的环氧化性能,催化学报,1995,16(3):217~221
    [262]Thiele G F, Roland E, Propylene epoxidation with hydrogen peroxide and titanium silicalitecatalyst:activity, deactivation and regeneration of the catalyst, J. Mol. Catal. A: Chemical, 1997, 117(3): 351~356
    [263]李钢,郭新闻,王丽琴,等,钛硅分子筛催化丙烯环氧化反应条件的研究,分子催化,1998,12(6):436~440
    [264]高焕新,曹静,陆巍然,等,丙烯氧化制环氧丙烷催化剂的合成,石油学报(石油加工),2000,16(3):79~83
    [265]高焕新,卢文奎,陈庆龄,钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究,催化学报,2002,23(1):3~8
    [266]陈晓辉,李世军,陈宪,等,过氧化氢法制备环氧丙烷的反应动力学研究,西安交通大学学报,2000,34(9):97~99
    [267]薛俊利,许锡恩,TS-1催化丙烯环氧化反应本征动力学,化工学报,2000, 51(2):204~209
    [268]Roftia P, Leofanti C, Cesana A. Cyclohexanone ammoximation: a break through in the 6-caprolactam production process. Stud. Surf. Sci. Catal., 1990, 50: 43~51
    [269]Thangaraj A, Sivsanker S, Ratnasamy P. Catalytic properties of crystalline titanium-silicalite III. Ammoximation of cyclohexanone, J. Catal., 1991, 50: 43~51
    [270]柯于勇,卢冠忠,王正荣,TS分子筛的催化氧化性能研究Ⅲ.苯酚氧化制苯二酚,华东理工大学学报,1998,24(1):116~121
    [271]Thangaraj A, Kumar R, Ratnasamy P. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites. Appl. Catal., 1990, 57: L1~L3
    [272]戴延凤,刘希尧,萨学理,TS-1分子筛催化苯羟基化性能,分子催化,1998,12(1):48~52
    [273]Yang W B, Liu X Y. Hydroxylation of aromatic hydrocarbons with H2O2 over titanium silicalite(TS-1), Chin. J. Mol. Catal., 1998, 12(2): 83~84
    [274]张英,梁泽生,吴保军,等,张明森,王秀恩,TS-1催化剂催化合成4-甲基邻苯二酚,石油化工,2001,30(5):368~371
    [275]Maspero F, Romana U. Oxidation of alcohol with H2O2 catalyzed by titanium silicalite-1, J.Catal., 1994, 146(2): 476~482
    [276]Reddy J S, Sayari A. Oxidation of propylanmine over titanium silicate molecular sieves, Appl.Catal. A:General, 1995, 128: 231~242
    [277]柯于勇,卢冠忠,沈丹凤,等,TS分子筛的催化氧化性能研究I.戊烷的氧化,石油化工,1997,26(2):82~87
    [278]Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide, Catalyzed by titanium silicates, Appl. Catal., 1991,68: 249~261
    [279]Huybrechts D R C, Buskens P L, Jacobs P A. Alkane oxygenatians by H2O2 on titanium silicalite, Stud. Surf. Sci. Catal., 1992, 72: 21~28
    [280]Ravinder S, Reddy J, Reddy S, et al. Sulfoxidation of Thioethers using Titanium Silicate Molecular Sieve Catalystst, J. Chem. Soc., Chem. Commun., I992, 84~85
    [281]Moreau P, Hulea V, Gomez S, et al. Oxidation of sulfoxides to sulfones by hydrogen peroxide over Ti-containing zeolites, Applied Cataltsis A: General, 1997, 55: 253~263
    [282]Yasuhiro S, Takayuki H, Isao K. Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts, Journal of Chemical Engineering of Japan, 2002, 35(12): 1305~1311.
    [283]Kong LY, Li G, Wang X S. Kinetics and Mechanism of Liquid Phase Oxidation of Thiophene over TS-1Using H2O2 under Mild Conditions, Catal. Lett., 2004, 92(3-4): 163~167
    [284]Kong LY, Li G, Wang X S. Mild Oxidation of Thiophene over TS-1/H2O2, Catal.Today, 2004, 93-95: 341~345
    [285]Li G, Wang X S,Wang Y. Thiophene Oxidation over Titanium Silicalite Using Hydrogen Peroxide, Chinese J. Catal.,2004, 25(2): 89~90
    [286]孔令艳,李钢,王祥生,等,TS-1双氧水催化体系中各种硫化物选择氧化的研究,催化学报,2004,25(10):775~778
    [287]周炜,淳远,须沁华,等,新型液固相同晶取代法制备Ti-β沸石,高等学校化学学报,2004,25(1):16~20
    [288]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992, 114: 10834~ 10843
    [289]王幸宜,戴启广,郑翊,MCM-41负载的La,Ce和Pt催化剂上三氯乙烯的低温催化燃烧,催化学报,2006,27(6):468~470
    [290]陈佳,万颖,李和兴,Pd/NH_2C_3H_6-MCM-41催化水介质中的碘苯Ullmann反应,催化学报,2006,27(4):339~342
    [291]Yun H, Noriko W, Koichiro T, et al. Photo-assisted synthesis of V and Ti-containing MCM-41 under UV light irradiation and their reactivity for the photooxidation of propane, Catalysis Today, 2007, 120: 139~144
    [292]Oscar A A, Andrea R B, Jorgelina C. Synthesis at atmospheric pressure and characterization of highly ordered Al, V, and Ti-MCM-41 mesostructured catalysts Catalysis Today, 2008,133–135: 891~896
    [293]许俊强,储伟,陈慕华,等,介孔分子筛V-MCM-41的水热法制备与合成机理,催化学报,2006,27(8):671~677
    [294]Shaohua S, Liejin G. Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photocatalysts for water splitting, Catalysis Today, 2007, 129(3): 414~420.
    [295]将斯扬,孔岩,吴丞等,等,高Cu含量MCM-41在苯直接羟基化反应中的催化性能,催化学报,2006,27(5):421~426
    [296] Liu B S, Xu D F, Wu Z X. Preparation of a Cu-MCM-41 adsorbent and its desulfurization performance for diesel fuel, Chinese Journal of Catalysis, 2006, 27(5): 372~374
    [297]Galacho C, Ribeiro Carrott M M L, Carrott P J M. Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature, Microporous and Mesoporous Materials, 2008, 108: 283~293
    [298] Griselda A E, Sandra G C, Corina M C, et al. The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves, Catalysis Today, 2008,133–135: 639~646
    [299]Udayshankar G S, Ruth T W, Keith R H, et al. Synthesis and characterisation of titanium and titanium nitride-functionalised MCM 41 materials, Solid State Sci, 2005, 7: 1104~1112
    [300]Corma A, Navarro M T, Pérez Pariente J. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J Chem Soc, Chem Commun, 1994, 2: 147~148
    [301]Asim B, Takashi T. Organically Modified Titanium-Rich Ti-MCM-41, Efficient Catalysts for Epoxidation Reactions, Journal of Catalysis, 2000, 189: 31~39
    [302]江天肃,翟庆洲,王巍,等,Ti-(纳米MCM-41)复合材料的制备与表征稀有金属材料与工程,2005,34(8):1209~1212
    [303]Kaifeng L, Paolo P P, Hans V, et al. Synthesis and catalytic activity of Ti-MCM-41 nanoparticles with highly active titanium sites, Journal of Catalysis, 2008, 254: 64~70
    [304]Aiju Z, Zhihong L, Zicheng L, et al. Effects of different Ti-doping methods on the structure of pure-silica MCM-41 mesoporous materials, Applied Surface Science, 2008, 254: 6298~6304
    [305]于健强,李灿,许磊,等,以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛Ⅰ. Ti-MCM-41分子筛的合成,催化学报,2001,22(3):267~270
    [306]Kyoung-Ku K, Chan-Ho P, Wha- Seung A. Microwave preparation of a titanium-substituted mesoporous molecular sieve, Catalysis Letters, 1999, 59(1): 45~49.
    [307]赵杉林,张扬建,孙桂大,等,硅钛沸石分子筛TiMCM-41的微波合成与表征,催化学报,1999,20(1):93~95
    [308]郭新闻,李英武,王祥生,Ti-MCM-41的合成及表征,大连理工大学学报,2005,45(3):326~329
    [309]Qiang C, Zhong-Sheng L, Wen-Qin P, et al. Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium, Chem. Mater., 2001, 13: 258~263
    [310]Robert I N, Dhanasekaran T, Yimei C, et al. Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size, Chem. Mater., 2002, 14: 4721~4728
    [311]Kuo-Tseng L, Chia-Chieh L. Propylene epoxidation over Ti-MCM-41 catalysts prepared by chemical vapor deposition, Catal. Today, 2004, 97: 257~261
    [312]Scarano D, Zecchina A, Bordiga S, et al. Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region, J. Chem. Soc., Faraday Trans, 1993, 89: 4123~4130
    [313]Blasco T, Camblor M A, Corma A, et al. Direct Synthesis and Characterizationof Hydrophobic Aluminum-Free Ti-Beta Zeolite, J. Phys. Chem. B, 1998, 102: 75~88
    [314]Camblor M A, Corma A , Pérez-Pariente J. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm–1 band, J. Chem. Soc. Chem. Commun., 1993: 557~559
    [315]Goutam D, Andrzej M T, Israel E W, et al. Characterization of titania silicalites, Zeolites, 1993, 13: 365~373
    [316]何静,孙鹏,段雪,等,Ti-MCM-41的结构特征与芳烃羟化反应的化学亲和选择性,燃料化学学报,2001,29(5):417~421
    [317]Sayari A. Catalysis by crystalline mesoporous molecular sieves, Chem. Mater., 1996, 8: 1840~1852
    [318]Luo Y, Lu G Z, Guo Y L, et al. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis, Catalysis Communications, 2002, 3: 129~134
    [319]Maria D A, Luan Z H, Klinowski J. Titanosilicate mesorporous molecular sieve MCM-41: Synthesis and characterization, J Phys Chem, 1996, 100: 2178~2182
    [320]Boccuti M R, Rao K M, Zecchina A. Leofanti G, Petrini G, Spectroscopic Characterization of Silicalite and Titanium-Silicalite, Stud. Surf. Sci. Catal. 1989, 48: 133~134
    [321]Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites, J. Mol. Catal., 1992, 71: 129~147
    [322]Zecchina A, Spoto G, Bordiga S, et al. Framework and Extraframework Ti in Titanium-Silicalite: Investigation by Means of Physical Methods, Stud. Surf. Sci. Catal. 1991, 69: 251~258
    [323]Gabriele R, Alessandro D, Silvia B, et al. Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study, J. Am. Chem. Soc., 2001, 123: 11409~11419
    [324]Bordiga S, Coluccia S, Lamberti C, et al. XAFS Study of Ti-Silicalite: Structure of Framework Ti(IV) in the Presence and Absence of Reactive Molecules (H2O, NH3) and Comparison with Ultraviolet-Visible and IR Results, J. Phys. Chem. 1994, 98: 4125~4132
    [325]Man-Chien C, Hong-Ping L, Chung-Yuan M, et al. Synthesis of nano-sized mesoporous silicas with metal incorporation, Catal. Today, 2004, 97: 81~87
    [326]孔令艳,钛硅分子筛催化氧化脱除噻吩类硫化物的研究:博士论文,大连:大连理工大学,2005
    [327]冀晓静,郑经堂,石建稳,等,钛硅复合氧化物光催化剂的研究进展,化工进展,2007,27(4):472~476
    [328]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 1997, 97: 2373~2419
    [329]Yusuke I. Hydration/hydrolysis by solid acids, Catal. Today, 1997, 33: 371~409
    [330]Dusi M, Mallat T, Baiker A. Epoxidation of functionalized olefins over solid catalysts, Catal. Rev., 2000, 42, 213~278
    [331]Bhaumik A, Kumar R. Titanium silicate molecular sieve (TS-1)/H2O2 induced triphase catalysis in the oxidation of hydrophobic organic compounds with significant enhancement of activity and Para-selectivity, J. Chem. Soc. Chem. Commun., 1995, 349~350
    [332]Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves, Chem. Commun., 1998, 325~326
    [333]Bhaumik A, Mukherjee P, Kumar R. Triphase Catalysis over Titanium-Silicate Molecular Sieves under Solvent-free Conditions: I. Direct Hydroxylation of Benzene,. J. Catal., 1998, 178, 101~107
    [334]Nur H, Ikeda S, Ohtani B. Phase-boundary catalysis: a new approach in alkene epoxidation with hydrogen peroxide by zeolite loaded with alkylsilane-covered titanium oxide, Chem Commun, 2000, (22): 2235~2236
    [335]Ikeda S, Nur H, Sawadaishi T, et al. Direct Observation of Bimodal Amphiphilic Surface Structures of Zeolite Particles for a Novel Liquid-Liquid Phase Boundary Catalysis, Langmuir, 2001, 17(26): 7976~7979
    [336]Nur H, Ikeda S, Ohtani B. Phase-Boundary Catalysis of Alkene Epoxidation with Aqueous Hydrogen Peroxide Using Amphiphilic Zeolite Particles Loaded with Titanium Oxide, J Catal, 2001, 204(2): 402~408
    [337]周炜,须沁华,董家騄,等,新型两亲性含钛β沸石的制备与表征,化学学报2003,61(10):1533~1536
    [338]周炜,淳远,须沁华,等,新型液固相同晶取代法制备Ti-β沸石,高等学校化学学报,2004,25(1):16~20
    [339]周炜,孟凡磊,须沁华,等,两亲性TS-1沸石的制备及其相界面催化反应性能的研究,化学学报,2004,62(15):1425~1429
    [340]马丙丽,淳远,周炜,等,新型两亲性HZSM-5沸石催化剂对环己烯水合相界面反应的催化研究,高等学校化学学报2005,26(4):731~736
    [341]Brabec L, NovákováJ, KubelkováL. Catalytic conversion of oxygen containing cyclic compounds. Part I. Cyclohexanol conversion over H[Al]ZSM-5 and H[B]ZSM-5, J Mol Catal, 1994, 94(1): 117~130
    [342]Singh R, Dutta P K. Use of surface-modified zeolite Y for extraction of metal ions from aqueous to organic phase, Microporous Mesoporous Mater, 1999, 32: 29~35
    [343]路鑫,武建芳,吴建华,等,全二维气相色谱/飞行时间质谱用于柴油组成的研究,色谱,2004,22(1):5~11
    [344]曲良龙,建谋,李大东, Ni-W-F/γ-Al2O3催化剂的加氢脱氮反应动力学—Ⅰ.吡啶的加氢,石油学报(石油加工),1991, 7(3): 32~38
    [345]徐征利,吴辉,李承烈,加氢脱氮动力学模型,华东理工大学学报,2001,27(1):42~45
    [346]Rangwala H A, Dalla Lava I G, Otto F D, et al. Influence of catalyst properties and operating conditions on hydrodenitrogenation of quinoline, Energy & Fuels, 1990, 4: 599~604
    [347]Satterfield C N, Yang S H. Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Comparison with vapor phase reaction, Ind Eng Chem Process Des Dev, 1984, 23: 11~19
    [348]何国锋,关北峰,王燕芳,等,低温热解焦油中油馏分加氢脱氮和芳烃加氢宏观动力学的研究,煤炭转化,1998,21(1):54~58
    [349]Stern E W. Reaction networks in catalytic hydrodenitrogenation, J Catal, 1979, 57: 390~396
    [350]Shabtai J, Yeh G J C, Russell C, et al. Fundamental hydrodenitrogenation studies of polycyclic nitrogen-containing compounds found in heavy oils. 1. 5,6-Benzoquinoline, Ind Eng Ckem Res, 1989, 28(2): 139~146
    [351]谭汉森,方向晨,重馏分油加氢脱氮反应动力学模型的研究,石油学报(石油加工),1992,8(1):1~9
    [352]高振衡,编译,有机光化学,北京:人民教育出版社,1980,67