乙炔选择性加氢的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用量子化学第一性原理计算对乙炔选择性加氢过程进行了比较系统的研究,本论文的研究不仅可以加深我们对乙炔选择性加氢催化过程的理解,为设计开发新型催化剂提供理论指导,而且对于其它催化材料的分子设计也有一定的借鉴意义。
     首先,研究了活性组分Pd和锐钛矿型TiO_2载体之间的相互作用,发现当单个钯原子吸附在锐钛矿(101)完美表面时,最稳定的吸附位是两个相邻且配位数为二的氧原子构成的桥位。而当锐钛矿(101)缺陷表面存在氧缺位时,氧缺位则成为钯原子的最稳定吸附位。Pdn团簇在TiO_2(101)表面生长时,先呈平面结构生长,逐渐转变为三维立体结构。Pdn团簇在TiO_2表面的生长受两种作用力的驱动,成核初期Pd-TiO_2之间的作用是成核的主要驱动力;随着团簇的长大,Pd-Pd之间的作用逐渐成为了成核的主要驱动力。
     其次,通过考察了不同载体(TiO_2和Al2O3)对乙炔选择性加氢过程的影响,发现乙炔分子在TiO_2负载的Pdn团簇上的吸附要强于其在Al2O3负载的Pd团簇上的吸附,而乙烯分子则正好相反。在Pd3/TiO_2表面吸附时,乙炔和乙烯分子所占据的稳定吸附位点相同,均为三配位空位,存在竞争吸附。在Pd3/Al2O3上吸附时,乙炔占据三配位空位,而乙烯吸附于两个Pd原子的顶位,两者不存在竞争。这些结果说明TiO_2负载Pd的催化剂有利于反应物乙炔分子的吸附和产物乙烯分子的脱附,与传统的Al2O3载体相比,更有利于乙烯选择性的提高。不同载体孔道中C2分子扩散性能接近,表明扩散对于加氢选择性没有太大影响。
     最后,研究了第二金属Ag的引入对乙炔选择性加氢过程的影响,发现Pd-Ag在TiO_2表面形成合金团簇时,Ag原子倾向于吸附在Pd团簇之上,而非分散在载体表面。这样可以将Pd团簇分割成小的活性位点,从而起到抑制C2分子在表面的聚合反应,有利于催化剂选择性的提高。乙炔,乙烯分子在不同掺杂比例的负载型Pd-Ag合金团簇上的吸附结果显示,Pd-Ag合金团簇对C2H2, C2H4的吸附作用相比纯Pdn团簇有所减弱,但掺杂Ag后,对乙炔的吸附选择性增大,说明Ag的掺杂会使催化剂活性降低,但有利于乙烯选择性的提高。此外C4H6分子在Pd-Ag合金团簇表面的吸附能随着Ag原子掺杂比的提高逐渐减弱,说明Ag原子的添加有利于抑制绿油的沉积,延长催化剂寿命。
The focus of this dissertation is to investigate the acetylene selective hydrogenation using first principles based on slab calculations. The results from this study will be helpful to understand the acetylene hydrogenation mechanism and useful to design a new and highly efficient selective hydrogenation catalyst. Furthermore, our results will be beneficial to develop other new kinds of catalysts.
     Firstly, we studied the interfacial interaction between Pd catalyst and anatase TiO_2(101) support. When a single Pd atom adsorbed on the perfect anatase TiO_2(101) surface, it prefers the bridge site formed by two neighbor 2-coordinated oxygen (2cO) atoms along the [010] direction, whereas Pd adatom prefers occupying the oxygen vacancy site when Pd was deposited on the defective anatase TiO_2(101) surface. The Pdn cluster on the anatase TiO_2(101) surface prefers to form plant-like conformation when the number of Pd atoms in the cluster is less than three, and then it turns to 3-dimensional structure. The growth of Pdn cluster was controlled by two kinds of forces. One is the interaction between Pd cluster and TiO_2(101) surface (Pd-TiO_2 interaction), and the other is the interaction between different Pd atoms in the adsorbed cluster (Pd-Pd interaction). At the beginning stage of cluster growth, the Pd-TiO_2 interaction is the main driving force, and then it will be replaced by the Pd-Pd interaction.
     Secondly, we investigated the effects of different supports on the acetylene selective hydrogenation. Compared the adsorption of C2H2 and C2H4 molecules on the Pd3 cluster supported by TiO_2 and Al2O3 surface, we found that the adsorption energy of acetylene on the Pd3/TiO_2 surface was higher than that on the Pd3/Al2O3 surface. However, the adsorption energy of ethylene molecule on the Pd3/TiO_2 surface was lower than that on the Pd3/Al2O3 surface. The results demonstrated that the Pd3/TiO_2 catalyst has a better selectivity for acetylene molecule adssorption than Pd3/Al2O3 catalyst. The active sites for C2H2 on both Pd3/TiO_2 and Pd3/Al2O3 surface are three-coordinated hollow sites, but the active site for C2H4 is three-coordianted hollow site on the Pd3/TiO_2 surface and top site of two Pd atoms on the Pd3/Al2O3. The adsorption of C2H2 and C2H4 molecules on the Pd3/TiO_2 surface is competitive process but is non-competitive process on the Pd3/Al2O3 surface. These results implied that the Pd3/TiO_2 is beneficial to C2H2 (reactant) adsorption and C2H4 (product) desorption, which will improve the selectivity of C2H4.
     Thirdly, the effects of Ag doping into Pd catalyst on the acetylene selective hydrogenation was studied. When adding Ag into the Pd catalyst, we found that the Ag atom preferred to deposite on the surface of Pd catalyst rather than the TiO_2 surface. The Ag doping can separate the Pd cluster into small areas, which can inhibit the copolymer reaction of C2H2 on the catalyst and enhance the selectivity of acetylene hydrogenation to ethylene. Investigating the adsorption of acetylene and ethylene molecules on the supported Pd-Ag alloy cluster, we found that the doping of Ag can not enhance the activity of the catalyst, but it is beneficial to enhance the selective adsorption of acetylene on the catalyst surface. Furthermore, the adsorption energy of C4H6 molecule on the Pd-Ag/TiO_2 is decreasing with the increase of Ag/Pd ratio, which means that the Ag doping can also inhibit the depositon of green oil molecules and prolong the usage of catalyst.
引文
[1]金栋,吕效平.世界聚乙烯工业现状及生产工艺研究新进展.化工科技市场, 2006,29(2):1-5
    [2] Huang J, Rempel GL. Ziegler-Natta catalysts for olefin polymerization: Mechanistic insights from metallocene systems. Prog. Polym. Sci., 1995,20: 459- 526
    [3]张谦温,刘新香,朱起明.炔烃和二烯烃选择加氢现状与发展.石油化工, 1998, 27(1):53-58
    [4]戴伟,朱警,万文举. C2馏份选择加氢工艺和催化剂研究进展.石油化工, 2000,29(7):534-540
    [5] Bond GC, Wells PB. The hydrogenation of acetylene: III.The reaction of acetylene with hydrogen catalyzed by alumina-supported rhodium and iridium. J. Catal., 1966,5(3):419-427
    [6] Bond GC, Wells PB. The hydrogenation of acetylene: II. The reaction of acetylene with hydrogen catalyzed by alumina-supported palladium. J. Catal., 1966,5(1): 65-73
    [7] Sárkány A, Beck A, Horváth A. Acetylenehydrogenation onSOl2derived Pd/ SiO2 Appl. Catal., A, 2003,253(1):283-292
    [8] Kim WJ, Kang JH, Ahn IY, Moon SH. Deactivation behavior of a TiO2-added Pd catalyst in acetylene hydrogenation. J. Catal., 2004,226(1):226-229
    [9] Praserthdam P, Phatanasr S, Jumpod M. Activation of acetylene selective hydrogenation catalysts using oxygen containing compounds. Catal. Today, 2000,63(224):209-213
    [10] Ngamsom B, Bogdanchikova N, AvalosBorja M. Characterisations of Pd-Ag/ Al2O3 catalysts forselective acetylene hydrogenation: Effect of pretreatment with NO and N2O. Catal. Commun., 2004,5(5):243-248
    [11] Lamb RN, Ngamsom B, Trimm DL. Surface characterisation of Pd-Ag/ Al2O3 catalysts foracetylene hydrogenation using an improved XPS procedure. Appl. Catal., A, 2004,268(122):43-50
    [12] Park YH, Price GL. Promotional effects of potassium on palladium/alumina selective hydrogenation catalysts. Ind. Eng. Chem. Res., 1992,31(2):469-474.
    [13]谭蔚泓,彭少逸,谭长瑜. Pd/纤维Al2O3催化剂上乙炔加氢的研究.石油化工, 1986,15(11):671-677
    [14]南军,谢海峰,柴永明,等.一种TiO2修饰的Pd/Al2O3选择性加氢用催化剂的研究.催化学报, 2005,26(8):672-676
    [15]韦以,刘新香. Al2O3-TiO2复合载体用于乙炔选择加氢反应.石油化工, 2006, 35(5):411-415
    [16] Moon SH. Preparation of catalysts for the selective hydrogenation of acetylene in acetylene-containing ethylene streams DE:19757990 A , 1998-07 - 02., 1998
    [17] Nitikon W, Piyasan P, Panpranot J. Performance of Pd catalysts supported on nanocrystallineα-Al2O3 and Ni-modifiedα-Al2O3 in selective hydrogenation of acetylene.Catal. Today, 2008,131:553-558
    [18] Fliek K. Supported palladium catalyst for selective catalytic hydrogenation of acetylene in hydrocarbonaceous streams. US :5856262 ,1999-01-05, 1999
    [19] Kang JH, Shin EW, Kim WJ, Park JD, Moon SH. Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J. Catal., 2002,208(2):310-320
    [20] In Young Ahn WJK, Sang Heup Moon. Performance of Al2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Appl. Catal., A, 2006,308:75-81
    [21] Ihm SK. Process for manufacturing a titania supported palladium catalyst. US: 4839329 ,1989-07-13, 1989
    [22]夏先波,黄维刚,沈小小,等.纳米Pd/TiO2加氢催化剂的制备及其催化性能研究.天然气化工, 2006,31(2):24-28
    [23]洪景萍,储伟,陈慕华,等.催化剂载体TiO2的制备.合成化学, 2006,14(4): 346-349
    [24]顾虹,许波连,周静,等.负载型Pd/TiO2和Pd-Ag/TiO2催化剂的乙炔选择性加氢催化性能.物理化学学报, 2006,22(6):712-715
    [25] Panpranot J, Kontapakdee K, Praserthdam P. Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts. Appl. Catal. A-Gen, 2006,314(1):128-133
    [26] Panpranot J, Kontapakdee K, Praserthdam P. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation. J. Phys. Chem. B, 2006,110(15):8019-8024
    [27]胡长员,华丽,李凤仪,等.银、铜对NiB/CNTs非晶态合金乙炔选择加氢性能的影响.应用化学, 2006,23(7):713-717
    [28] Huang W, McCormick JR, Loboa RF, Chen J. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts. J. Catal., 2007,246:40-51
    [29]姜勇,储伟,江成发,等. Pdn(n=1-7)团簇及其与甲烷相互作用的密度泛函理论研究.物理化学学报, 2007,23(11):1723-1727
    [30]李春森,曹吴玮,林梦海,等. Pdn (n= 2-13)团簇的密度泛函理论研究.高等学校化学学报, 2005,26(1):116-120
    [31] Kalita B, Deka RC. Stability of small Pdn(n=1–7…)clusters on the basis of structural and electronic properties: A density functional approach. J. Chem. Phys., 2007,127:244306
    [32] Luo C, Zhou CG, Wang JP, et al. First principles study of small palladium cluster growth and isomerization,international journal of quantum chemistry. Int. J. Quantum Chem., 2007,107:1632-1641
    [33] Efremenko I, Sheintuch M. Quantum chemical study of neutral and single charged palladium clusters. J. Mol. Catal. A: Chem., 2000,160:445-451.
    [34] Haber J, Witko M.Oxidation catalysis-electronic theory revisited. J. Catal., 2003, 216:416-424
    [35] Bell AT. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613):1688-1691
    [36] Freund H-J. Clusters and islands on oxides: From catalysis via electronics and magnetism to optics. Surf. Sci., 2002,500:271-299
    [37] Heiz U, Sanchez A, Abbet S, Schneider W-D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts. J. Am. Chem. Soc., 1999,121(13):3214 - 3217
    [38] Henry CR. Surface studies of supported model catalysts. Surf. Sci. Rep., 1998,31 (7-8):235-325
    [39] Madey TE, Pelhos K, Wu Q, et al. Nanoscale surface chemistry. PNAS, 2002,99 (90002):6503-6508
    [40] Rolison DR. Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science, 2003,299(5613):1698-1701
    [41] Bredow T, Pacchioni G. A quantum-chemical study of Pd atoms and dimers supported on TiO2(110) and their interaction with Co. Surf. Sci., 1999,426(1):106 122
    [42] Sanz JF, Hernandez NC, Marquez A. A first principles study of Pd deposition on the TiO2(110) surface. Theoretical Chemistry Accounts, 2000,104:317-322
    [43] Sanz JF, Marquez A. Adsorption of Pd atoms and dimers on the TiO2(110) surface: A first principles study. J. Phys. Chem. C, 2007,111(10):3949-3955
    [44] Bent BE. Mimicking aspects of heterogeneous catalysis: Generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum. Chem. Rev., 1996,96(4):1361-1390
    [45] Neurock M, Santen RA. A first principles analysis of C-H bond formation in ethylene hydrogenation. J. Chem. Phys. B, 2000,104:11127-11145
    [46] Janssens TVW, Volkening S, Zambelli T, Wintterlin J. Direct observation of surface reactions of acetylene on Pd(111) with scanning tunneling microscopy. J. Phys. Chem. B, 1998,102(34):6521-6528
    [47] Dunphy JC, Rose M, Behler S, Ogletree DF, Salmeron M. Acetylene structure and dynamics on Pd(111) Phys. Rev. B, 1998,57(20):R12705-R12708
    [48] Sellars H. Structures and vibrational frequencies of acetylene in three binding sites on the palladium(111) surface. J. Phys. Chem., 1990,94(21):8329-8333
    [49] Clotet A, Pacchioni G. Acetylene on Cu and Pd(111) surfaces: A comparative theoretical study of bonding mechanism,adsorption sites, and vibrational spectra. Surf. Sci., 1996,346(1-3):91-107
    [50] Fahmi A, Santen RAV. Density functional study of acetylene and ethylene adsorption on Ni(111). Surf. Sci., 1997,371(1):53-62
    [51] Guo XC, Madix R. Selective hydrogenation and H-D exchange of unsaturated hydrocarbons on Pd(100)-p(1×1)-h(d). J. Catal., 1995,155(2):336-344
    [52] Bazad S, Kaltchev M, Stacchiola D, et al. On the reaction pathway for the hydrogenation of acetylene and vinylidene on Pd(111). J. Phys. Chem. B, 2000,104(14):3107-3115
    [53] Ormerod RM, Lambert RM, Hoffmann H, et al. Room-temperature chemistry of acetylene on Pd(111): Formation of vinylidene. J. Phys. Chem., 1994,98(8): 2134-2138
    [54] Kaltchev M, Stacchiola D, Molero H, et al. On the reaction pathway for the formation of benzene from acetylene catalyzed by palladium. Catal. Lett., 1999, 60 (1-2):11-14
    [55]. Pacchioni G, Lambert RM. Cyclization of acetylene over Pd(111): A theoretical study of reaction mechanisms and surface intermediates. Surf. Sci., 1994,304(1-2):208-222.
    [56] Sheth PA, Neurock M, Smith CM. A first-principles analysis of acetylene hydrogenation over Pd(111). J. Phys. Chem. B, 2003,107: 2009-2017
    [57] Sheth PA, Neurock M, Smith CM. First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures. J. Phys. Chem. B, 2005,109:12449-12466
    [58] Medlin JW, Allendorf MD. Theoretical study of the adsorption of acetylene on the (111) surfaces of Pd, Pt, Ni, and Rh. J. Phys. Chem. B, 2003,107:217-223
    [59]韩优,Pt/TiO2界面作用机理及其对甲醇分解催化性能的理论研究:[博士学位论文],天津:天津大学,2007
    [60] Eill DE, Perdew JP. Density functional theory of molecules. Solids, 1994, Kluwer Academi
    [61] Parr RG, Yang WT. Density functional theory of atoms and molecules. Oxford, New York, 1989
    [62] Kohn W. Density functional theory: Fundamentals and applications. Highlights of Condensed Matter Theory, 1985, North Holland
    [63] Sham LJ, Kohn W. One-particle properties of an inhomogeneous interacting gas. Phys. Rev. B, 1966,145:561-567
    [64] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. B, 1964,136:864 -871
    [65] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965,140:1133-1140
    [66] Dreizler RM. Density functional theory. Springer-verlag, 1990
    [67] Callawav N, March NH. Density functional methods: Theory and applications. Solid State Phys., 1984, 38:135-221
    [68] Perdew JP, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron-gas. Phys. Rev. B, 1992,46(20):12947-12954
    [69] Langreth DC, Perdew JP. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B, 1986,21:5469-5493
    [70] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988,38:3098-3100
    [71] Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986,33:8822-8824
    [72] Perdew JP, Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 1986,33: 8800-8802
    [73] Perdew JP, Wang Y. Accurate and simple analytic representation of the electron- gas correlation-energy. Phys. Rev. B, 1992,45(23):13244-13249
    [74] Hamann DR, Schluter M, Chiang C. Norm-conserving pseudopotential. Phys. Lett., 1979,42(20):1494-1497
    [75] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990,41(11):7892-7895
    [76] Heiz U, Sanchez A, Abbet S, et.al., Tuning the oxidation of carbon monoxide using nanoassembled model catalysts. Chem. Phys., 2000, 262: 189-200
    [77] Abbet S, Sanchez A, Heiz U, et.al., Acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤n≤30): one atom is enough. J. Am. Chem. Soc., 2000,122:3453-3457
    [78] Duca D, Ferrante F, La Manna G. Theoretical study of palladium cluster structures on carbonaceous supports. J. Phys. Chem. C, 2007,111:5402-5408.
    [79] Ferrari AM, Giordano L, Rolsch N, et al. Role of surface defects in theactivation of supported metals: A quantum-chemical study of acetylene cyclotrimerization on Pd1/MgO. J. Phys. Chem. B, 2000,104:10612-10617
    [80] Matti A M-J, Tapio T R. Density functional study of Pd adsorbates at SnO2(1 1 0) surfaces. Surf. Sci., 2003,537:168-178
    [81] Pfrommer BG, Cote M, Louie SG, Cohen ML. Relaxation of crystals with the quasi-newton method. J. Comput. Phys., 1997,131:133-140
    [82] Han Y, Liu CJ, Ge QF. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B, 2006,110(14):7463-7472
    [83] Vittadini A, Selloni A. Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with Co: A density functional study. J. Chem. Phys., 2002,117(1):353-361
    [84] Hansen KH, Worren T, Stempel S, et al. Palladium nanocrystals on Al2O3: Structure and adhesion energy. Phys. Rev. Lett., 1999,83(20):4120-4123
    [85] Lopez N, Norskov JK. Theoretical study of the au/tio2(110) interface. Surf. Sci., 2002,515(1):175-186
    [86] Han Y, Liu CJ, Ge QF. Effect of surface oxygen vacancy on pt cluster adsorption and growth on the defective anataseTiO2(101) surface. J. Phys. Chem. C, 2007, 111(44):16397-16404
    [87] Iddir H, Skavysh V, Ogut S, et.al., Preferential growth of Pt on rutile TiO2. Phys. Rev. B, 2006,73(4):041403
    [88] Wang Y, Hwang GS. Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces: A first principles study. Surf. Sci., 2003,542(1-2):72-80
    [89] Gong XQ, Selloni A, Dulub O, et. al., Small Au and Pt clusters at the anatase TiO2(101) surface: Behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc., 2008,130(1):370-381
    [90] Xu C, La X, Zajac GW. Scanning tunneling microscopy study of the TiO2(110) surface:Structure and the nucleation growth of Pd. Phys. Rev. B, 1997,56:13464 -13481
    [91] Kang JH, Shin EW, Kim WJ, et.al., Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides.Catal.Today, 2000,63(2-4):183-188
    [92] Lee DC, Kim JH, Kim WJ, et. al., Selective hydrogenation of 1,3-butadiene on TiO2-modified Pd/SiO2 catalysts. Appl. Catal. A-Gen, 2003,244:83-91
    [93] Li YZ, Xu BL, Fan YN, et al. The effect of titania polymorph on the strong metal-support interaction of Pd/TiO2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. J. Mol. Catal. A-Chem., 2004,216(1):107-114
    [94] Hong JP, Chu W, Chen MH, et al. Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene. Catal. Commun., 2007,8(3):593-597
    [95] Krokidis X, Raybaud P, Gobichon A-E, et al. Theoretical study of the dehydration process of boehmite toγ-alumina. J. Phys. Chem. B, 2001,105: 5121 -5130
    [96] Valero MC, Raybaud P, Saute t. Nucleation of Pdn(n=1-5) clusters and wetting of Pd particles on Al2O3 surfaces: A density functional theory study. Phys. Rev. B, 2007,75:045427
    [97] Felter TE, Sowa EC, Van H, M. A. Location of hydrogen adsorbed on palladium (111) studied by low-energy electron diffraction. Phys. Rev. B, 1989,40:891-899
    [98] Conrad H, Ertl G, Latta EE. Adsorption of hydrogen on palladium single crystal surfaces. Surf. Sci., 1974,41:435-446
    [99] Mitsui T, Rose MK, Fomin E, et. al., Hydrogen adsorption and diffusion on Pd(111). Surf. Sci., 2003,540(1):5-11
    [100] Roques J, Lacaze-Dufaure C, Mijoule C. Dissociative adsorption of hydrogen and oxygen on palladium clusters: A comparison with the (111) infinite surface. J. Chem. Theory Comput., 2007,3:878-884
    [101] Scire S, Crisafulli C, Maggiore R, et al. FT-IR characterization of alkali-doped Pd catalysts for the selective hydrogenation of phenol to cyclohexanone. Appl. Surf. Sci., 1996,93(4):309-316
    [102] Sun H. Compass: An ab-initio force field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B, 1998,102:7338-7364
    [103] Zhang QW, Li J, Liu XX, et al. Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene. Appl. Catal., A, 2000,197:221-228
    [104] Zea H, Lester K, Datye AK, et.al., The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene-acetylene mixtures. Appl. Catal., A, 2005,282(1-2):237-245
    [105] Huang DC, Chang KH, Pong WF, et al. Effect of Ag-promotion on Pd catalysts by XANES. Catal. Lett., 1998,53(3-4):155-159
    [106] Constant L, Ruiz P, Abel M, et. al., Pd deposited on Cu(110):A highly performant catalyst for the 1,3-butadiene hydrogenation reaction. Top. Catal., 2001,14(1-4):125-129
    [107] Sales EA, Benhamida B, Caizergues V, et al. Alumina-supported Pd, Ag and Pd-Ag catalysts: Preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Appl. Catal., A, 1998,172(2): 273- 283
    [108] Heinrichs B, Delhez P, Schoebrechts JP, et al. Palladium–silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene. J. Catal., 1997,172:322-335
    [109] Kontapakdee K, Panpranot J, Praserthdam P. Effect of Ag addition on the properties of Pd-Ag/TiO2 catalysts containing different TiO2 crystalline phases. Catal. Commun., 2007,8(12):2166-2170
    [110] Khan NA, Uhl A, Shaikhutdinov S, et al. Alumina supported model Pd–Ag catalysts: A combined STM, XPS, TPD and IRAS study. Surf. Sci.,2006, 600:1849-1853
    [111] Gonzalez S, Neyman KM, Shaikhutdinov S, et al. On the promoting role of Ag in selective hydrogenation reactions over Pd-Ag bimetallic catalysts: A theoretical study. J. Phys. Chem. C, 2007,111(18):6852-6856